Mycotoxin Research

, Volume 29, Issue 4, pp 221–227 | Cite as

UV-induced cis-trans isomerization of zearalenone in contaminated maize

  • Ulrike Brezina
  • Susanne Kersten
  • Hana Valenta
  • Peter Sperfeld
  • Juliane Riedel
  • Sven DänickeEmail author
Original Paper


In the literature, it has been shown that the naturally occurring trans-zearalenone (ZEN) is transformed by ultraviolet irradiation to cis-ZEN. However, the practical relevance of this transformation in animal feeding remains unclear. The aim of the present preliminary investigation was to examine the effect of UV-irradiation on the concentration of trans-ZEN in a natural feed matrix at different dry matter contents to simulate the dry and wet feeding techniques usually applied in pig feeding. Four variants, air dry or wet ZEN-contaminated ground maize either irradiated or not were tested and analysed with conventional HPLC-FLD for trans-ZEN changes, which were further examined for cis-ZEN formation by HPLC-MS/MS. In conclusion, it could be shown that, under the investigated wet feed conditions, naturally occurring trans-ZEN was partially converted by ultraviolet irradiation to its cis counterpart. In contrast, the cis/trans isomerization seemed not to be relevant in dry maize. The consequence of this finding for practical liquid feeding systems for pigs requires further investigation. Additionally, an improvement of the analytical method for cis-ZEN determination is needed.


Cis-/trans-zearalenone Ultraviolet irradiation Maize HPLC 


Conflict of interest



  1. Abbas HK, Shier WT, Mirocha CJ (1984) Sensitivity of cultured human and mouse fibroblasts to trichothecenes. J Assoc Off Anal Chem 67(3):607–610PubMedGoogle Scholar
  2. EFSA (2004) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to zearalenone (ZON) as undesirable substance in animal feed (Question N EFSA-Q-2003-037). EFSA J 89:1–35Google Scholar
  3. Kiang DT, Kennedy BJ, Pathre SV, Mirocha CJ (1978) Binding characteristics of zearalenone analogs to estrogen receptors. Cancer Res 38(11 Pt 1):3611–3615PubMedGoogle Scholar
  4. Köppen R, Riedel J, Emmerling F, Koch M (2012a) (3S,11Z)-14,16-Dihy-droxy-3-methyl-3,4,5,6,9,10-hexa-hydro-1H-2-benz-oxacyclo-tet ra-decine-1,7(8H)-dione (cis-zearalenone): a redetermination. Acta Crystallogr Sect E Struct Rep Online 68(Pt 3):o832. doi: 10.1107/S1600536812002735 PubMedCrossRefGoogle Scholar
  5. Köppen R, Riedel J, Proske M, Drzymala S, Rasenko T, Durmaz V, Weber M, Koch M (2012b) Photochemical trans-/cis-isomerization and quantitation of zearalenone in edible oils. J Agric Food Chem 60(47):11733–11740PubMedCrossRefGoogle Scholar
  6. Miles CO, Erasmuson AF, Wilkins AL, Towers NR, Smith BL, Garthwaite I, Scahill BG, Hansen RP (1996) Ovine metabolism of zearalenone to alpha-zearalanol (zeranol). J Agric Food Chem 44(10):3244–3250CrossRefGoogle Scholar
  7. Mirocha CJ, Pathre SV, Behrens J, Schauerhamer B (1978) Uterotropic activity of cis and trans isomers of zearalenone and zearalenol. Appl Environ Microbiol 35(5):986–987PubMedGoogle Scholar
  8. Munoz L, Castro JL, Cardelle M, Castedo L, Riguera R (1989) Acetylated mycotoxins from Fusarium-Graminearum. Phytochemistry 28(1):83–85. doi: 10.1016/0031-9422(89)85014-9 CrossRefGoogle Scholar
  9. Naumann C, Bassler R (2006) Die chemische Untersuchung von Futtermitteln. 3. Auflage., 6. Erg., 16.9.2. VDLUFA, DarmstadtGoogle Scholar
  10. Naumann C, Bassler R (2012) Die chemische Untersuchung von Futtermitteln. 3. Auflage., 8. Erg., 3.1. VDLUFA, DarmstadtGoogle Scholar
  11. Peters CA (1972) Photochemistry of zearalenone and its derivatives. J Med Chem 15(8):867–& doi: 10.1021/Jm00278a028 PubMedCrossRefGoogle Scholar
  12. Rempe I, Kersten S, Brezina U, Hermeyer K, Beineke A, Dänicke S (2013) Time-dependent effects of graded levels of Fusarium toxin-contaminated maize in diets for female piglets. World Mycotoxin J 6(1):51–63. doi: 10.3920/Wmj2012.1494 CrossRefGoogle Scholar
  13. Richardson KE, Hagler WM, Mirocha CJ (1985) Production of zearalenone, alpha-zearalenol and beta-zearalenol, and alpha-zearalenol and beta-zearalanol by Fusarium Spp in rice culture. J Agric Food Chem 33(5):862–866. doi: 10.1021/Jf00065a024 CrossRefGoogle Scholar
  14. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 39(9):1435–1438. doi: 10.1016/S0041-0101(00)00259-2 PubMedCrossRefGoogle Scholar
  15. Smyth MR, Frischkorn CGB (1980) Simultaneous determination of the trans and cis forms of zearalenone in cereal products by high-performance liquid-chromatography with voltammetric detection. Anal Chim Acta 115:293–300. doi: 10.1016/S0003-2670(01)93168-X CrossRefGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulrike Brezina
    • 1
  • Susanne Kersten
    • 1
  • Hana Valenta
    • 1
  • Peter Sperfeld
    • 2
  • Juliane Riedel
    • 3
  • Sven Dänicke
    • 1
    Email author
  1. 1.Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI)Federal Research Institute for Animal HealthBraunschweigGermany
  2. 2.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany
  3. 3.Federal Institute for Materials Research and Testing (BAM)BerlinGermany

Personalised recommendations