Advertisement

Mycotoxin Research

, Volume 25, Issue 3, pp 159–164 | Cite as

Production and characterization of antibodies against fumigaclavine A

  • Hadri LatifEmail author
  • Valeriu Curtui
  • Yvonne Ackermann
  • Madeleine Groß
  • Ewald Usleber
Original Paper

Abstract

Polyclonal antibodies against fumigaclavine A (FuA) were obtained from rabbits after immunization with a FuA-keyhole limpet hemocyanine conjugate prepared by formaldehyde condensation. Using these antibodies and a FuA-bovine serum albumine conjugate, a competitive indirect enzyme immunoassay (EIA) was established. The antiserum obtained from one rabbit enabled highly sensitive detection of FuA, with an IC50 level and detection limit of the standard curve of 3.3 ng/ml and approx. 1 ng/ml, respectively. The EIA was very specific for FuA, with 1.3% cross-reactivity with FuB. Several other lysergic acid derivatives (ergonovine, ergotamine, alpha-ergocryptine) were tested but did not cross-react in the FuA EIA. This is the first description of antibodies against FuA and the first development of an EIA for FuA.

Keywords

Mycotoxin Ergoline alkaloids Fumigaclavine A Aspergillus fumigatus Immunoassay 

References

  1. Abramson D, Usleber E, Märtlbauer E (1995) An indirect enzyme immunoassay for the mycotoxin citrinin. Appl Environ Microbiol 61:2007–2009PubMedGoogle Scholar
  2. Cole RJ, Kirksey JW, Dorner JW, Wilson DM, Johnson JC, Johnson AN, Bedell DM, Springer JP, Chexal KK, Clardy JC, Cox RH (1977) Mycotoxins produced by Aspergillus fumigatus isolated from silage. J Agric Food Chem 25:826–830CrossRefPubMedGoogle Scholar
  3. Coyle CM, Kenaly SC, Rittenour WR, Panacionne DG (2007) Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia 99:804–811CrossRefPubMedGoogle Scholar
  4. Fischer G, Muller T, Schwalbe R, Ostrowski R, Dott W (2000) Species-specific profiles of mycotoxins produced in cultures and associated with conidia of airborne fungi derived from biowaste. Int J Hyg Environ Health 203:105–116CrossRefPubMedGoogle Scholar
  5. Flieger M, Wurst M, Shelby M (1997) Ergot alkaloids - Sources, structures and analytical methods. Folia Microbiol 42:3–30CrossRefGoogle Scholar
  6. Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode array detection). J Chromatogr 404:195–214CrossRefPubMedGoogle Scholar
  7. Frisvad JC, Rank C, Nielsen KF, Larsen TO (2008) Metabolomics of Aspergillus fumigates. Med Mycol:S1–S19Google Scholar
  8. Gallati H, Pracht I (1985) Peroxidase aus Meerrettich: Kinetische studien und Optimierung der Peroxidase-Aktivitätsbestimmung mit den Substraten H2O2 und 3, 3′, 5, 5′,-Tetramethylbenzidin. J Clin Chem Clin Biochem 23:453–460PubMedGoogle Scholar
  9. Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Bioactive alkaloids from endophytic Aspergillus fumigatus. J Nat Prod 72:753–755CrossRefPubMedGoogle Scholar
  10. Hof H, Kupfahl C (2009) Gliotoxin in Aspergillus fumigatus: an example that mycotoxins are potential virulence factors. Mycotox Res (in press)Google Scholar
  11. Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43(Suppl 1):S95–S99CrossRefPubMedGoogle Scholar
  12. Kozlovsky AG, Zhelifonova VP, Antipova TV (2009) Clavine alkaloid biosynthesis by the fungus Penicillium palitans Westling 1911 isolated from ancient permafrost deposits. Appl Biochem Microbiol 45:182–186CrossRefGoogle Scholar
  13. Kwon-Chung KJ, Sugui JA (2008) What do know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus?. Med Mycol:1–7Google Scholar
  14. Latgé JP (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382–389CrossRefPubMedGoogle Scholar
  15. Lund F (1995) Diagnostic characterization of Penicillium palitans. P. commune and P. solitum. Lett Appl Microbiol 21:60–64CrossRefGoogle Scholar
  16. Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489CrossRefPubMedGoogle Scholar
  17. Ma HY, Song YC, Mao YY, Jiang JH, Tan RX, Luo L (2006) Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings. Planta Med 72:387–392CrossRefPubMedGoogle Scholar
  18. Mantle PG (1969) Interruption of early pregnancy in mice by oral administration of agroclavine and sclerotia of Claviceps fusiformis (loveless). J Reprod Fert 18:81–88CrossRefGoogle Scholar
  19. Müller C, Klaffke HS, Krauthause W, Wittkowski R (2006) Determination of ergot alkaloids in rye and rye flour. Mycotox Res 22:197–200CrossRefGoogle Scholar
  20. Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metaboltes from the Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763CrossRefPubMedGoogle Scholar
  21. O’Brien M, Nielsen KF, O’Kiely P, Forristal PD, Fuller HT, Frisvad JC (2006) Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J Agric Food Chem 54:9268–9276CrossRefPubMedGoogle Scholar
  22. Ohmomo S, Sato K, Utagawa T, Abe M (1975) Isolation of festuclavine and three new indole alkaloids, roquefortine A, B and C from the cultures of Penicillium roqueforti. Agr Biol Chem 39:1333–1334Google Scholar
  23. Ohmomo S, Kaneko M, Atthasampunna P (1989) Production of fumigaclavine B by a thermophilic strain of Aspergillus fumigatus. MIRCEN J 5:5–13CrossRefGoogle Scholar
  24. Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi - mini review. FEMS Microbiol Lett 251:9–17CrossRefPubMedGoogle Scholar
  25. Panaccione DG, Coyle CM (2005) Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus. Appl Environ Microbiol:3106–3111Google Scholar
  26. Pertz H (1996) Naturally occurring clavines: Antagonism/partial agonism at 5-HT2A receptors and antagonism at α1-adrenoceptors in blood vessels. Planta Med 62:387–392CrossRefPubMedGoogle Scholar
  27. Reinhard H, Rupp H, Zoller O (2008) Ergot alkaloids: Quantitation and recognition challenges. Mycotox Res 24:7–13CrossRefGoogle Scholar
  28. Schwarz G, Eich E (1983) Influence of ergot alkaloids on growth of Streptomyces purpurascens and production of its secondary metabolites. J Med Plant Res 47:212–214CrossRefGoogle Scholar
  29. Scott PM (2007) Analysis of ergot alkaloids - a review. Mycotox Res 23:113–121CrossRefGoogle Scholar
  30. Scott PM, Kennedy BPC (1976) Analysis of blue cheese for roquefortine and other alkaloids from Penicillium roqueforti. J Agric Food Chem 24:865–868CrossRefPubMedGoogle Scholar
  31. Scott PM, Merrien M-A, Polonsky J (1976) Roquefortine and isofumigaclavine A, metabolites from Penicillium roquefortii. Experientia 32:140–142CrossRefGoogle Scholar
  32. Scott PM, Kennedy BPC, Harwig J, Blanchfield BJ (1977) Study of conditions for production of roquefortine and other metabolites of Penicillium roqueforti. Appl Environ Microbiol 33:249–253PubMedGoogle Scholar
  33. Shah A (2008) Aspergillus-associated hypersensitivity respiratory disorders - review article. Indian J Chest Dis Allied Sci 50:117–128PubMedGoogle Scholar
  34. Shelby RA, Kelley VC (1990) An immunoassay for Ergotamine and related alkaloids. J Agric Food Chem 38:1130–1134CrossRefGoogle Scholar
  35. Shelby RA, Kelley VC (1991) Detection of ergot alkaloids in tall fescue by competitive immunoassay with a monoclonal antibody. Food Agric Immunol 3:169–177CrossRefGoogle Scholar
  36. Shelby RA, Bridgman RC, Smith FT, Atigadda VR (1998) Determination of ergovaline in tall fescue by a specific monoclonal antibody. Food Agric Immunol 10:339–347CrossRefGoogle Scholar
  37. Spilsbury JF, Wilkinson S (1961) The isolation of festuclavine and two new clavine alkaloids from Aspergillus fumigatus Fres. J Chem Soc:2085–2091Google Scholar
  38. Steiner U, Ahimsa-Muüller MA, Markert A, Kucht S, Groß J, Kauf N, Kuzma M, Zych M, Lamshöft M, Furmanowa M, Knoop V, Drewke C, Leistner E (2006) Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 224:533–544CrossRefPubMedGoogle Scholar
  39. Tell LA (2005) Aspergillosis in mammals and birds: impact on veterinary medicine. Med Mycol 43(Suppl 1):S71–S73CrossRefPubMedGoogle Scholar
  40. Vinokurova NG, Boichenko DM, Baskunov BP, Zelenkova NF, Vepritskaya IG, Arinbasarov MU, Reshetilova TA (2001) Minor alkaloids of the fungus Penicillium roquefortii Thom 1906. Appl Biochem Microbiol 37:184–187CrossRefGoogle Scholar
  41. Vinokurova NG, Ozerskaya SM, Baskunov BP, Arinbasarov MU (2003a) The Penicillium commune Thom and Penicillium clavigerum Demelius fungi producing fumigaclavines A and B. Microbiol (Moscow) 72:149–151Google Scholar
  42. Vinokurova NG, Boichenko LV, Arinbasarov MU (2003b) Production of alkaloids by fungi of the genus Penicillium grown on wheat grain. Appl Biochem Microbiol 39:403–406CrossRefGoogle Scholar
  43. Vorobyova V, Yurkov I, Belova N, Lednev V (2009) Agroclavine potentiates hippocampal EEG effects of weak combined magnetic field in rats. Brain Res Bull 80:1–8CrossRefGoogle Scholar
  44. Wong SS (1991) Chemistry of protein conjugation and cross linking. CRC Press, Boca RatonGoogle Scholar
  45. Wu XF, Fei MJ, Shu RG, Tan RX, Xu Q (2005) Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int Immunopharmacol 5:1543–1553CrossRefPubMedGoogle Scholar
  46. Zhao Y, Liu J, Wang J, Wang L, Yin H, Tan R (2004) Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF- production and lymphocyte adhesion to extracellular matrices. J Pharm Pharmacol 56:775–782CrossRefPubMedGoogle Scholar
  47. Zmeili OS, Soubani AO (2007) Pulmonary aspergillosis: a clinical update. Q J Med 100:317–334Google Scholar

Copyright information

© Society for Mycotoxin Research and Springer 2009

Authors and Affiliations

  • Hadri Latif
    • 1
    • 2
    Email author
  • Valeriu Curtui
    • 2
    • 3
  • Yvonne Ackermann
    • 2
  • Madeleine Groß
    • 2
  • Ewald Usleber
    • 2
  1. 1.Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary MedicineBogor Agricultural UniversityBogorIndonesia
  2. 2.Institute of Veterinary Food Science, Dairy Science, Veterinary FacultyJustus Liebig UniversityGiessenGermany
  3. 3.European Food Safety AuthorityParmaItaly

Personalised recommendations