Mycotoxin Research

, Volume 26, Issue 1, pp 31–46

Complex etiology and pathology of mycotoxic nephropathy in South African pigs

  • Stoycho D. Stoev
  • Stefan Denev
  • Mike F. Dutton
  • Patrick B. Njobeh
  • Joseph S. Mosonik
  • Paul A. Steenkamp
  • Iordan Petkov
Original Paper


Spontaneous nephropathy in pigs seen in South Africa was found to have multi-mycotoxic etiology involving several mycotoxins such as ochratoxin A (OTA), penicillic acid (PA) and fumonisin B1 (FB1) in addition to a not yet identified mycotoxin. Contamination levels of OTA were comparatively low (67–75 μg/kg) in contrast to high contamination levels of FB1 (5,289–5,021 μg/kg) and PA (149–251 μg/kg). A heavy contamination with Gibberella fujikuroi var. moniliformis and Penicillium aurantiogriseum complex (mainly P. polonicum) was observed in the fed forages in contrast to the light contamination with Aspergillus ochraceus, P. verrucosum and P. citrinum. The pathomorphological picture of this nephropathy was found to differ from the classical description of mycotoxic porcine nephropathy as originally made in Scandinavia by the extensive vascular changes.


Ochratoxin A Penicillic acid Citrinin Fumonisin B1 Mycotoxins Mycotoxic nephropathy Pigs 





Balkan endemic nephropathy




Cyclopiazonic acid








Fumonisin B1


Fumonisin B2






Kojic acid




Mycotoxic porcine nephropathy


Mycotoxic chicken nephropathy




3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Ochratoxin A


Ochratoxin C


Oosporein (isoosporin)


Penitrem A




Penicillic acid




T-2 toxin


Unknown metabolite






  1. Abado-Becognee K, Mobio TK, Ennamany R, Fleurat-Lessard F, Shier WT, Badria F, Creppy EE (1998) Cytotoxicity of fumonisin B1: implication of lipid peroxidation and inhibition of protein and DNA syntheses. Arch Toxicol 72:233–236CrossRefPubMedGoogle Scholar
  2. Abdulkadar AHW, Al-Ali AA, Al-Kildi M, Al-Jedah JH (2004) Mycotoxins in food products available in Qatar. Food Control 15:543–548CrossRefGoogle Scholar
  3. Bennett GA, Richard JL (1994) Liquid chromatographic method for analysis of the naphthalene dicarboxaldehyde derivative of fumonisins. J AOAC Int 77(2):501–506Google Scholar
  4. Bernhoft A, Keblys M, Morrison E, Larsen HJS, Flåøyen A (2004) Combined effects of selected Penicillium mycotoxins on in vitro proliferation of porcine lymphocytes. Mycopathologia 158:441–450CrossRefPubMedGoogle Scholar
  5. Bily AC, Reid LM, Savard ME, Reddy R, Blackwell BA, Campbell CM, Krantis A, Durst T, Philogene BJR, Arnason JT, Regnault-Roger C (2004) Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157:117–126CrossRefPubMedGoogle Scholar
  6. Boudra H, Morgavi DP (2006) Development and validation of a HPLC method for the quantitation of ochratoxins in plasma and raw milk. J Chromatogr B 843:295–301CrossRefGoogle Scholar
  7. Bucci TJ, Howard PC, Tolleson WH, Laborde JB, Hansen DK (1998) Renal effects of fumonisin mycotoxins in animals. Toxicol Pathol 26:190–194Google Scholar
  8. Chan PK, Hayes AW (1981) Effect of penicillic acid on biliary excretion of indocyanine green in the mouse and rat. J Toxicol Environ Health 7:169–179CrossRefPubMedGoogle Scholar
  9. Creppy EE, Röschenthaler R, Dirheimer G (1984) Inhibition of protein synthesis in mice by ochratoxin A and its prevention by phenylalanine. Food Chem Toxicol 22:883–886CrossRefPubMedGoogle Scholar
  10. Creppy EE, Chiarappa P, Baudrimont I, Borracci P, Moukha S, Carratù MR (2004) Synergistic effects of fumonisin B1 and ochratoxin A: are in vitro cytotoxicity data predictive of in vivo acute toxicity. Toxicology 201:115–123CrossRefPubMedGoogle Scholar
  11. Diaz CT, Sogbe E, Ascanio E, Hernandez M (2001) Ochratoxin A and fumonisin B1 natural interaction in pigs. Clinical and pathological studies. Rev Cient Fac Cien V:314–321Google Scholar
  12. Dickens F, Jones HE (1961) Carcinogenic activity of a series of reactive lactones and related substances. Br J Cancer 15:85–100PubMedGoogle Scholar
  13. Domijan A, Peraica M, Jurjevic Z, Ivic D, Cvjetkovic B (2005) Fumonisin B1, fumonisin B2, zearalenone and ochratoxin A contamination of maize in Croatia. Food Addit Contam 22:677–680CrossRefPubMedGoogle Scholar
  14. Domijan A, Zeljezic D, Kopjar N, Peraica M (2006) Standard and Fpg-modifed comet assay in kidney cells of ochratoxin A-and fumonisin B1-treated rats. Toxicology 222:53–59CrossRefPubMedGoogle Scholar
  15. Doster RC, Sinnhuber RO (1972) Compаrative rates of hydrolysis of ochratoxin A and B in vitro. Food Cosmet Toxicol 10:389–394CrossRefPubMedGoogle Scholar
  16. Dutton MF, Kinsey A (1995) Incidence of mycotoxins and fungi in feedstuffs in Natal in 1995. Mycopathologia 131:31–36CrossRefPubMedGoogle Scholar
  17. Faucet V, Pfohl-Leszkowicz A, Dai J, Castegnaro M, Manderville RA (2004) Evidence for covalent DNA adduction by ochratoxin A following chronic exposure to rat and subacute exposure to pig. Chem Res Toxicol 17:1289–1296CrossRefPubMedGoogle Scholar
  18. Geiser DM, Jimenez-Gasco M, Kang S, Makalowska I, Veerrarghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) Fusarium-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479CrossRefGoogle Scholar
  19. Gelderblom WCA, Marasas WFO, Farber E (1992) The cancer initiating potential of the fumonisin B mycotoxins. Carcinogenesis 13:433–437CrossRefPubMedGoogle Scholar
  20. Hanna GD, Phillips TD, Kubena LF, Cysewski SJ, Ivie GW, Heidelbaugh ND, Witzel DA, Hayes AW (1981) High pressure liquid chromatographic determination of penicillic acid in chicken tissues. Poultry Sci 60:2246–2252Google Scholar
  21. Hinojo MJ, Medina A, Valle-Algarra FM, Gimeno-Adelantado JV, Jimenez M, Mateo R (2006) Fumonisin production in rice cultures of Fusarium verticillioides under different incubation conditions using an optimized analytical method. Food Microbiol 23:119–127CrossRefPubMedGoogle Scholar
  22. Howard PC, Warbritton A, Voss KA, Lorenzen RJ, Thurman JD, Kovach RM, Bucci TJ (2001) Compensatory regeneration as a mechanism for renal tubule carcinogenesis of fumonisin B1 in F344/N/Nctr BR rat. Environ Health Persp 109:309–314CrossRefGoogle Scholar
  23. Jurjevic Z, Solfrizzo M, Cvjetkovic B, Avantaggiato G, Visconti A (1999) Ochratoxin A and fumonisins (B1 and B2) in maize from Balkan nephropathy endemic and non endemic areas of Croatia. Mycotoxin Res 15:67–80CrossRefGoogle Scholar
  24. Jurjevic L, Solfrizzo M, Cvjetkovic B, De Girolamo A, Visconti A (2002) Occurrence of beauvericin in corn from Croatia. Food Technol Biotechnol 40:91–94Google Scholar
  25. Kanisawa M (1984) Synergistic effect of citrinin on hepatorenal carcinogenesis of ochratoxin A in mice. Dev Food Sci 7:245–254Google Scholar
  26. Klaric MS, Rumora L, Ljubanovic D, Pepeljnjak S (2007) Cytotoxicity and apoptosis induced by fumonisin B1, beauvericin and ochratoxin A in porcine kidney PK15 cells: effects of individual and combined treatment. Arch Toxicol 82:247–255CrossRefPubMedGoogle Scholar
  27. Klich MA (2002) Introduction; economic and medical importance of Aspergillus. In: Identification of common Aspergillus species. Centraalbureau voor Schimmelculture, Utrecht, pp 1–16Google Scholar
  28. Klich MA, Pitt JI (1988) A laboratory guide to common Aspergillus species and their teleomorphs. CSIRO Division of Food Research, North Ryde NSWGoogle Scholar
  29. Kokkonen M, Jestoi M, Rizzo A (2005) The effect of substrate on mycotoxin production of selected Penicillium strains. Int J Food Microbiol 99:207–214CrossRefPubMedGoogle Scholar
  30. Koshinsky HA, Khachatourians GG (1994) Mycotoxicoses: The effects of mycotoxin combinations. In: Hui YH, Gorham JR, Murrell KD, Cliver DO (eds) Foodborne disease handbook. Diseases caused by viruses, parasites, and fungi, vol. 2. University of Saskatchewan, Saskatoon, pp 463–520Google Scholar
  31. Krogh P (1976) Mycotoxic nephropathy. In: Advances in veterinary science and comparative medicine, vol. 20. Academic, New York, pp 147–170Google Scholar
  32. Krogh P, Axelsen NH, Elling F, Gyrd-Hansen N, Hald B, Hyldgaard-Jensen J, Larsen AE, Madsen A, Mortensen HP, Moller T, Peterson OK, Ravnskov U, Rostgaard M, Aalund O (1974) Experimental porcine nephropathy: changes of renal function and structure induced by ochratoxin A-contaminated feed. Acta Pathol Microb Scand Sect A Suppl 246:1–21Google Scholar
  33. Kubena LF, Edrington TS, Harvey RB, Phillips TD, Sarr AB, Rottinghaus GE (1997) Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and diacetoxyscirpenol or ochratoxin A in turkey poults. Poultry Sci 76:256–264Google Scholar
  34. Kyriakidis N, Waight ES, Day JB, Mantle PG (1981) Novel metabolites from Penicillium crustosum, including penitrem E, a tremorgenic mycotoxin. Appl Environ Microbiol 42:61–62PubMedGoogle Scholar
  35. Lillehoj EB, Ciegler A (1975) Mycotoxin synergism. In: Schlessinger D (ed) Microbiology. American Society of Microbiology, Washington, pp 344–358Google Scholar
  36. Macgeorge KM, Mantle PG (1990) Nephrotoxicity of Penicillium aurantiogriseum and P. commune from an endemic nephropathy area of Yugoslavia. Mycopathologia 112:139–145CrossRefPubMedGoogle Scholar
  37. Mantle PG, McHugh KM (1993) Nephrotoxic fungi in foods from nephropathy households in Bulgaria. Mycol Res 97:205–212CrossRefGoogle Scholar
  38. Micco C, Miraglia M, Onori R, Libanori A, Brera C, Mantovani A, Macri C (1991) Effect of combined exposure to ochratoxin A and penicillic acid on residues and toxicity in broilers. Rev Soc Ital Sci Aliment 20:101–108Google Scholar
  39. Miljkovic A, Pfohl-Leszkowicz A, Dobrota M, Mantle PG (2003) Comparative responses to mode of oral administration and dose of ochratoxin A or nephrotoxic extract of Penicillium polonicum in rats. Exp Toxicol Pathol 54:305–312CrossRefPubMedGoogle Scholar
  40. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. The Pennsylvania State University Press, PennsylvaniaGoogle Scholar
  41. Njobeh PB, Dutton MF, Chuturgoon AA, Koch SH, Steenkamp PA, Stoev SD (2009) Identification of a novel metabolite and its cytotoxic effect on human lymphocyte cells in comparison to other mycotoxins. Int J Biol Chem Sci 3(3):524–531Google Scholar
  42. Obrecht-Pflumio S, Dirheimer G (2000) In vitro DNA and dGMP adducts formation caused by ochratoxin A. Chem Biol Interact 127:29–44CrossRefPubMedGoogle Scholar
  43. Oswald IP, Desautels C, Laffitte J, Fournout S, Peres SY, Odin M, Le Bars P, Le Bars J, Fairbrother JM (2003) Mycotoxin fumonisin B-1 increases intestinal colonization by pathogenic Escherichia coli in pigs. Appl Environ Microbiol 69:5870–5874CrossRefPubMedGoogle Scholar
  44. Oswald IP, Marin DE, Bouhet S, Pinton P, Taranu I, Accensi F (2005) Immunotoxicological risk of mycotoxins for domestic animals. Food Addit Contam 22:354–360CrossRefPubMedGoogle Scholar
  45. Palmgren MS, Ciegler A (1983) Toxicity and carcinogenicity of fungal lactones: patulin and penicillic acid. In: Keeler RF, Tu AT (eds) Handbook of natural toxins, vol. 1. Plant and fungal toxins. Marcel Dekker, New York, pp 325–341Google Scholar
  46. Parker R, Phillips T, Russell KL, LH HND (1982) Inhibition of pancreatic carboxypeptidase A: a possible mechanism of interaction between penicillic acid and ochratoxin A. J Environ Sci Health B17:77–91Google Scholar
  47. Patterson DSP, Roberts BA (1979) Mycotoxins in animal feedstuffs: Sensitive thin layer chromatographic detection of aflatoxin, ochratoxin A, sterigmatocystin, zearalenone and T2 toxin. J Assoc Off Anal Chem 62:1265–1267PubMedGoogle Scholar
  48. Petrik J, Zanic´-Grubišic T, Barišic K, Pepeljnjak S, Radic B, Fereničic Z, Cepelak I (2003) Apoptosis and oxidative stress induced by ochratoxin A in rat kidney. Arch Toxicol 77:685–693CrossRefPubMedGoogle Scholar
  49. Pfohl-Leszkowicz A, Molinié A, Tozlovanu M, Manderville RA (2008) Combined toxic effects of ochratoxin A and citrinin, in vitro and in vivo. In: Siantar DP, Trucksess MW, Scott PM, Herman EM (eds) Food contaminants, mycotoxins and food allergen. ACS Symposium series 1001. Oxford University Press, Oxford, pp 56–80CrossRefGoogle Scholar
  50. Phillips RD, Hayes AW, Berndt WO (1980) High-performance liquid chromatographic analysis of the mycotoxin citrinin and its application to biological fluids. J Chromatogr A 190:419–427CrossRefGoogle Scholar
  51. Pitt JI, Hocking AD (1997) Primary keys and miscellaneous fungi. In: Fungi and food spoilage, 2nd edn. Blackie, London, pp 59-171Google Scholar
  52. Rahimtula AD, Bereziat JC, Bussachini-Griot V, Bartsch H (1988) Lipid peroxidation as possible cause of ochratoxin A toxicity. Biochem Pharmacol 37:4469–4477CrossRefPubMedGoogle Scholar
  53. Samson RA, Seifert KA, Kuijpers AFA, Houbraken JAP, Frisvad JC (2004) Phylogentic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol 49:175–200Google Scholar
  54. Sansing GA, Lillehoj EB, Detroy RW, Müller MA (1976) Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicon 14:213–220CrossRefPubMedGoogle Scholar
  55. Shepherd EC, Phillips TD, Joiner GN, Kubena LF, Heidelbaugh ND (1981) Ochratoxin A and penicillic acid interaction in mice. J Environ Sci Health B 16:557–573CrossRefPubMedGoogle Scholar
  56. Singh K, Frisvad JC, Thrane U, Mathur SB (1991) An illustrated manual on identification of some seed-borne Aspergilli, Fusaria, Penicillia and their mycotoxins. Institute of Seed Pathology for Developing Countries, Hellerup, Denmark, pp 8–12Google Scholar
  57. Smedsgaard J (1997) Terverticillate penicillia studied by direct electrospray mass spectrometric profiling of crude extracts. II. Database and identification. Biochem Syst Ecol 25:65–71CrossRefGoogle Scholar
  58. Smedsgaard J, Frisvad JC (1996) Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J Microbiol Methods 25:5–17CrossRefGoogle Scholar
  59. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286CrossRefPubMedGoogle Scholar
  60. Stoev SD (1998) The role of ochratoxin A as a possible cause of Balkan Endemic Nephropathy and its risk evaluation. Vet Hum Toxicol 40:352–360PubMedGoogle Scholar
  61. Stoev SD (2008a) Mycotoxic nephropathies in farm animals-diagnostics, risk assessment and prevеntive measures. In: Oswald I, Taranu I, Pandalai SG (eds) Effect of mycotoxins in farm animals, chapter 8. Transworld Research Network 37/661 (2), Fort PO, Trivandrum-695 023, Kerala, India, pp 155-195Google Scholar
  62. Stoev SD (2008b) Complex etiology, prophylaxis and hygiene control in mycotoxic nephropathies in farm animals and humans. Int J Mol Sci 9:578–605CrossRefPubMedGoogle Scholar
  63. Stoev SD, Hald B, Mantle P (1998a) Porcine nephropathy in Bulgaria: a progressive syndrome of complex of uncertain (mycotoxin) etiology. Vet Rec 142:190–194PubMedGoogle Scholar
  64. Stoev SD, Stoeva J, Anguelov G, Hald B, Creppy EE, Radic B (1998b) Haematological, biochemical and toxicological investigations in spontaneous cases with different frequency of porcine nephropathy in Bulgaria. J Vet Med Ser A 45:229–236CrossRefGoogle Scholar
  65. Stoev SD, Anguelov G, Pavlov D, Pirovski L (1999) Some antidotes and paraclinical investigations in experimental intoxication with ochratoxin A and penicillic acid in chicks. Vet Arh 69:179–189Google Scholar
  66. Stoev SD, Anguelov G, Ivanov I, Pavlov D (2000a) Influence of ochratoxin A and an extract of artichoke on the vaccinal immunity and health in broiler chicks. Exp Toxicol Pathol 52:43–55PubMedGoogle Scholar
  67. Stoev SD, Goundasheva D, Mirtcheva T, Mantle P (2000b) Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp Toxicol Pathol 52:287–296PubMedGoogle Scholar
  68. Stoev SD, Vitanov S, Anguelov G, Petkova-Bocharova T, Creppy EE (2001) Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and penicillic acid. Vet Res Commun 25:205–223CrossRefPubMedGoogle Scholar
  69. Stoev SD, Daskalov H, Radic B, Domijan A, Peraica M (2002a) Spontaneous mycotoxic nephropathy in Bulgarian chickens with unclarified mycotoxin aetiology. Vet Res 33:83–94CrossRefPubMedGoogle Scholar
  70. Stoev SD, Paskalev M, MacDonald S, Mantle PG (2002b) Experimental one year ochratoxin A toxicosis in pigs. Exp Toxicol Pathol 53:481–487CrossRefPubMedGoogle Scholar
  71. Stoev SD, Djuvinov D, Mirtcheva T, Pavlov D, Mantle P (2002c) Studies on some feed additives giving partial protection against ochratoxin A toxicity in chicks. Toxicol Lett 135:33–50CrossRefPubMedGoogle Scholar
  72. Stoev SD, Stefanov M, Denev S, Radic B, Domijan A, Peraica M (2004) Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention by natural plant extracts. Vet Res Commun 28:727–746CrossRefPubMedGoogle Scholar
  73. Stoev SD, Dutton MF, Nkosi B (2009a) Cytotoxic effect of mycotoxins ochratoxin A, citrinin, penicillic acid, fumonisin B1 and their combinations on human peripheral blood mononuclear cells as measured by MTT assay. Open Toxinol J 2:1–8CrossRefGoogle Scholar
  74. Stoev SD, Dutton MF, Njobeh PB, Mosonik JS, Steenkamp PA (2009b) Mycotoxic nephropathy in Bulgarian pigs and chickens: complex etiology and similarity to Balkan Endemic Nephropathy, Food Addit Contam (in press)Google Scholar
  75. Suzuki S, Satoh T, Yamazaki M (1977) The pharmacokinetics of ochratoxin A in rats. Jpn J Pharmacol 27:735–744CrossRefPubMedGoogle Scholar
  76. Taranu I, Marin DE, Bouhet S, Oswald IP (2008) Effect of fumonisin on the pig. In: Oswald I, Taranu I, Pandalai SG (eds) Mycotoxins in farm animals. Chapter 5. Transworld Research Network 37/661 (2), Fort PO Trivandrum-695 023, Kerala, India, pp 91-111Google Scholar
  77. Umeda M, Yamamoto T, Saito M (1972) DNA-strand breakage of HeLa cells induced by several mycotoxins. Jpn J Exp Med 42:527–539PubMedGoogle Scholar
  78. Voss KA, Riley RT, Norred WP, Bacon CW, Meredith FI, Howard PC (2001) An overview of rodent toxicities: liver and kidney effects of fumonisins and Fusarium moniliforme. Environ Health Perspect 109:259–266CrossRefPubMedGoogle Scholar
  79. Voss KA, Smith GW, Haschek WM (2007) Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol 137:299–325CrossRefGoogle Scholar
  80. Yeulet SE, Mantle PG, Rudge MS, Greig JB (1988) Nephrotoxicity of Penicillium aurantiogriseum, a possible factor in the aetiology of Balkan Endemic Nephropathy. Mycopathologia 102:21–30CrossRefPubMedGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer 2009

Authors and Affiliations

  • Stoycho D. Stoev
    • 1
  • Stefan Denev
    • 2
  • Mike F. Dutton
    • 3
  • Patrick B. Njobeh
    • 3
  • Joseph S. Mosonik
    • 3
  • Paul A. Steenkamp
    • 4
  • Iordan Petkov
    • 5
  1. 1.Department of General and Clinical Pathology, Faculty of Veterinary MedicineTrakia UniversityStara ZagoraBulgaria
  2. 2.Department of Microbiology, Faculty of AgricultureTrakia UniversityStara ZagoraBulgaria
  3. 3.Food, Environment and Health Research Group, Faculty of Health ScienceUniversity of JohannesburgGautengSouth Africa
  4. 4.Council for Scientific and Industrial Research, BiosciencesModderfonteinSouth Africa
  5. 5.State Veterinary ServicePretoriaSouth Africa

Personalised recommendations