Mycotoxin Research

, Volume 34, Issue 2, pp 85–90 | Cite as

Enniatin B and ochratoxin A in the blood serum of workers from the waste management setting

  • Susana Viegas
  • Bernd Osteresch
  • Ana Almeida
  • Benedikt Cramer
  • Hans-Ulrich Humpf
  • Carla Viegas
Original Article
  • 123 Downloads

Abstract

The waste management occupational environment is recognized by the simultaneous presence of several substances and biologic agents. Therefore, workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 in one Portuguese waste sorting plant was already reported. However, besides this mycotoxin, data regarding fungal contamination showed that exposure to other mycotoxins could be expected. A study was developed to analyze if exposure to other mycotoxins besides aflatoxin B1 was occurring in the workers from the waste sorting plant previously assessed and to discuss how these findings need to be considered in the risk assessment process. In addition to aflatoxin B1 detected previously by ELISA, two additional mycotoxins and one mycotoxin degradation product were detected and quantified by a multi-mycotoxin HPLC-MS/MS approach: Enniatin B and ochratoxin A as well as 2’R-ochratoxin A. Besides the confirmation of co-exposure to several mycotoxins, results probably indicate different exposure routes for the mycotoxins reported.

Keywords

Mycotoxins Occupational exposure Co-exposure Risk assessment Food consumption 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. The authors have full control of all primary data and agree to allow the journal to review their data if requested.

References

  1. Alborch L, Bragulat MR, Abarca ML, Cabañes FJ (2011) Effect of water activity, temperature and incubation time on growth and ochratoxin A production by Aspergillus niger and Aspergillus carbonarius on maize kernels. Int J Food Microbiol 147(1):53–57.  https://doi.org/10.1016/j.ijfoodmicro.2011.03.005 CrossRefPubMedGoogle Scholar
  2. Blesa J, Marín R, Lino CM, Mañes J (2012) Evaluation of enniatins A, A1, B, B1 and beauvericin in Portuguese cereal-based foods. Food Addit Contam Part A 29(11):1727–1735.  https://doi.org/10.1080/19440049.2012.702929 CrossRefGoogle Scholar
  3. Boonen J, Malysheva SV, Taevernier L, Diana Di Mavungu J, De Saeger S, De Spiegeleer B (2012) Human skin penetration of selected model mycotoxins. Toxicology 301(1–3):21–32.  https://doi.org/10.1016/j.tox.2012.06.012 CrossRefPubMedGoogle Scholar
  4. Brera C, Caputi R, Miraglia M, Iavicoli I, Salerno A, Carelli G (2002) Exposure assessment to mycotoxins in workplaces: aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem J 73(1-2):167–173.  https://doi.org/10.1016/S0026-265X(02)00061-9 CrossRefGoogle Scholar
  5. Costa JG, Saraiva N, Guerreiro PS, Louro H, Silva MJ, Miranda JP, Castro M, Batinic-Haberle I, Fernandes AS, Oliveira NG (2016) Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: an integrative approach of complementary endpoints. Food Chem Toxicol 87:65–76.  https://doi.org/10.1016/j.fct.2015.11.018 CrossRefPubMedGoogle Scholar
  6. Cramer B, Königs M, Humpf H-U (2008) Identification and in vitro cytotoxicity of ochratoxin A degradation products formed during coffee roasting. J Agric Food Chem 56(14):5673–5681.  https://doi.org/10.1021/jf801296z CrossRefPubMedGoogle Scholar
  7. Cramer B, Osteresch B, Muñoz KA, Hillmann H, Sibrowski W, Humpf HU (2015) Biomonitoring using dried blood spots: detection of ochratoxin A and its degradation product 2’R-ochratoxin A in blood from coffee drinkers. Mol Nutr Food Res 59(9):1837–1843.  https://doi.org/10.1002/mnfr.201500220 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Degen G (2011) Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J 4(3):315–327.  https://doi.org/10.3920/WMJ2011.1295 CrossRefGoogle Scholar
  9. Degen GH, Blaskewicz M, Lektarau Y, Grüner C (2003) Ochratoxin A Analysen im Blut von Arbeitnehmern in der Abfallwirtschaft. Mycotoxin Res 19(1):3–7.  https://doi.org/10.1007/BF02940082 CrossRefPubMedGoogle Scholar
  10. Degen GH, Mayer S, Blaskewicz M (2007) Biomonitoring of ochratoxin A in grain workers. Mycotoxin Res 23(2):88–83.  https://doi.org/10.1007/BF02946032 CrossRefPubMedGoogle Scholar
  11. Devreese M, Broekaert N, De Mil T, Fraeyman S, De Backer P, Croubels S (2014) Pilot toxicokinetic study and absolute oral bioavailability of the fusarium mycotoxin enniatin B1 in pigs. Food Chem Toxicol 63:161–165.  https://doi.org/10.1016/j.fct.2013.11.005 CrossRefPubMedGoogle Scholar
  12. Duarte SC, Bento J, Pena A, Lino CM, Delerue-Matos C, Oliva-Teles T, Morais S, Correia M, Oliveira MBPP, Alves MR, Pereira JA (2010a) Monitoring of ochratoxin A exposure of the Portuguese population through a nationwide urine survey-winter 2007. Sci Total Environ 408(5):1195–1198.  https://doi.org/10.1016/j.scitotenv.2009.11.048 CrossRefPubMedGoogle Scholar
  13. Duarte SC, Pena A, Lino CM (2010b) Ochratoxin A in Portugal: a review to assess human exposure. Toxins (Basel) 2(6):1225–1249.  https://doi.org/10.3390/toxins2061225 CrossRefGoogle Scholar
  14. Duquenne P, Simon X, Koehler V, Goncalves-Machado S, Greff G, Nicot T, Poirot P (2012) Documentation of bioaerosol concentrations in an indoor composting facility in France. J Environ Monit 14(2):409–419.  https://doi.org/10.1039/C2EM10714G CrossRefPubMedGoogle Scholar
  15. European Commission (2005) Commission regulation (EC) No 123/2005 of 26 January 2005 amending regulation (EC) No 466/2001 as regards ochratoxin A. Off J Eur Union 2005:3–5Google Scholar
  16. European Food Safety Authority (2006) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food.  https://doi.org/10.2903/j.efsa.2006.365
  17. European Food Safety Authority (2014) Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed.  https://doi.org/10.2903/j.efsa.2014.3802
  18. Fromme H, Gareis M, Völkel W, Gottschalk C (2016) Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings-an overview. Int J Hyg Environ Health 219(2):143–165.  https://doi.org/10.1016/j.ijheh.2015.11.004 CrossRefPubMedGoogle Scholar
  19. Gerding J, Cramer B, Humpf H-U (2014) Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol Nutr Food Res 58(12):2358–2368.  https://doi.org/10.1002/mnfr.201400406 CrossRefPubMedGoogle Scholar
  20. Gerding J, Ali N, Schwartzbord J, Cramer B, Brown DL, Degen GH, Humpf H-U (2015) A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Res 31(3):127–136.  https://doi.org/10.1007/s12550-015-0223-9 CrossRefPubMedGoogle Scholar
  21. Heldal K, Halstensen A, Thorn J, Djuspesland P, Wouters I, Eduard W, Halstensen T (2003) Upper airway inflammation in waste handlers exposed to bioaerosols. Occup Environ Med 60:444–450.  https://doi.org/10.1136/oem.60.6.444
  22. IARC (1993) Ochratoxin A. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins 1975, 489–521Google Scholar
  23. Iavicoli I, Brera C, Carelli G, Caputi R, Marinaccio A, Miraglia M (2002) External and internal dose in subjects occupationally exposed to ochratoxin A. Int Arch Occup Environ Health 75(6):381–386.  https://doi.org/10.1007/s00420-002-0319-3 CrossRefPubMedGoogle Scholar
  24. Ivanova L, Skjerve E, Eriksen GS, Uhlig S (2006) Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon 47(8):868–876.  https://doi.org/10.1016/j.toxicon.2006.02.012 CrossRefPubMedGoogle Scholar
  25. Ladeira C, Viegas S (2016) Application of human biomonitoring programmes in occupational exposure contexts-an overview. In: International Symposium on Occupational Safety and Hygiene SHO2016. SPOSHO, Guimarães, pp 123–125Google Scholar
  26. Lentz TJ, Dotson GS, Williams PRD, Maier A, Gadagbui B, Pandalai SP, Lamba A, Hearl F, Mumtaz M (2015) Aggregate exposure and cumulative risk assessment—integrating occupational and non-occupational risk factors. J Occup Environ Hyg 12(sup1):S112–S126.  https://doi.org/10.1080/15459624.2015.1060326 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lino CM, Baeta ML, Henri M, Dinis AMP, Pena AS, Silveira MIN (2008) Levels of ochratoxin A in serum from urban and rural Portuguese populations and estimation of exposure degree. Food Chem Toxicol 46(3):879–885.  https://doi.org/10.1016/j.fct.2007.10.012 CrossRefPubMedGoogle Scholar
  28. Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J (2016) Ochratoxin A: 50 years of research. Toxins 8(7):191.  https://doi.org/10.3390/toxins8070191 CrossRefPubMedCentralGoogle Scholar
  29. Malta-Vacas J, Viegas S, Sabino R, Viegas C (2012) Fungal and microbial volatile organic compounds exposure assessment in a waste sorting plant. J Toxicol Environ Health A 75(22–23):1410–1417.  https://doi.org/10.1080/15287394.2012.721175 CrossRefPubMedGoogle Scholar
  30. Manyes L, Escriva L, Serrano AB, Rodriguez-Carrasco Y, Tolosa J, Meca G, Font G (2014) A preliminary study in Wistar rats with enniatin A contaminated feed. Toxicol Mech Methods 24(3):179–190.  https://doi.org/10.3109/15376516.2013.876135 CrossRefPubMedGoogle Scholar
  31. Marchand G, Lavoie J, Lazure L (1995) Evaluation of bioaerosols in a municipal solid waste recycling and composting plant. J Air Waste Manage Assoc 45(10):778–781.  https://doi.org/10.1080/10473289.1995.10467406 CrossRefGoogle Scholar
  32. Mayer S, Curtui V, Usleber E, Gareis M (2007) Airborne mycotoxins in dust from grain elevators. Mycotoxin Res 23(2):94–100.  https://doi.org/10.1007/BF02946033 CrossRefPubMedGoogle Scholar
  33. Meca G, Manes J, Font G, Ruiz MJ (2012) Study of the potential toxicity of enniatins A, A(1), B, B(1) by evaluation of duodenal and colonic bioavailability applying an in vitro method by Caco-2 cells. Toxicon 59(1):1–11.  https://doi.org/10.1016/j.toxicon.2011.10.004 CrossRefPubMedGoogle Scholar
  34. Muñoz K, Vega M, Rios G, Geisen R, Degen GH (2011) Mycotoxin production by different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based media. Mycotoxin Res 27(4):239–247.  https://doi.org/10.1007/s12550-011-0100-0 CrossRefPubMedGoogle Scholar
  35. O’Brien E, Dietrich DR (2005) Ochratoxin A: the continuing enigma. Crit Rev Toxicol 35(1):33–60.  https://doi.org/10.1080/10408440590905948 CrossRefPubMedGoogle Scholar
  36. Osteresch B, Viegas S, Cramer B, Humpf H-U (2017) Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal Bioanal Chem 409(13):3369–3382.  https://doi.org/10.1007/s00216-017-0279-9 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pena A, Seifrtová M, Lino C, Silveira I, Solich P (2006) Estimation of ochratoxin A in portuguese population: new data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. Food Chem Toxicol 44(9):1449–1454.  https://doi.org/10.1016/j.fct.2006.04.017 CrossRefPubMedGoogle Scholar
  38. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51(1):61–99.  https://doi.org/10.1002/mnfr.200600137 CrossRefPubMedGoogle Scholar
  39. Pfohl-Leszkowicz A, Manderville RA (2012) An update on direct genotoxicity as a molecular mechanism of ochratoxin A carcinogenicity. Chem Res Toxicol 25:252–262.  https://doi.org/10.1021/tx200430f CrossRefPubMedGoogle Scholar
  40. Tonshin AA, Teplova VV, Andersson MA, Salkinoja-Salonen MS (2010) The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology 276(1):49–57.  https://doi.org/10.1016/j.tox.2010.07.001 CrossRefPubMedGoogle Scholar
  41. Viegas S, Veiga L, Malta-Vacas J, Sabino R, Figueredo P, Almeida A, Viegas C, Carolino E (2012) Occupational exposure to aflatoxin (AFB1) in poultry production. J Toxicol Environ Health A 75(22-23):1330–1340.  https://doi.org/10.1080/15287394.2012.721164 CrossRefPubMedGoogle Scholar
  42. Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Sabino R, Verissimo C, Viegas C (2013) Occupational exposure to aflatoxin B1 in swine production and possible contamination sources. J Toxicol Environ Health A 76(15):944–951.  https://doi.org/10.1080/15287394.2013.826569 CrossRefPubMedGoogle Scholar
  43. Viegas C, Gomes AQ, Abegão J, Sabino R, Graça T, Viegas S (2014a) Assessment of fungal contamination in waste sorting and incineration—case study in Portugal. J Toxicol Environ Health A 77(1):57–68.  https://doi.org/10.1016/j.toxicon.2011.10.004 CrossRefPubMedGoogle Scholar
  44. Viegas S, Almeida-Silva M, Viegas C (2014b) Occupational exposure to particulate matter in 2 Portuguese waste sorting units. Int J Occup Med Environ Health 27:854-862.  https://doi.org/10.2478/s13382-014-0310-8
  45. Viegas C, Faria T, dos Santos M, Carolino E, Gomes AQ, Sabino R, Viegas S (2015a) Fungal burden in waste industry: an occupational risk to be solved. Environ Monit Assess 187(4):199.  https://doi.org/10.1007/s10661-015-4412-y CrossRefPubMedGoogle Scholar
  46. Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Viegas C (2015b) Assessment of workers’ exposure to aflatoxin B1 in a Portuguese waste industry. Ann Occup Hyg 59(3):173–181.  https://doi.org/10.1093/annhyg/meu082 PubMedGoogle Scholar
  47. Viegas S, Veiga L, Almeida A, dos Santos M, Carolino E, Viegas C (2016) Occupational exposure to aflatoxin B1 in a Portuguese poultry slaughterhouse. Ann Occup Hyg 60(2):176–183.  https://doi.org/10.1093/annhyg/mev077 CrossRefPubMedGoogle Scholar
  48. Viegas C, Faria T, Caetano LA, Carolino E, Gomes AQ, Viegas S (2017a) Aspergillus spp. prevalence in different Portuguese occupational environments: what is the real scenario in high load settings? J Occup Environ Hyg.  https://doi.org/10.1080/15459624.2017.1334901
  49. Viegas C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Gomes AQ, Twarużek M, Kosicki R, Soszczyńska E, Viegas S (2017b) A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxin Res 33(4):285–295.  https://doi.org/10.1007/s12550-017-0288-8 CrossRefPubMedGoogle Scholar
  50. Viegas C, Pacifico C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Gomes AQ, Viegas S (2017c) Fungal contamination in green coffee beans samples: a public health concern. J Toxicol Environ Health A 80(13-15):1–10.  https://doi.org/10.1080/15287394.2017.1286927 CrossRefGoogle Scholar
  51. Warth B, Sulyok M, Fruhmann P, Mikula H, Berthiller F, Schuhmacher R, Hametner C, Abia WA, Adam G, Frohlich J, Krska R (2012) Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Commun Mass Spectrom 26(13):1533–1540.  https://doi.org/10.1002/rcm.6255 CrossRefPubMedGoogle Scholar
  52. World Health Organization (2002) Specific mycotoxins. In: Evaluation of certain mycotoxins in food. pp 8–26Google Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de LisboaInstituto Politécnico de LisboaLisbonPortugal
  2. 2.Centro de Investigação em Saúde Pública, Escola Nacional de Saúde PúblicaUniversidade Nova de LisboaLisbonPortugal
  3. 3.Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations