Mycotoxin Research

, Volume 31, Issue 3, pp 151–164 | Cite as

Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed

  • Constanze PietschEmail author
  • Barbara A. Katzenback
  • Erick Garcia-Garcia
  • Carsten Schulz
  • Miodrag Belosevic
  • Patricia Burkhardt-Holm
Original Paper


The mycotoxin deoxynivalenol (DON) has been shown to regularly occur at relevant concentrations in feed designed for aquaculture use, but little is known about the consequences of its presence on the organisms that consume the DON-contaminated feed. Previous studies indicated a down-regulation of pro-inflammatory responses in carp (Cyprinus carpio L.) after 4 weeks of feeding DON. The present study examined the time course of innate immune responses of carp to orally administered DON. Changes in mRNA levels of immune genes in different organs (head kidney, trunk kidney, spleen, liver, and intestine) were observed indicating immune-modulating properties of DON. The immune-modulatory effects during the acute phase of DON exposure were characterized by the activation of both pro- and anti-inflammatory cytokines and enzymes in carp. The subchronic responses to DON were characterized by activation of arginases culminating in increased arginase activity in head kidney leukocytes after 26 days of DON treatment. These results suggest profound effects of this mycotoxin on fish in aquaculture.


Immunotoxicity Fish indices Aquatic toxicology Mycotoxin Aquaculture Cytokines 



The work of CP was supported by the Basler Stiftung für Experimentelle Zoologie (Basel, Switzerland), the Reisefonds zur Nachwuchsförderung of the University of Basel (Basel, Switzerland), and the Natural Sciences and Engineering Council of Canada (NSERC) by MB. BAK was supported by a NSERC Doctoral Canadian Graduate Scholarship. Furthermore, the authors like to thank Simon Herzog, Michael Schlachter, Florian Nagel, Heidi Schiffer, Irene Kalchhauser, and Joel Gerber for support during the samplings and additional help in the laboratory work. We would also like to thank Sven Dänicke (Friedrich-Loeffler-Institut, Braunschweig, Germany) for the analysis of DON in the experimental feeds.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supplementary material

12550_2015_226_MOESM1_ESM.docx (49 kb)
ESM 1 (DOCX 48 kb)


  1. Abdelhamid AM (1990) Occurrence of some mycotoxins (aflatoxins, ochratoxin A, citrinin, zearalenone and vomitoxin) in various Egyptian feeds. Arch Tierernahr 40(7):647–664PubMedCrossRefGoogle Scholar
  2. Alvarez-Pellitero P (2008) Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet Immunol Immunopathol 126:171–198PubMedCrossRefGoogle Scholar
  3. Azcona-Olivera JI, Ouyang Y, Murtha J, Chu FS, Pestka JJ (1995a) Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin deoxynivalenol: relationship to toxin distribution and protein synthesis inhibition. Toxicol Appl Pharmacol 133:109–120PubMedCrossRefGoogle Scholar
  4. Azcona-Olivera JI, Ouyang YL, Warner RL, Linz JE, Pestka JJ (1995b) Effects of vomitoxin deoxynivalenol and cycloheximide on IL-2, 4, 5 and 6 secretion and mRNA levels in murine CD4+ cells. Food Chem Toxicol 35:433–441CrossRefGoogle Scholar
  5. Bamburg J (1983) Biological and biochemical actions of trichothecene mycotoxins. In: Hahn F, Kopecko DJ, Müller WEG (eds) Progress in molecular and subcellular biology, vol 8. Springer, Berlin Heidelberg, pp 41–110CrossRefGoogle Scholar
  6. Bansal V, Ochoa JB (2003) Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 6:223–228PubMedCrossRefGoogle Scholar
  7. Barbosa TS, Pereyra CM, Soleiro CA, Dias EO, Oliveira AA, Keller KM, Silva PPO, Cavaglieri LR, Rosa CAR (2013) Mycobiota and mycotoxins present in finished fish feeds from farms in the Rio de Janeiro State. Brazil Int Aquat Res 5:3CrossRefGoogle Scholar
  8. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916PubMedCrossRefGoogle Scholar
  9. Bögi C, Levy G, Lutz I, Kloas W (2002) Functional genomics and sexual differentiation in amphibians. Comp Biochem Physiol B 133:559–570PubMedCrossRefGoogle Scholar
  10. Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124PubMedCrossRefGoogle Scholar
  11. Bryden WL, Lloyd AB, Cumming RB (1980) Aflatoxin contamination of Australian animal feeds and suspected cases of mycotoxicosis. Aust Vet J 56(4):176–180PubMedCrossRefGoogle Scholar
  12. Chen L, Li Q, Su J, Yang C, Li Y, Rao Y (2013) Trunk kidney of grass carp (Ctenopharyngodon idella) mediates immune responses against GCRV and viral/bacterial PAMPs in vivo and in vitro. Fish Shellfish Immunol 34:909–919PubMedCrossRefGoogle Scholar
  13. Chung S, Secombes CJ (1988) Analysis of events occurring within teleost macrophages during the respiratory burst. Comp Biochem Physiol B 89:39–54Google Scholar
  14. Chung YJ, Zhou HR, Pestka JJ (2003) Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxyivalenol (vomitoxin). Toxicol Appl Pharmacol 193(2):188–201PubMedCrossRefGoogle Scholar
  15. Döll S, Valenta H, Baardsen G, Möller P, Koppe W, Stubhaug I, Dänicke S (2011) Effects of increasing concentrations of deoxynivalenol, zearalenone and ochratoxin A in diets for Atlantic salmon (Salmo salar) on performance, health and toxin residues. Proceedings of the 33rd Mycotoxin Workshop. Freising, Germany, 05/31/2011 to 06/06/2011, p 25Google Scholar
  16. FAO (2012) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  17. Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gray JS, Pestka JJ (2007) Transcriptional regulation of deoxynivalenol-induced IL-8 expression in human leukocytes. Tox Sci 99(2):502–511CrossRefGoogle Scholar
  19. Grayfer L, Walsh JG, Belosevic M (2008) Characterization and functional analysis of goldfish (Carassius auratus L.) tumor necrosis factor alpha. Dev Comp Immunol 32:532–543PubMedCrossRefGoogle Scholar
  20. Grayfer L, Garcia-Garcia E, Belosevic M (2010) Comparison of macrophage antimicrobial responses induced by type II interferons of the goldfish (Carassius auratus L.). J Biol Chem 285:23537–23547PubMedCentralPubMedCrossRefGoogle Scholar
  21. Grayfer L, Hodgkinson JW, Hitchen SJ, Belosevic M (2011) Characterization and functional analysis of goldfish (Carassius auratus L.) interleukin-10. Mol Immunol 48:563–571PubMedCrossRefGoogle Scholar
  22. Grayfer L, Hodgkinson JW, Belosevic M (2014) Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Dev Comp Immunol 43:223–242PubMedCrossRefGoogle Scholar
  23. Gregory M, Jagadeeswaran P (2002) Selective labeling of zebrafish thrombocytes: quantitation of thrombocyte function and detection during development. Blood Cell Mol Dis 28:418–427CrossRefGoogle Scholar
  24. Haddad G, Hanington PC, Wilson EC, Grayfer L, Belosevic M (2008) Molecular and functional characterization of goldfish (Carassius auratus L.) transforming growth factor beta. Dev Comp Immunol 32:654–663PubMedCrossRefGoogle Scholar
  25. Hagen MO, Katzenback BA, Islam MDS, Gamal El-Din M, Belosevic M (2014) The analysis of goldfish (Carassius auratus L.) innate immune responses after acute and subchronic exposures to oil sands process-affected water. Toxicol Sci 138:59–68PubMedCentralPubMedCrossRefGoogle Scholar
  26. Holt PS, Corrier DE, DeLoach JR (1988) Suppressive and enhancing effect of T-2 toxin on murine lymphocyte activation and interleukin 2 production. Immunopharmacol Immunotoxicol 10:365–385PubMedCrossRefGoogle Scholar
  27. Hooft JM, Elmor AEHI, Encarnação P, Bureau DP (2011) Rainbow trout (Oncorhynchus mykiss) is extremely sensitive to the feed-borne Fusarium mycotoxin deoxynivalenol (DON). Aquaculture 311:224–232CrossRefGoogle Scholar
  28. Iniesta V, Carcelén J, Molano I, Peixoto PMV, Redondo E, Parra P, Mangas M, Monroy I, Campo ML, Gómez Nieto C, Corraliza I (2005) Arginase I induction during Leishmania major infection mediates the development of disease. Infect Immun 73(9):6085–6090PubMedCentralPubMedCrossRefGoogle Scholar
  29. Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114:107–132PubMedCrossRefGoogle Scholar
  30. Joerink M, Forlenza M, Ribeiro CMS, de Vries BJ, Savelkoul HFJ, Wiegertjes GF (2006a) Differential macrophage polarisation during parasitic infections in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 21:561–571PubMedCrossRefGoogle Scholar
  31. Joerink M, Ribeiro CMS, Stet RJM, Hermsen T, Savelkoul HFJ, Wiegertjes GF (2006b) Head kidney-derived macrophages of common carp (Cyprinus carpio L.) show plasticity and functional polarization upon differential stimulation. J Immunol 177:61–69PubMedCrossRefGoogle Scholar
  32. Juszkiewicz T, Piskorska-Pliszczynska J (1992) Occurrence of mycotoxins in animal feeds. J Environ Pathol Toxicol Oncol 11(4):211–215PubMedGoogle Scholar
  33. Laing KJ, Zou JJ, Wang T, Bols N, Hirono I, Aoki T, Secombes CJ (2002) Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss. Dev Comp Immunol 26(5):433–444PubMedCrossRefGoogle Scholar
  34. Li S, Ouyang YL, Dong W, Pestka JJ (1997) Superinduction of IL-2 gene expression by vomitoxin (deoxynivalenol) involves increased mRNA stability. Toxicol Appl Pharmacol 147(2):331–342PubMedCrossRefGoogle Scholar
  35. Li S, Ouyang Y, Yang GH, Pestka JJ (2000) Modulation of transcription factor AP-1 activity in murine EL-4 thymoma cells by vomitoxin (deoxynivalenol). Toxicol Appl Pharmacol 163(1):17–25PubMedCrossRefGoogle Scholar
  36. Lundén T, Lilius E, Bylund G (2002) Respiratory burst activity of rainbow trout (Oncorhynchus mykiss) phagocytes is modulated by antimicrobial drugs. Aquaculture 207:203–212CrossRefGoogle Scholar
  37. Matejova I, Modra H, Blahova J, Franc A, Fictum P, Sevcikova M, Svobodova Z (2014) The effect of mycotoxin deoxynivalenol on haematological and biochemical indicators and histopathological changes in rainbow trout (Oncorhynchus mykiss). BioMed Res. Int. 2014, Article ID 310680, 5 pagesGoogle Scholar
  38. Miller K, Atkinson HA (1986) The in vitro effects of trichothecenes on the immune system. Food Chem Toxicol 24:545–549PubMedCrossRefGoogle Scholar
  39. Ouyang YL, Azcona-Olivera JI, Pestka JJ (1995) Effects of trichothecene structure on cytokine secretion and gene expression in murine CD4+ T-cells. Toxicology 104(1–3):187–202PubMedCrossRefGoogle Scholar
  40. Ouyang YL, Azcona-Olivera JI, Murtha J, Pestka JJ (1996a) Vomitoxin-mediated IL-2, IL-4, and IL-5 superinduction in murine CD4+ T cells stimulated with phorbol ester and calcium ionophore: relation to kinetics of proliferation. Toxicol Appl Pharmacol 138:324–334CrossRefGoogle Scholar
  41. Ouyang YL, Li S, Pestka JJ (1996b) Effects of vomitoxin deoxynivalenol on transcription factor NF-kappa B/Rel binding activity in murine EL-4 thymoma and primary CD4+ T cells. Toxicol Appl Pharmacol 140:328–336PubMedCrossRefGoogle Scholar
  42. Perez T, Balcazar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, de Blas I, Muzquiz JL (2010) Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol 3:355–360PubMedCrossRefGoogle Scholar
  43. Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1128–1140PubMedCentralPubMedCrossRefGoogle Scholar
  44. Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153(1):61–73PubMedCrossRefGoogle Scholar
  45. Pietsch C, Vogt R, Neumann N, Kloas W (2008) Production of nitric oxide by carp kidney leukocytes is regulated by cyclic adenosine 3′,5′monophosphate. Comp Biochem Physiol Part A Physiol 150:58–65CrossRefGoogle Scholar
  46. Pietsch C, Neumann N, Preuer T, Kloas W (2011) In vivo-treatment with progestogens causes immunosuppression of carp leukocytes (Cyprinus carpio L.) by affecting nitric oxide production and arginase activities. J Fish Biol 79:53–69PubMedCrossRefGoogle Scholar
  47. Pietsch C, Kersten S, Burkhardt-Holm P, Valenta H, Dänicke S (2013) Occurrence of deoxynivalenol and zearalenone in commercial fish feed—an initial study. Toxins 5:184–192PubMedCentralPubMedCrossRefGoogle Scholar
  48. Pietsch C, Kersten S, Valenta H, Dänicke S, Schulz C, Kloas W, Burkhardt-Holm P (2014a) In vivo effects of deoxynivalenol (DON) on innate immune responses of carp (Cyprinus carpio L.). Food Chem Toxicol 68:44–52PubMedCrossRefGoogle Scholar
  49. Pietsch C, Schulz C, Robiero P, Kloas W, Burkhardt-Holm P (2014b) Organ damage and altered nutritional condition in carp (Cyprinus carpio L.) after food-borne exposure to the mycotoxin deoxynivalenol (DON). Toxins 6:756–778PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ranjan KS, Sinha AK (1991) Occurrence of mycotoxigenic fungi and mycotoxins in animal feed from Bihar, India. J Sci Food Agricult 56(1):39–47CrossRefGoogle Scholar
  51. Rizzo A, Atroshi F, Ahotupa M, Sankari S, Elovaara E (1994) Protective effect of antioxidants against free radical-mediated lipid peroxidation induced by DON or T-2 toxin. J Vet Med A 41:81–90CrossRefGoogle Scholar
  52. Roberts BA, Patterson DS (1975) Detection of twelve mycotoxins in mixed animal feedstuffs, using a novel membrane cleanup procedure. J Assoc Off Anal Chem 58(6):1178–1181PubMedGoogle Scholar
  53. Rodrigues I, Naehrer K (2012) Prevalence of mycotoxins in feedstuffs and feed surveyed worldwide in 2009 and 2010. Phytopathol Mediterr 51:175–192Google Scholar
  54. Rosenstein Y, Lafarge-Frayssinet C (1983) Inhibitory effect of Fusarium T2-toxin on lymphoid DNA and protein synthesis. Toxicol Appl Pharmacol 70(2):283–288PubMedCrossRefGoogle Scholar
  55. Sanden M, Jørgensen S, Hemre G-I, Ørnsrud R, Sissener NH (2012) Zebrafish (Danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food Chem Toxicol 50:4441–4448PubMedCrossRefGoogle Scholar
  56. Sangrador-Vegas A, Lennington JB, Smith TJ (2002) Molecular cloning of an IL-8-like CXC chemokine and tissue factor in rainbow trout (Oncorhynchus mykiss) by use of suppression subtractive hybridization. Cytokine 17(2):66–70PubMedCrossRefGoogle Scholar
  57. Santos GA, Rodrigues I, Naehrer K, Encarnacao P (2010) Mycotoxins in aquaculture: occurrence in feed components and impact on animal performance. Aquacult Eur 35:6–10Google Scholar
  58. Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274:13985–13992PubMedCrossRefGoogle Scholar
  59. Stempin CC, Dulgerian LR, Garrido VV, Cerban FM (2010) Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J. Biomed. Biotechnol. Article ID 683485, 10 pages. doi: 10.1155/2010/683485
  60. Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed—focus on Europe. Toxins 4:788–809PubMedCentralPubMedCrossRefGoogle Scholar
  61. Sugita-Konishi Y, Pestka JJ (2001) Differential upregulation of TNFalpha, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model. J Toxicol Environ Health A 64(8):619–636PubMedCrossRefGoogle Scholar
  62. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–90PubMedCrossRefGoogle Scholar
  63. Tolosa J, Font G, Manes J, Ferrer E (2013) Natural occurrence of Fusarium mycotoxins in aquaculture fish food. Rev Toxicol 30:193–197Google Scholar
  64. Verlhac V, Obach A, Gabaudan J, Schüep W, Hole R (1998) Immunomodulation by dietary vitamin C and glucan in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 8:409–424CrossRefGoogle Scholar
  65. Wiegertjes GF, Forlenza M (2010) Nitrosative stress during infection-induced inflammation in fish: lessons from a host-parasite infection model. Curr Pharm Des 16:4194–4202PubMedCrossRefGoogle Scholar
  66. Yan D, Zhou HR, Brooks KH, Pestka JJ (1997) Potential role for IL-5 and IL-6 in enhanced IgA secretion by Peyer’s patch cells isolated from mice acutely exposed to vomitoxin. Toxicol 122(1–2):145–158CrossRefGoogle Scholar
  67. Yang G, Jarvis BB, Chung Y, Pestka JJ (2000) Apoptosis induction by the satratoxins and other trichothecenes mycotoxins: relationship to ERK, p38 MAPK and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149–160PubMedCrossRefGoogle Scholar
  68. Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9:2062–2090PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Constanze Pietsch
    • 1
    • 2
    Email author
  • Barbara A. Katzenback
    • 3
    • 6
  • Erick Garcia-Garcia
    • 3
    • 7
  • Carsten Schulz
    • 4
    • 5
  • Miodrag Belosevic
    • 3
  • Patricia Burkhardt-Holm
    • 2
    • 3
  1. 1.Institute of Natural Resource Sciences (IUNR)Zurich University of Applied Sciences (ZHAW)WaedenswilSwitzerland
  2. 2.Man–Society–Environment, Department of Environmental SciencesUniversity BaselBaselSwitzerland
  3. 3.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  4. 4.Gesellschaft für Marine Aquakultur (GMA) mbHBüsumGermany
  5. 5.Institute for Animal Breeding and HusbandryChristian Albrechts-University of KielKielGermany
  6. 6.Department of BiologyUniversity of WaterlooOntarioCanada
  7. 7.Casa d’Estudis El pontVillajoyosaSpain

Personalised recommendations