Mycotoxin Research

, Volume 25, Issue 2, pp 77–84 | Cite as

Trichothecene-induced cytotoxicity on human cell lines

  • Carina NielsenEmail author
  • Maximilian Casteel
  • Andrea Didier
  • Richard Dietrich
  • Erwin Märtlbauer
Original Paper


Trichothecene cytotoxicity of type A (T-2 toxin and HT-2 toxin), type B (deoxynivalenol, DON, and nivalenol, NIV), and type D (satratoxins G and H) compounds was determined comparatively by using eight permanent human cell lines (Hep-G2, A549, CaCo-2, HEp-2, A204, U937, RPMI 8226, and Jurkat). Viability of cells was measured by a water-soluble tetrazolium (WST-1) reagent cell proliferation assay assessing mitochondrial metabolic activity. Toxicity was expressed as the toxin concentration inhibiting 50% of cell viability (IC50). Depending on the chemotype of the tested trichothecenes, relative cytotoxic activity differed by a factor of 100–1,000, and the corresponding IC50 values were in the range from 2.2 nmol/l (satratoxin H on Jurkat and U937 cells) to 4,900 nmol/l (deoxynivalenol on HEp-2 cells). In contrast, the specific toxicity of each individual mycotoxin towards different cell lines was within remarkable close limits, and between-cell line differences were much smaller than previously reported. For the cell lines tested, IC50 values were 4.4–10.8 nmol/l for T-2 toxin, 7.5–55.8 mol/l for HT-2 toxin, 600–4,900 nmol/l for DON, 300–2,600 nmol/l for NIV, and 2.2–18.3 nmol/l for satratoxins G/H. In addition, for the first time, the toxic activity of trichothecenes on primary cell culture of human endothelial cells (HUVEC) was tested. The susceptibility of this cell line was comparable to the other cell lines tested, with IC50 values ranging from 16.5 nmol/l (T-2 toxin) to 4,500 nmol/l (DON). The results suggest that the current focus of cytotoxicological studies on trichothecenes on lymphoid cell lines may lead to an underestimate of their potential on other target cell systems.


Trichothecene Human cell lines Mycotoxin HUVEC 







Human umbilical vein endothelial cells


4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate



This work was supported by a grant from the Deutsche Forschungsgemeinschaft (GK-1029) and from the “Brigitte and Wolfram Gedek-Stiftung für Mykotoxinforschung”. We thank Brunhilde Minich und Christine Ehlich for excellent technical assistance.


  1. Abramson D, Clear RM, Usleber E, Gessler R, Nowicki TW, Märtlbauer E (1998) Fusarium species and 8-keto-trichothecene mycotoxins in Manitoba barley. Cereal Chem 75:137–141. doi: 10.1094/CCHEM.1998.75.1.137 CrossRefGoogle Scholar
  2. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi: 10.1128/CMR.16.3.497-516.2003 PubMedCrossRefGoogle Scholar
  3. Bondy GS, Pestka JJ (2000) Immunomodulation by fungal toxins. J Toxicol Environ Health B 3:109–143. doi: 10.1080/109374000281113 CrossRefGoogle Scholar
  4. Bouaziz C, Sharaf El Dein O, El Golli E, Abid-Essefi S, Brenner C, Lemaire C, Bacha H (2008) Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology 254:19–28. doi: 10.1016/j.tox.2008.08.020 PubMedCrossRefGoogle Scholar
  5. Brasel TL, Martin JM, Carriker CG, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol 71:7376–7388. doi: 10.1128/AEM.71.11.7376-7388.2005 PubMedCrossRefGoogle Scholar
  6. Calvert TW, Aidoo KE, Candlish AG, Fuat AR (2005) Comparison of in vitro cytotoxicity of Fusarium mycotoxins, deoxynivalenol, T-2 toxin and zearalenone on selected human epithelial cell lines. Mycopathologia 159:413–419. doi: 10.1007/s11046-005-0254-4 PubMedCrossRefGoogle Scholar
  7. Cetin Y, Bullerman LB (2005) Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Food Chem Toxicol 43:755–764. doi: 10.1016/j.fct.2005.01.016 PubMedCrossRefGoogle Scholar
  8. Chen JH, Cao JL, Chu YL, Wang ZL, Yang ZT, Wang HL (2008) T-2 toxin-induced apoptosis involving Fas, p53, Bcl-xL, Bcl-2, Bax and caspase-3 signaling pathways in human chondrocytes. J Zhejiang Univ Sci B 9:455–463. doi: 10.1631/jzus.B0820013 PubMedCrossRefGoogle Scholar
  9. Croft WA, Jarvis BB, Yatawara CS (1986) Airborne outbreak of trichothecene toxicosis. Atmos Environ 20:549–552. doi: 10.1016/0004-6981(86)90096-X CrossRefGoogle Scholar
  10. Curtui V, Usleber E, Dietrich R, Lepschy J, Märtlbauer E (1998) A survey on the occurrence of mycotoxins in wheat and maize from western Romania. Mycopathologia 143:97–103. doi: 10.1023/A:1006987205986 PubMedCrossRefGoogle Scholar
  11. Curtui V, Brockmeyer A, Dietrich R, Kappenstein O, Klaffke H, Lepschy J, Märtlbauer E, Schneider E, Seidler C, Thielert G, Usleber E, Weber R, Wolff J (2005) Deoxynivalenol in food. Mycotoxin Res 21:83–88. doi: 10.1007/BF02954424 CrossRefGoogle Scholar
  12. Gareis M (2006) Diagnostischer Zellkulturtest (MTT-Test) für den Nachweis von zytotoxischen Kontaminanten und Rückständen. J Verbraucherschutz Lebensmittelsicherheit 1:354–363Google Scholar
  13. Gottschalk C, Bauer J, Meyer K (2006) Determination of macrocyclic trichothecenes in mouldy indoor materials by LC-MS/MS. Mycotoxin Res 22:189–192. doi: 10.1007/BF02959275 CrossRefGoogle Scholar
  14. Gray JS, Pestka JJ (2007) Transcriptional regulation of deoxynivalenol-induced IL-8 expression in human monocytes. Toxicol Sci 99:502–511. doi: 10.1093/toxsci/kfm182 PubMedCrossRefGoogle Scholar
  15. Grove JF (1993) Macrocyclic trichothecenes. Nat Prod Rep 10:429–448. doi: 10.1039/np9931000429 CrossRefGoogle Scholar
  16. Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review. Environ Toxicol Pharmacol 11:309–320. doi: 10.1016/S1382-6689(02)00020-0 CrossRefGoogle Scholar
  17. Hanelt M, Gareis M, Kollarczik B (1994) Cytotoxicity of mycotoxins evaluated by the MTT-cell culture assay. Mycopathologia 128:167–174. doi: 10.1007/BF01138479 PubMedCrossRefGoogle Scholar
  18. Islam Z, Hegg CC, Bae HK, Pestka JJ (2008) Satratoxin G-induced apoptosis in PC-12 neuronal cells is mediated by PKR and caspase independent. Toxicol Sci 105:142–152. doi: 10.1093/toxsci/kfn110 PubMedCrossRefGoogle Scholar
  19. Ivanova L, Uhlig S (2008) A bioassay for the simultaneous measurement of metabolic activity, membrane integrity, and lysosomal activity in cell cultures. Anal Biochem 379:16–19. doi: 10.1016/j.ab.2008.04.035 PubMedCrossRefGoogle Scholar
  20. Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis P (1996) Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment. Int Arch Occup Environ Health 68:207–218PubMedGoogle Scholar
  21. Johanning E, Gareis M, Yang S, Hintikka E-L, Nikulin M, Jarvis B, Dietrich R (1998) Toxicity screening of materials from buildings with fungal indoor air quality problems (Stachybotrys chartarum). Mycotoxin Res 14:60–73. doi: 10.1007/BF02945095 CrossRefGoogle Scholar
  22. Johanning E, Landsbergis P, Gareis M, Yang CS, Olmsted E (1999) Clinical experience and results of a Sentinel Health Investigation related to indoor fungal exposure. Environ Health Perspect 107(Suppl 3):489–494. doi: 10.2307/3434632 PubMedGoogle Scholar
  23. Königs M, Schwerdt G, Gekle M, Humpf H-U (2008) Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol Nutr Food Res 52:830–839. doi: 10.1002/mnfr.200700439 PubMedCrossRefGoogle Scholar
  24. Königs M, Mulac D, Schwerdt G, Gekle M, Humpf H-U (2009) Metabolism and cytotoxic effects of T-2 toxin and its metabolites on human cells in primary culture. Toxicology 258:106–115. doi: 10.1016/j.tox.2009.01.012 PubMedCrossRefGoogle Scholar
  25. Mayer S, Curtui V, Usleber E, Gareis M (2007) Airborne mycotoxins in dust from grain elevators. Mycotoxin Res 23:94–100. doi: 10.1007/BF02946033 CrossRefGoogle Scholar
  26. Mayer S, Engelhart S, Kolk A, Blome H (2008) The significance of mycotoxins in the framework of assessing workplace related risks. Mycotoxin Res 24:151–164. doi: 10.1007/BF03032342 CrossRefGoogle Scholar
  27. McLaughlin CS, Vaughan MH, Campbell IM, Wei CM, Stafford ME, Hansen BS (1977) Inhibition of protein synthesis by trichothecenes. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox, Park Forest South, pp 263–273Google Scholar
  28. Meky FA, Hardie LJ, Evans SW, Wild CP (2001) Deoxynivalenol-induced immunomodulation of human lymphocyte proliferation and cytokine production. Food Chem Toxicol 39:827–836. doi: 10.1016/S0278-6915(01)00029-1 PubMedCrossRefGoogle Scholar
  29. Nasri T, Bosch RR, Voorde S, Fink-Gremmels J (2006) Differential induction of apoptosis by type A and B trichothecenes in Jurkat T-lymphocytes. Toxicol In Vitro 20:832–840. doi: 10.1016/j.tiv.2006.01.003 PubMedCrossRefGoogle Scholar
  30. Nielsen C, Lippke H, Didier A, Dietrich R, Märtlbauer E (2009) Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Mol Nutr Food Res 53:479–491Google Scholar
  31. Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam 25:1128–1140Google Scholar
  32. Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR (2008) Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: New insights into a public health enigma. Toxicol Sci 104:4–26. doi: 10.1093/toxsci/kfm284 PubMedCrossRefGoogle Scholar
  33. Reubel G, Gareis M, Amselgruber WM (1987) Cytotoxicity evaluation of mycotoxins by an MTT-bioassay. Mycotoxin Res 3:85–96Google Scholar
  34. Reubel GH, Gareis M, Amselgruber WM (1989) Effects of the Fusarium mycotoxins zearalenone and deoxynivalenol on the mitochondrial methylthiazol tetrazolium-cleavage activity of monolayer cells. Toxicol In Vitro 3:311–316. doi: 10.1016/0887-2333(89)90038-6 CrossRefGoogle Scholar
  35. Schoettler S, Bascope M, Sterner O, Anke T (2006) Isolation and characterization of two verrucarins from Myrothecium roridum. Z Naturforsch 61c:309–314Google Scholar
  36. SCOOP (2003) (Scientific Cooperation) Collection of occurrence data of fusarium toxins in food and assessment of dietary intake by the population of EU member states. SCOOP Task 3.2.10 Final Report. Available: (Scientific Cooperation)
  37. Sorenson WG, Frazer DG, Jarvis BB, Simpson J, Robinson VA (1987) Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microbiol 53:1370–1375PubMedGoogle Scholar
  38. Thuvander A, Wikman C, Gadhasson I (1999) In vitro exposure of human lymphocytes to trichothecenes: individual variation in sensitivity and effects of combined exposure on lymphocyte function. Food Chem Toxicol 37:639–648. doi: 10.1016/S0278-6915(99)00038-1 PubMedCrossRefGoogle Scholar
  39. Turner PC, Rothwell JA, White KLM, Gong Y, Cade JE, Wild CP (2008) Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom. Environ Health Perspect 116:21–25PubMedCrossRefGoogle Scholar
  40. Wei CM, McLaughlin CS (1974) Structure-function relationship in 12, 13-epoxytrichothecenes - novel inhibitors of protein-synthesis. Biochem Biophys Res Commun 57:838–844. doi: 10.1016/0006-291X(74)90622-6 PubMedCrossRefGoogle Scholar
  41. Widestrand J, Lundh T, Pettersson H, Lindberg JE (1999) Cytotoxicity of four trichothecenes evaluated by three colorimetric bioassays. Mycopathologia 147:149–155. doi: 10.1023/A:1007127919901 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer 2009

Authors and Affiliations

  • Carina Nielsen
    • 1
    Email author
  • Maximilian Casteel
    • 1
  • Andrea Didier
    • 1
  • Richard Dietrich
    • 1
  • Erwin Märtlbauer
    • 1
  1. 1.Department of Veterinary SciencesLudwig Maximilians-Universität MünchenOberschleißheimGermany

Personalised recommendations