Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prasinophyte bloom and putative fungi abundance near the Kačák event (Middle Devonian) from the Odivelas Limestone, Southwest Iberia

  • 27 Accesses

Abstract

The Kačák Event is one of the several prominent Devonian climatic and biotic perturbations with a supra-regional to global extent. Its record can be traced in the litho- and biostratigraphy of uppermost Eifelian-lowermost Givetian strata and with multiple geochemical and geophysical proxies. In southwest Iberia, within southwestern Ossa-Morena Zone domains, there are rare, scattered Early-Middle Devonian limestone occurrences. One of these occurrences—the Odivelas Limestone type locality—is revisited in terms of conodont biostratigraphy and palynology and the results compared with previous data on reef macrofauna and magnetic susceptibility stratigraphy. The new data show that this locality is probably within the Polygnathus hemiansatus zone, i.e. of the earliest Givetian age. The palynological content of a ca. 2 m of black, organic-rich, fine grained limestone section is dominated, in varied proportions, by amorphous organic matter, putative fungal hyphae, and prasinophycean algae. The results are interpreted as an indication of high organic productivity and deposition in hypoxic to anoxic settings and probable biotic crisis, in both marine and terrestrial realms, connected with the Middle Devonian Kačák Event. The similarity of this record with other Devonian events is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andrade, A. A. S., Pinto, A. F. F., & Conde, L. E. N. (1976). Sur la géologie du Massif de Beja: Observations sur la Transversale d’ Odivelas. Comunicações dos Serviços Geológicos de Portugal, 60, 171–202.

  2. Araújo, A., Fonseca, P., Munhá, J., Moita, P., Pedro, J., & Ribeiro, A. (2005). The Moura Phyllonitic complex: An accretionary complex related with obduction in the Southern Iberia Variscan Suture. Geodinamica Acta, 18(5), 375–388.

  3. Araújo, A., Piçarra, J., Borrego, J., Pedro, J., & Oliveira, J. T. (2013). As regiões central e sul da Zona de Ossa-Morena. In R. Dias, A. Araújo, P. Terrinha, & J. C. Kullberg (Eds.) Geologia de Portugal I (pp. 509–549). Lisboa: Escolar Editora.

  4. Bábek, O., Faměra, M., Hladil, J., Kapusta, J., Weinerová, H., Šimíček, D., Slavík, L., & Ďurišová, J. (2018). Origin of red pelagic carbonates as an interplay of global climate and local basin factors: Insight from the Lower Devonian of the Prague Basin, Czech Republic. Sedimentary Geology, 364, 71–88.

  5. Batten, D. J. (1999). Palynofacies analysis. In T. P. Jones & N. P. Rowe (Eds.) Fossil plants and spores: modern techniques (pp. 194–198). London: Geological Society.

  6. Becker, R. T., & Kirchgasser, W. T. (2007). Devonian events and correlations - a tribute to the lifetime achievements of Michael Robert House (1930–2002). In R. T. Becker & W. T. Kirchgasser (Eds.) Devonian events and correlations. Geological Society (Vol. 278, pp. 1–8). London: Special Publications.

  7. Becker, R. T., Gradstein, F. M., & Hammer, O. (2012). The Devonian Period. In F. M. Gradstein, J. G. Ogg, M. Schmitz, & G. Ogg (Eds.) The Geologic Time Scale 2012, 2 (pp. 559–601). Amsterdam: Elsevier.

  8. Becker, R. T., Königshof, P., & Brett, C. E. (2016). Devonian climate, sea level and evolutionary events: an introduction. In R. T. Becker, P. Königshof, & C. E. Brett (Eds.), Devonian Climate, Sea Level and Evolutionary Events. Geological Society (Vol. 423, pp. 1–10). London: Special Publications.

  9. Boogaard, M. van den (1973). Conodont faunas from Portugal and Southwestern Spain. Part 1: A Middle Devonian fauna from near Montemor-o-Novo. Scripta Geologica, 13, 1–11.

  10. Booth-Rea, G., Simancas, J. F., Azor, A., Azañón, J. M., González Lodeiro, F., & Fonseca, P. (2006). HP–LT Variscan metamorphism in the Cubito-Moura schists (Ossa-Morena Zone, southern Iberia). Comptes Rendus Geosciences, 338, 1260.

  11. Borrego, J., Araújo, A. & Fonseca, P.E. (2005). A geotraverse through the south and central sectors of the Ossa-Morena Zone in Portugal (Iberian Massif). In R. Carosi, R. Dias, D. Iacopini, G. Rosenbaum (Eds.) The southern Variscan belt. Virtual Explorer, 19, 10.

  12. Brett, C. E., McLaughlin, P. I., Histon, K., Schindler, E., & Ferretti, A. (2012). Time-specific aspects of facies: State of the art, examples,and possible causes. Palaeogeography, Palaeoclimatology, Palaeoecology, 367–368, 6–18.

  13. Brocke, A., Fatka, O., Lindemann, R.H., Schindler, E. & Ver Straeten, C.A. (2016). Palynology, dacryoconarids and the lower Eifelian (Middle Devonian) Basal Choteč Event: case studies from the Prague and Appalachian basins. In R. T. Becker, P. Königshof, C. E. Brett (Eds.) Devonian Climate, Sea Level and Evolutionary Events. Geological Society, London, Special Publications, 423, (pp.123–169).

  14. Brocke, R., Brett, C. E., Ellwood, B. B., Hartkopf-Fröder, C., Riegel, W., Schindler, E., & Tomkin, J. H. (2017). Comparative palynofacies, magnetic susceptibility and cyclicity of the Middle Devonian Müllertchen Section (Eifel area, Germany). Palaeobiodiversity and Palaeoenvironments, 97(3), 449–467.

  15. Budil, P. (1995). Demonstrations of the Kačák event (Middle Devonian, uppermost Eifelian) at some Barrandian localities. Věstník Českého geologického Ústavu, 70(4), 1–23.

  16. Burgess, N. D., & Edwards, D. (1991). Classification of uppermost Ordovician to Lower Devonian tubular and filamentous macerals from the Anglo-Welsh Basin. Botanical Journal of the Linnean Society, 106(1), 41–66.

  17. Chlupáč, I. & Kukal, Z. (1986). Reflection of possible global Devonian events in the Barrandian area, C.S.S.R. In O. H. Walliser (Ed.) Global Bio-Events. Lecture Notes in Earth Sciences, 8, 171–179.

  18. Chlupáč, I., & Kukal, Z. (1988). Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian– Middle Devonian, Czechoslovakia). Sborník geologických věd, Geology, 43, 83–146.

  19. Conde, L. L., & Andrade, A. A. (1974). Sur la faune méso et/ou néodevonienne des calcaires du Monte das Cortes, Odivelas (Massif de Beja). Memórias e Notícias da Universidade de Coimbra, 78, 141–145.

  20. Crick, R. E., Ellwood, B. B., El Hassani, A., & Feist, R. (2000). Proposed magnetostratigraphy susceptibility magnetostratotype for the Eifelian-Givetian GSSP (Anti-Atlas, Morocco). Episodes, 23(2), 93–101.

  21. Dias, R., Ribeiro, A., Romão, J., Coke, C., & Moreira, N. (2016). A review of the arcuate structures in the Iberian Variscides; Constraints and genetical models. Tectonophysics, 681, 170–194.

  22. Edwards, D., & Axe, L. (2012). Evidence for a fungal affinity for Nematasketum, a close ally of Prototaxites. Botanical Journal of the Linnean Society, 168(1), 1–18.

  23. Edwards, D., & Kenrick, P. (2015). The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) ‘On the plant-remains from the Downtonian of England and Wales’. Philosophical Transactions of the Royal Society B, 370, 20140343.

  24. Eguíluz, L., Gil Ibarguchi, J. I., Abalos, B., & Apraiz, A. (2000). Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. Geological Society of America Bulletin, 112(9), 1398–1413.

  25. Ellwood, B. E., Tomkin, J. H., Hassani, A. E., Bultynck, P., Brett, C. E., Schindler, E., Feist, R., & Bartholomew, A. J. (2011). A climate-driven model and development of a floating-point time scale for the entire Middle Devonian Givetian Stage: A test using magnetostratigraphy susceptibility as a climate proxy. Palaeogeography Palaeoclimatology Palaeoecology, 304(1–2), 85–95.

  26. Elrick, M., Berkyová, S., Klapper, G., Sharp, Z., Joachimski, M., & Frýda, J. (2009). Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early-Middle Devonian greenhouse world. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1/4), 170–181.

  27. Ferretti, A., Histon, K., McLaughlin, P. I., & Brett, C. E. (2012). Time-specific facies: The color and texture of biotic events. Palaeogeography, Palaeoclimatology, Palaeoecology, 367–368, 1–2.

  28. Figueiras, J., Mateus, A., Gonçalves, M., Warenborg, J., & Fonseca, P. E. (2002). Geodynamic evolution of the South Variscan Iberian Suture as recorded by mineral transformations. Geodinamica Acta, 15(1), 45–61.

  29. Filipiak, P. (2002). Palynofacies around the Frasnian/Famennian boundary in the Holy Cross Mountains, southern Poland. Palaeogeography Palaeoclimatology Palaeoecology, 181(1–3), 313.

  30. Filipiak, P., & Racki, G. (2010). Proliferation of abnormal palynoflora during the end-Devonian biotic crisis. Geological Quarterly, 54(1), 1–14.

  31. Fonseca, P. E., Munhá, J., Pedro, J. C., Moita, P., Araújo, A., Rosas, F. & Leal, N. (1999). Variscan Ophiolites and High-Pressure metamorphism in Southern Iberia, Ofioliti, 24 (2), Sp. Iss., 259–268.

  32. Hartkopf-Fröder, C., Kloppisch M., Mann U., Neumann-Mahlkau, P., Schaefer, R. G. & Wilkes, H. (2007). The end-Frasnian mass extinction in the Eifel Mountains,Germany: new insights from organic matter composition and preservation. In R. T. Becker, & W. T. Kirchgasser (Eds.) Devonian events and correlations. Geological Society, London, Specical Publications 278, 173–196.

  33. Hladil, J., Geršl, M., Strnad, L., Frána, J., Langrová, A., & Spišiak, J. (2006). Stratigraphic variation of complex impurities in platform limestones and possible significance of atmospheric dust: a study with emphasis on gamma-ray spectrometry and magnetic susceptibility outcrop logging (Eifelian-Frasnian, Moravia, Czech Republic). International Journal of Earth Sciences, 95(4), 703–723.

  34. House, M. R. (1996). The Middle Devonian Kačak Event. Proceedings. Ussher Society, 9, 79–84.

  35. House, M. R. (2002). Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography Palaeoclimatology Palaeoecology, 181, 5–25.

  36. Hutchins, D. A., Hare, C. E., Weaver, R. S., Zhang, Y., Firme, G. F., DiTullio, G. R., Alm, M. B., Riseman, S. F., Maucher, J. M., Geesey, M. E., Trick, C. G., Smith, G. J., Rue, E. L., Conn, J., Bruland, K. W., (2002) Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnology and Oceanography 47 (4):997-1011.

  37. Jesus, A.P., Mateus, A., Waerenborgh, J.C., Figueiras, J., Cerqueira, L. & Oliveira, V. (2003). Hypogene titanian, vanadian maghemite in reworked oxide cumulates in the Beja Layered gabbro complex, Odivelas, southeastern Portugal. Canadian Mineralogist, 41, 1105–1124.

  38. Jesus, A. P., Munhá, J., Mateus, A., Tassinari, C., & Nutman, A. P. (2007). The Beja layered gabbroic sequence (Ossa-Morena Zone, Southern Portugal): geochronology and geodynamic implications. Geodinamica Acta, 20(3), 139–157.

  39. Jesus, A. P., Mateus, A., Munhá, J. M., Tassinari, C. G. C., Bento dos Santos, T. M., & Benoit, M. (2016). Evidence for underplating in the genesis of the Variscan synorogenic Beja Layered Gabbroic Sequence (Portugal) and related mesocratic rocks. Tectonophysics, 683(30), 148–171.

  40. Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. M., Day, J., & Weddige, K. (2009). Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284, 599–609.

  41. Julivert, M., Fontbote, J.M., Ribeiro, A. & Conde, L.E.N. (1974). Memoria Explicativa del Mapa Tectónico de la Península Ibérica y Baleares, Escala 1:1 000 000, Instituto Geologico Minero de España, 1–113.

  42. Kondas, M. (2018). Nematophytes. Fossils Explained. Geology Today, 34(2), 73–78.

  43. Königshof, P., Nesbor, H. D., & Flick, H. (2010). Volcanism and reef development in the Devonian: a case study from the Rheinisches Schiefergebirge (Lahn Syncline, Germany). Gondwana Research, 17(2–3), 264–280.

  44. Königshof P., Da Silva, A.C., Suttner, T. J., Kido, E., Waters, J., Carmichael, S. K., Jansen, U., Pas D. & Spassov, S. (2016). Shallow water facies setting around the Kačák Event: a multidisciplinary approach. In R. T. Becker, P. Königshof, C. E. Brett (Eds.) Devonian Climate, Sea Level and Evolutionary Events. Geological Society, London, Special Publications, 423, 171–199.

  45. Koptíková, L., Hladil, J., Slavík, L., Čejchan, P., & Bábek, O. (2010). Fine-grained non-carbonate particles embedded in neritic to pelagic limestones (Lochkovian to Emsian, Prague Synform, Czech Republic): composition, provenance and links to magnetic susceptibility and gamma-ray logs. Geologica Belgica, 13(4), 407–430.

  46. Krings, M., Walker, C., Harper, C., Martin, H., Sónyi, S., Kustatscher, E., & Taylor, T. (2017). Unusual fungal reproductive units from the Lower Devonian Rhynie chert. Zitteliana, 89, 29–37.

  47. Krings, M., & Taylor, T. (2015). A fungal reproductive unit from the Lower Devonian Rhynie chert (Aberdeenshire, Scotland) that demonstrates an unusual hyphal investment pattern. Scottish Journal of Geology, 51(2), 131–139.

  48. Krings, M., & Harper, C. (2017). A mantled fungal reproductive unit from the Lower Devonian Windyfield chert, Scotland, with prominent spines and otherwise shaped projections extending out from the mantle. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 285(2), 201–211.

  49. Lotze, F. (1945). Zur Gliderung der Varisziden in der Iberischen Meseta. Geotektonische Forschungen, 6, 78–92.

  50. Machado, G., Hladil, J., Koptíková, L., Fonseca, P., Rocha, F. T., & Galle, A. (2009). The Odivelas Limestone: Evidence for a Middle Devonian reef system in western Ossa-Morena Zone. Geologica Carpathica, 60(2), 121–137.

  51. Machado, G., Hladil, J., Slavík, L., Koptíková, L., Moreira, N., Fonseca, M., & Fonseca, P. E. (2010). An Emsian-Eifelian Calciturbidite sequence and the possible correlatable pattern of the Basal Choteč event in Western Ossa-Morena Zone, Portugal (Odivelas Limestone). Geologica Belgica, 13(4), 431–446.

  52. Machado, G. & Hladil, J. (2010). On the age and significance of the limestone localities included in the Toca da Moura volcano-sedimentary Complex: preliminary results. In A. Santos, E. Mayoral, G. Melendez, C. M. D. Silva, M. Cachão (Ed.) III Congresso Iberico de Paleontologia / XXVI Jornadas de la Sociedad Espanola de Paleontologia. Publicaciones del Seminario de Paleontologia de Zaragoza, 9, 153–156.

  53. Marshall, J. E. A., Astin, T. R., Brown, J. F., Mark-Kurik, E. & Lazauskiene, J. (2007). Recognizing the Kačák Event in the Devonian terrestrial environment and its implications for understanding land–sea interactions. In R. T. Becker, & W. T. Kirchgasser (Eds.) Devonian events and correlations. Geological Society, London, Specical Publications 278, 133–155.

  54. Martin, J. H., & Fitzwater, S. E. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341–343.

  55. Marynowski, L., & Filipiak, P. (2007). Water column euxinia and wildfire evidence during deposition of the upper Famennian Hangenberg event horizon from the holy Cross Mountains (Central Poland). Geological Magazine, 144(3), 569–595.

  56. Miller, C. B., Frost, B. W., Booth, B., Wheeler, P. A., Landry, M. R., & Welschmeyer, N. (1991). Ecological processes in the subarctic Pacific: Iron limitation cannot be the whole story. Oceanography, 4, 71–78.

  57. Moreira, N., Machado, G., Fonseca, P. E., Silva, J. C., Jorge, R. C. G. S., & Mata, J. (2010). The Odivelas Palaeozoic volcano-sedimentary sequence: Implications for the geology of the Ossa-Morena southwestern border. Comunicações Geológicas, 97, 129–146.

  58. Moreira, N., Araújo, A., Pedro, J. C., & Dias, R. (2014). Evolução geodinâmica da Zona de Ossa-Morena no contexto do SW Ibérico durante o Ciclo Varisco. Comunicações Geológicas, 101(1), 275–278.

  59. Moreira, N., Pedro, J., Santos, J. F., Araújo, A., Romão, J., Dias, R., Ribeiro, A., Ribeiro, S., & Mirão, J. (2016). 87Sr/86Sr ratios discrimination applied to the main Paleozoic carbonate sedimentation in Ossa-Morena Zone. In IX Congreso Geológico de España (special volume). Geo-Temas, 16(1), 161–164.

  60. Moreira, N., Pedro, J., Santos, J. F., Araújo, A., Dias, R., Ribeiro, S., Romão, J., & Mirão, J. (2019). 87Sr/86Sr applied to age discrimination of the Palaeozoic carbonates of the Ossa-Morena Zone (SW Iberia Variscides). International Journal of Earth Sciences, 108(3), 963–987.

  61. Oliveira, J. T., Oliveira, V., & Piçarra, J. (1991). Traços gerais da evolução tectono-estratigráfica da Zona de Ossa-Morena, em Portugal. Comunicações dos Serviços Geológicos de Portugal, 77, 3–26.

  62. Oliveira, J. T., González-Clavijo, E., Alonso, J., Armendáriz, M., Bahamonde, J. R., Braid, J. A., Colmenero, J. R., Dias Da Silva, Í., Fernandes, P., Fernández, L. P., Gabaldón, V., Jorge, R. S., Machado, G., Marcos, A., Merino-Tomé, Ó, Moreira, N., Brendan Murphy, J., Pinto De Jesus, A., Quesada, C., Rodrigues, B., Rosales, I., Sanz-López, J., Suárez, A., Villa, E., Piçarra, J.M., Pereira, Z. (2019). Synorogenic Basins. In C. Quesada, & J. T. Oliveira (Eds.) The Geology of Iberia: a geodynamic approach (Volume 2: The Variscan Cycle). Springer (Berlin), Regional Geology Review series, 349–429.

  63. Piçarra, J.M. (2000). Stratigraphical study of the Estremoz-Barrancos sector, Ossa-Morena Zone, Portugal. Middle Cambrian?-Lower Devonian lithostratigraphy and biostratigraphy. PhD Thesis (unpublished), Évora University, 1, 268p.

  64. Pin, C., Fonseca, P. E., Paquette, J. L., Castro, P., & Matte, P. (2008). The ca. 350 Ma Beja Igneous Complex: a record of transcurrent slab break-off in the Southern Iberia Variscan Belt? Tectonophysics, 461, 356–377.

  65. Prauss, M. L. (2007). Availability of reduced nitrogen chemospecies in photic-zone waters as the ultimate cause for prasinophyte prosperity. Palaios, 22, 489–499.

  66. Quesada, C. (1990). Introduction of the Ossa-Morena Zone (part V). In R. D. Dallmeyer & E. Martínez García (Eds.) Pre-Mesozoic geology of Iberia (pp. 249–251). Berlin: Springer-Verlag.

  67. Racki, G. (2005). Toward understanding Late Devonian global events: few answers, many questions. In J. Over, J. Morrow, & P. B. Wignall (Eds.) Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach, Developments in Paleontology and Stratigraphy, 20 (pp. 5–36). Amsterdam: Elsevier.

  68. Rampino, M. R., & Eshet, Y. (2017). The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geoscience Frontiers, 9(1), 147–154.

  69. Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H., Coke, C., & Pedro, J. (2007). Geodynamic evolution of the SW Europe Variscides. Tectonics, 26, TC6009.

  70. Ribeiro, A., Munhá, J., Fonseca, P. E., Araújo, A., Pedro, J. C., Mateus, A., Tassinari, C., Machado, G., & Jesus, A. (2010). Variscan ophiolite belts in the Ossa-Morena Zone (Southwest Iberia): Geological characterization and geodynamic significance. Gondwana Research, 17, 408–421.

  71. Robardet, M., & Gutiérrez-Marco, J. C. (1990). Passive margin phase (Ordovician-Silurian-Devonian). In R. D. Dallmeyer & E. Martínez García (Eds.) Pre-Mesozoic Geology of Iberia (pp. 249–251). Berlin: Springer Verlag.

  72. Robardet, M., & Gutiérrez-Marco, J. C. (2004). The Ordovician, Silurian and Devonian sedimentary rocks of the Ossa-Morena Zone (SW Iberian Peninsula, Spain). Journal of Iberian Geology, 30, 73–92.

  73. Santos, J. F., Andrade, A., & Munhá, J. (1990). Magmatismo orogénico varisco no limite meridional da Zona de Ossa-Morena. Comunicações dos Serviços Geológicos de Portugal, 76, 91–124.

  74. Schootbrugge, B. van de, Tremolada, F., Rosenthal, Y., Bailey, T. R., Feist-Burkhardt, S., Brinkhuis, H., Pross, J., Kent, D. V., & Falkowski, P. G. (2007). End-Triassic calcification crisis and blooms of organic-walled disaster species. Palaeogeography, Paleoclimatology, Palaeoecology, 244, 126–141.

  75. Silva, J. C., Mata, J., Moreira, N., Fonseca, P. E., Jorge, R. C. G. S., & Machado, G. (2011). Evidence for a Lower Devonian subduction zone in the southeastern boundary of the Ossa-Morena-Zone (pp. 295–299). Castelo Branco: Abstracts of the VIII Congresso Ibérico de Geoquímica.

  76. Slavík, L., & Hladil, J. (in press). Early Devonian (Lochkovian – early Emsian) bioevents and conodont response in the Prague Synform. Palaeogeography, Paleoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2019.04.004.

  77. Smith, M. (2016). Cord-forming Palaeozoic fungi in terrestrial assemblage. Botanical Journal of the Linnean Society, 180(4), 452–460.

  78. Takeda, S., & Tsuda, A. (2005). An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): introduction and summary. Progress in Oceanography, 64, 95–109.

  79. Taylor, T. N., Klavins, S. D., Krings, M., Taylor, E. L., Kerp, H., & Hass, H. (2004). Fungi from the Rhynie chert: A view from the dark side. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 457–473.

  80. Tyson, R. V. (1995). Sedimentary Organic Matter: Organic facies and palynofacies (1st ed.p. 615). London: Chapman & Hall.

  81. Valenzuela-Ríos, J. I., Slavík, L., Liao, J.-C., Calvo, H., Hušková, A., & Chadimová, L. (2015). The middle and upper Lochkovian (Lower Devonian) conodont successions in key peri-Gondwana localities (Spanish Central Pyrenees and Prague Synform) and their relevance for global correlations. Terra Nova, 27, 409–415.

  82. Visscher, H., Brinkhuis, H., Dilcher, D. L., Elsik, W. C., Eshet, Y., Looy, C. V., Rampino, M. R., & Traverse, A. (1996). The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences USA, 93(5), 2155–2158.

  83. Visscher, H., Sephton, M. A., & Looy, C. V. (2011). Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39(9), 883–886.

  84. Vodrážková, S., Frýda, J., Suttner, T. J., Koptíková, L., & Tonarová, P. (2012). Environmental changes close to the Lower–Middle Devonian boundary; the Basal Choteč Event in the Prague Basin (Czech Republic). Facies, 59(2), 425–449.

  85. Walliser, O. H. (ed.) (1996). Global Events and Event Stratigraphy in the Phanerozoic. Springer-Verlag, 333 pp.

  86. Walliser, O. H. (1984). Geologic processes and global events. Terra Cognita, 4, 17–20.

Download references

Acknowledgements

We are thankful for the constructive comments by reviewers Carl Brett (University of Cincinnati) and Oldřich Fatka (Charles University). This work is a contribution to IGCP Project 652-Reading geologic time in Palaeozoic sedimentary rocks.

Funding

Fundação para a Ciência e a Tecnologia (Portugal) provided funding through grant no. SFRH/BD/23787/2005 and the Research Plan of the Institute of Geology of the Czech Academy of Sciences (RVO67985831).

Author information

Correspondence to Gil Machado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado, G., Slavík, L., Moreira, N. et al. Prasinophyte bloom and putative fungi abundance near the Kačák event (Middle Devonian) from the Odivelas Limestone, Southwest Iberia. Palaeobio Palaeoenv (2020). https://doi.org/10.1007/s12549-019-00415-1

Download citation

Keywords

  • Ossa-Morena Zone
  • Eifelian-Givetian
  • Palynology
  • Conodonts
  • Biotic crisis