Mycotoxin Research

, Volume 29, Issue 1, pp 29–38 | Cite as

Effect of essential oil from fresh leaves of Ocimum gratissimum L. on mycoflora during storage of peanuts in Benin

  • Euloge S. Adjou
  • Sandrine Kouton
  • Edwige Dahouenon-Ahoussi
  • Mohamed M. SoumanouEmail author
  • Dominique C. K. Sohounhloue
Original Paper


The aim of this study was to evaluate the effect of essential oil from fresh leaves of Sweet Fennel (Ocimum gratissimum) on mycoflora and Aspergillus section Flavi populations in stored peanuts. Aspergillus, Fusarium and Mucor spp. were the most common genera identified from peanuts at post-harvest in Benin by using a taxonomic schemes primarily based on morphological characters of mycelium and conidia. The isolated fungi include Aspergillus niger, A. parasiticus, A. flavus, A. ochraceus, Fusarium graminearum, F. solani, F. oxysporum and Mucor spp. The most prevalent fungi recorded were A. niger (94.18 %), A. flavus (83.72 %), A. parasiticus (77.90 %), A. ochraceus (72.09 %), F. graminearum (59.30 %) and F. oxysporum (51.16 %). Antifungal assay, performed by the agar medium assay, indicated that essential oil exhibited high antifungal activity against the growth of A. flavus, A. parasiticus, A. ochraceus and F. oxysporium. The minimal inhibitory concentration (MIC) of the essential oil was found to be 7.5 μl/ml for A. flavus and A. parasiticus and 5.5 μl/ml for A. ochraceus and F. oxysporium. The minimal fungicidal concentration (MFC) was recorded to be 8.0 μl/ml for A. flavus and A. parasiticus, 6,5 μl/ml for A. ochraceus and 6.0 μl/ml for F. oxysporium. The essential oil was found to be strongly fungicidal and inhibitory to aflatoxin production. Chemical analysis by GC/MS of the components of the oil led to the identification of 31 components characterized by myrcene (6.4 %), α-thujene (8.2 %), p-cymene (17.6 %), γ-terpinene (20.0 %), and thymol (26.9 %) as major components. The essential oil of Sweet Fennel, with fungal growth and mycotoxin inhibitory properties, offers a novel approach to the management of storage, thus opening up the possibility to prevent mold contamination in stored peanuts.


Essential oil Ocimum gratissimum Aflatoxin Fungi and peanuts Benin 



The authors are grateful to the Department of Food Engineering of Polytechnic School of Abomey-Calavi University for their financial support. Authors wish to express their gratitude to Mrs. Boniface Yehouenou and Jean-Pierre Noudogbessi for the technical assistance.

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Adams RP (2007) Identification of essential oil components by gas chromatography ⁄ mass spectrometry. Allured, Carol StreamGoogle Scholar
  2. Adjou ES, Dahouenon-Ahoussi E, Degnon R, Soumanou MM, Sohounhloue DCK (2012a) Investigations on bioactivity of essential oil of Ageratum conyzoides l., from Benin against the growth of fungi and aflatoxin production. Int J Pharm Sci Rev Res 13(1):143–148Google Scholar
  3. Adjou ES, Dahouenon-Ahoussi E, Degnon RG, Soumanou MM, Sohounhloue DCK (2012b) Bioefficacy of essential oil of Lantana camara from Benin against the growth of fungi and aflatoxin production. J Rec Adv Agric 1(4):112–121Google Scholar
  4. Adjou ES, Yehouenou B, Sossou CM, Soumanou MM, de Souza CA (2012c) Occurrence of mycotoxins and associated mycoflora in peanut cakes products (kluiklui) marketed in Benin. Afr J Biotechnol 11(78):14354–14360Google Scholar
  5. Atanda OO (2005) Development of diagnostic medium for direct visual determination of aflatoxin and its control using traditional spices. PhD thesis, University of Agriculture, AbaokutaGoogle Scholar
  6. Atanda OO, Ogunrinu MC, Olorunfemi FM (2011) A neutral red desiccated coconut agar for rapid detection of aflatoxigenic fungi and visual determination of aflatoxins. World Mycotoxin J 4(2):147–155CrossRefGoogle Scholar
  7. Atanda SA, Aina JA, Agoda SA, Usanga OE, Pessu PO (2012) Mycotoxin management in agriculture: a review. J Anim Sci Adv 2:250–260Google Scholar
  8. Awad WA, Ghareeb K, Böhm J (2012) Occurrence, health risks and methods of analysis for Aflatoxins and Ochratoxin A. J Vet Anim Sci 2:1–10Google Scholar
  9. Awuah RT (1996) Possible utilization of plant product in grain storage. Proceeding of the worhshop in mycotoxin in food in Africa, Nov. 6–10, International Institute of Tropical Agriculture, Benin, p 32–33Google Scholar
  10. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475PubMedCrossRefGoogle Scholar
  11. Bankole SA (1997) Effect of essential oil from two Nigerian medicinal plants (Azadirachta indica and Morinda lucida) on growth and aflatoxin B1 production in maize grain by a toxigenic Aspergillus flavus. Lett Appl Microbiol 24:190–192CrossRefGoogle Scholar
  12. Bankole SA, Ogunsanwo BM, Eseigbe DA (2005) Aflatoxins in Nigerian dry-roasted groundnuts. Food Chem 89:503–506CrossRefGoogle Scholar
  13. Bassolé IHN, Lamien-Meda A, Bayala B, Tirogo S, Franz C, Novak J, Nebié RC, Dicko MH (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15:7825–7839PubMedCrossRefGoogle Scholar
  14. Brown D, McCormick SP, Alexander NA, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32:121–133PubMedCrossRefGoogle Scholar
  15. CEC (1998) Commission Regulation (EC) No. 1525/98. Official Journal of European Communities L20/143Google Scholar
  16. Davis ND, Iyer SK, Diener UL (1987) Improved method of screening for aflatoxins with coconut agar medium. Appl Environ Microbiol 53:1593–1595PubMedGoogle Scholar
  17. de Billerbeck VG, Roques CG, Bessière JM, Fonvieille JL, Dargent R (2001) Effect of Cymbopogon nardus (L) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger. Can J Microbiol 47:9–17PubMedGoogle Scholar
  18. Ding X, Li P, Bai Y, Zhou H (2012) Aflatoxin B1 in post-harvest peanuts and dietary risk in China. Food Control 23:143–148CrossRefGoogle Scholar
  19. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316PubMedCrossRefGoogle Scholar
  20. Ediage EN, Di Mavungu JD, Monbaliu S, Van Peteghem C, De Saeger S (2011) A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. J Agric Food Chem 59:5173–5180PubMedCrossRefGoogle Scholar
  21. Fandohan P, Gbenou JD, Gnonlonfoun B, Hell K, Marasas WF, Wingfoeld MJ (2004) Effect of essential oils in the growth of Fusarium verticilloides and fumonisin contamination in Corn. J Agric Food Chem 52:6824–6829PubMedCrossRefGoogle Scholar
  22. Filtenborg O, Frisvad JC, Thrane U (1995) Moulds in food spoilage. Int J Food Microbiol 33:85–102CrossRefGoogle Scholar
  23. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990PubMedCrossRefGoogle Scholar
  24. Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860PubMedCrossRefGoogle Scholar
  25. Honfo FG, Hell K, Akissoe N, Dossa RAM, Hounhouigan JD (2010) Diversity and nutritional value of foods consumed by children in two agro-ecological zones of Benin. Afr J Food Sci 4:184–191Google Scholar
  26. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Front Microbiol 3(12):1–24Google Scholar
  27. Illiassa N (2004) Analyse de la gestion post-récolte de Vigna unguculata (WALP) et évaluation de l’importance insecticide des huiles essentielles de trois plantes aromatiques. Mémoire de maîtrise en Biologie Animale Faculté des Sciences, Université de NgaoundéréGoogle Scholar
  28. Khallil ARM (2001) Phytofungitoxic properties in the aqueous extracts of some plants. Pakistan J Biol Sci 4(4):392–394CrossRefGoogle Scholar
  29. Koutsoudaki C, Krsek M, Rodger A (2005) Chemical composition and antibacterial activity of the essential oil and the gum of Pista-cialentiscus Var. chia. J Agric Food Chem 53:7681–7685PubMedCrossRefGoogle Scholar
  30. Kpadonou Kpoviessi BGH, Yayi Ladekan E, Kpoviessi DS, Gbaguidi F, Yehouenou B, Quetin-Leclercq J, Figueredo G, Moudachirou M, Accrombessi GC (2012) Chemical variation of essential oil constituents of Ocimum gratissimum L. from Benin, and impact on antimicrobial properties and toxicity against Artemia salina Leach. Chem Biodivers 9:139–150PubMedCrossRefGoogle Scholar
  31. Kumar R, Dubey NK, Tiwari OP, Tripathi YB, Sinha KK (2007) Evaluation of some essential oils as botanical fungi toxicants for the protection of stored food commodities from fungal infestation. J Sci Food Agric 87:1737–1742CrossRefGoogle Scholar
  32. Kumar A, Shukla R, Singh P, Dubey NK (2009) Biodeterioration of some herbal raw materials by storage fungi and aflatoxin and assessment of Cymbpogon flexuosus essential oil and its components as antifungal. Int Biodeterior Biodegrad 63:712–716CrossRefGoogle Scholar
  33. Lisker N, Lillehoj EB (1991) Prevention of mycotoxin contamination (principally aflatoxins and Fusarium toxins) at the preharvest stage. In: Smith JE, Henderson RS (eds) Mycotoxins and animals foods. CRC, Boca Raton, pp 689–719Google Scholar
  34. Magan N, Sanchis V, Akdred D (2004) Role of spoilage fungi in seed deterioration. In: Aurora DK (Ed) Fungal biotechnology in agricultural, food and environmental applications. Marcell Dekker, New York, pp 311–323Google Scholar
  35. Moosavy MH, Basti AA, Ali M (2008) Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial. Int J Food Microbiol 43:69–76Google Scholar
  36. Mutegi CK, Ngugi HK, Hendriks SL, Jones RB (2009) Prevalence and factors associated with aflatoxin contamination of peanuts from Western Kenya. Int J Food Microbiol 130:27–34PubMedCrossRefGoogle Scholar
  37. Nesci A, Montemarani A, Etcheverry M (2011) Assessment of mycoflora and infestation of insects, vector of Aspergillus section Flavi, in stored peanut from Argentina. Mycotox Res 27:5–12CrossRefGoogle Scholar
  38. Nguefack J, Lekagne Dongmo JB, Dakole CD, Leth V, Vismer HF, Torp J, Guemdjom EFN, Mbeffo M, Tamgue O, Fotio D, Amvam Zollo PH, Nkengfack AE (2009) Food preservative potential of essential oils and fractions from Cymbopogon citrates and Thymus vulgaris against mycotoxigenic fungi. Int J Food Microbiol 131:151–156PubMedCrossRefGoogle Scholar
  39. Nguyen MT (2007) Identification des espèces de moisissures potentiellement productrices de mycotoxines dans le riz commercialisé dans cinq provinces de la région centrale du Vietman : Etude des conditions pouvant induire la production de mycotoxines. Thèse de doctorat, Institut National Polytechnique de Toulouse (INPT), ToulouseGoogle Scholar
  40. Pelissari FM, Grossmann MVE, Yamashita F, Pined EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504PubMedCrossRefGoogle Scholar
  41. Pitt JI, Hocking AD, Bhudhasamai K, Miscamble BF, Wheeler KA, Tanboon EKP (1994) The normal mycoflora of commodities from Thailand: beans, rice, small grains and other commodities. Int J Food Microbiol 23:35–53PubMedCrossRefGoogle Scholar
  42. Prakash B, Shukla R, Singh P, Mishra PK, Dubey NK, Kharwar RN (2010) Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Res Int 10:128–132Google Scholar
  43. Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54:5062–5069PubMedCrossRefGoogle Scholar
  44. Rasooli I, Abyaneh MR (2004) Inhibitory effects of thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control 15:479–483CrossRefGoogle Scholar
  45. Reddy BN, Raghavender CR (2007) Outbreaks of aflatoxicoses in India. Afr J Food Agric Nutr Dev 7(5):1–15Google Scholar
  46. Reddy KRN, Nurdijati SB, Salleh B (2010) An overview of plant-derived products on control of mycotoxicogenic fungi and mycotoxins. Asian J Plant Sci 9(3):126–133CrossRefGoogle Scholar
  47. Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils inbioactive edible coatings: a review. Food Eng Rev 3:1–16CrossRefGoogle Scholar
  48. Singh K, Frisvad JC, Thrane U, Mathu SB (1991) An illustrated manual on identification of some seed borne Aspergilli, Fusaria, Penicillia and their mycotoxins. Danish Government, Institute of seed pathology for developing countries, Hellerup, DenmarkGoogle Scholar
  49. Suhr KI, Nielsen PV (2003) Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J Appl Microbiol 94(4):665–674PubMedCrossRefGoogle Scholar
  50. Sultan Y, Magan N (2010) Mycotoxigenic fungi in peanuts from different geographic regions of Egypt. Mycotox Res 26:133–140CrossRefGoogle Scholar
  51. Tabuc C (2007) Flore fongique de différents substrats et conditions optimales de production des mycotoxines. Thèse de doctorat, Institut National Polytechnique de Toulouse et Université de Bucarest, ToulouseGoogle Scholar
  52. Tatsadjieu N, Jazet M, Ngassoum MB, Etoa X, Mbofung CMF (2009) Investigations on the essential oil of Lippia rugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus Link ex. Fries. Food Control 2:161–166CrossRefGoogle Scholar
  53. Yaw AJ, Richard A, Osei SK, Seth OA, Adelaide A (2008) Chemical composition of groundnut, Arachis hypogaea (L) landraces. Afr J Biotechnol 7(13):2203–2208Google Scholar
  54. Yehouenou B, Noudogbessi JP, Sessou P, Wotto V, Avlessi F, Sohounhloué CKD (2010) Etude chimique et activités antimicrobiennes d’extraits volatils des feuilles et fruits de Xylopia aethiopica (Dunal) A. Rich. contre les pathogènes des denrées alimentaires. J Soc Ouest-Afr de Chim 29:19–27Google Scholar
  55. Yehouenou B, Ahoussi E, Sessou P, Alitonou GA, Toukourou F, Sohounhloue CKD (2012) Chemical composition and antimicrobial activities of essential oils (EO) extracted from leaves of Lippia rugosa A. Chev against foods pathogenic and adulterated microorganisms. Afr J Microbiol Res 6(26):5496–5505Google Scholar
  56. Yin MC, Tsao SM (1999) Inhibitory effect of seven Allium plants upon three Aspergillus species. Int J Food Microbiol 49:49–56PubMedCrossRefGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Euloge S. Adjou
    • 1
  • Sandrine Kouton
    • 1
  • Edwige Dahouenon-Ahoussi
    • 1
  • Mohamed M. Soumanou
    • 1
    Email author
  • Dominique C. K. Sohounhloue
    • 1
  1. 1.Laboratory of Research and Study in Applied Chemistry, Polytechnic School of Abomey-CalaviUniversity of Abomey-CalaviCotonouBenin

Personalised recommendations