Ichnology of the Middle Jurassic hiatus concretions from Poland: implications for their formation, exhumation, and palaeoenvironment

  • Grzegorz SadlokEmail author
  • Michał Zatoń
Original Paper


In the present study, the Middle Jurassic exhumed carbonate concretions (the so-called hiatus concretions) from the Polish Jura (southern Poland) were studied ichnologically (precursor burrows and their tiering and bioerosion patterns) in order to decipher the palaeoenvironmental conditions leading to their formation and exhumation. The ichnological approach to the concretionary bodies used in this study yielded information on the scale of seafloor erosion and its relative timing compared to the burrow-infilling phase. The bioerosion patterns also provided information on proximal-distal trends and the frequency and strength of currents in the environment below storm wave base, a setting recorded in the monotonous, concretion-bearing siliciclastic sections which is studied here. The significance of the stratigraphic sequence is also briefly discussed based on the horizons containing the hiatus concretions.


Hiatus concretions Ichnology Bioerosion pattern  Middle Jurassic  Poland 



We are thankful to the reviewers of our paper: Olev Vinn (University of Tartu), Carlton Brett (University of Cincinnati), and Mark Wilson (The College of Wooster). Their valuable comments and remarks helped us to improve the manuscript significantly.

Funding information

The authors thank the University of Silesia in Katowice (Poland) for financial and logistic support.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Baird, G. (1976). Coral encrusted concretions: a key to recognition of a ‘shale on shale’ erosion surface. Lethaia, 9(3), 293–302.CrossRefGoogle Scholar
  2. Baird, G. (1981). Submarine erosion on a gentle paleoslope: a study of two discontinuities in the New York Devonian. Lethaia, 14, 105–122.CrossRefGoogle Scholar
  3. Bernardi, M., Boschele, S., Ferretti, P., & Avanzini, M. (2010). Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontologica Polonica, 55(3), 479–486.CrossRefGoogle Scholar
  4. Braithwaite, C., & Talbot, M. (1972). Crustacean burrows in the Seychelles, Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 11(4), 265–285.CrossRefGoogle Scholar
  5. Brett, E. (1995). Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios, 10(6), 597–616.CrossRefGoogle Scholar
  6. Brett, C. E., Kirchner, B. T., Tsujita, C. J., & Dattilo, B. F. (2008). Depositional dynamics recorded in mixed siliciclastic-carbonate marine successions: insights from the Upper Ordovician Kope Formation of Ohio and Kentucky, USA. In B. R. Pratt & C. Holmden (Eds.), Dynamics of Epeiric Seas. Geological Society of Canada Special Paper, 48, pp. 73–102).Google Scholar
  7. Bromley, R. G. (1967). Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Quarterly Journal of the Geological Society, 123(1-4), 157–177.CrossRefGoogle Scholar
  8. Bromley, R. G. (1990). Trace fossils: Biology and taphonomy. London: Unwin Hyman.Google Scholar
  9. Bromley, R. G. (1994). The palaeoecology of bioerosion. In S. Donovan (Ed.), The Palaeobiology of Trace Fossils (pp. 134–154). Chichester, New York, Brisbane, Toronto, Singapore: Wiley.Google Scholar
  10. Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological Magazine, 123(1), 59–65.CrossRefGoogle Scholar
  11. Bromley, R. G., & Frey, R. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23(3-4), 311–335.Google Scholar
  12. Buatois, L., Wisshak, M., Wilson, M. A., & Mángano, G. (2017). Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Science Reviews, 164, 102–181.CrossRefGoogle Scholar
  13. Carvalho, C. N. D., Viegas, P. A., & Cachão, M. (2007). Thalassinoides and its producer: populations of Mecochirus buried within their burrow systems, Boca do Chapim Formation (Lower Cretaceous), Portugal. Palaios, 22(1), 104–109.CrossRefGoogle Scholar
  14. Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences, 35(1), 1–43.CrossRefGoogle Scholar
  15. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 73–245.CrossRefGoogle Scholar
  16. Chan, M. A., Beitler, B., Parry, W., Ormö, J., & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature, 429(6993), 731–734.CrossRefGoogle Scholar
  17. Coleman, M. (1993). Microbial processes: controls on the shape and composition of carbonate concretions. Marine Geology, 113(1), 127–140.CrossRefGoogle Scholar
  18. D’Alessandro, A., & Bromley, R. G. (1987). Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology, 30(4), 743–763.Google Scholar
  19. D’Alessandro, A., & Bromley, R. G. (1995). A new ichnospecies of Spongeliomorpha from the Pleistocene of Sicily. Journal of Paleontology, 69(2), 393–398.CrossRefGoogle Scholar
  20. Dayczak-Calikowska, K., & Moryc, W. (1988). Evolution of sedimentary basin and palaeotectonics of the Middle Jurassic in Poland (in Polish with English summary). Kwartalnik Geologiczny, 32(1), 117–136.Google Scholar
  21. De Gibert, J., Mas, G., & Ekdale, A. (2012). Architectural complexity of marine crustacean burrows: unusual helical trace fossils from the Miocene of Mallorca, Spain. Lethaia, 45(4), 574–585.CrossRefGoogle Scholar
  22. Deczkowski, Z. (1960). Charakterystyka doggeru czestochowsko-wieluńskiego. Przegląd Geologiczny, 8(8), 412–417.Google Scholar
  23. Duke, W. L. (1985). Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32(2), 167–194.CrossRefGoogle Scholar
  24. Elliott, T. (1986). Siliciclastic shorelines. In H. Reading (Ed.), Sedimentary environments and facies (pp. 155–188). Oxford: Blackwell Scientific Publications.Google Scholar
  25. Feldman-Olszewska, A. (1997). Depositional architecture of the Polish epicontinental Middle Jurassic basin. Geological Quarterly, 41(4), 491–508.Google Scholar
  26. Folk, R. L., Andrews, P. B., & Lewis, D. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4), 937–968.CrossRefGoogle Scholar
  27. Frey, R. W., & Pemberton, S. G. (1984). Trace fossil facies models. In R. G. Walker (Ed.), Facies Models (pp. 189–207). Toronto: Geoscience Canada.Google Scholar
  28. Fürsich, F. (1979). Genesis, environments, and ecology of Jurassic hardgrounds. Neues Jahrbuch für Geologie und Paläontologie, 158, 1–63.Google Scholar
  29. Fürsich, F., Oschmann, W., Singh, I. B., & Jaitly, A. (1992). Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: their significance for basin analysis. Journal of the Geological Society, 149(3), 313–331.CrossRefGoogle Scholar
  30. Gedl, P., Kaim, A., Leonowicz, P., Boczarowski, A., Dudek, T., Kędzierski, M., Rees, J., Smoleń, J., Szczepanik, P., Sztajner, P., Witkowska, M., & Ziaja, J. (2012). Palaeoenvironmental reconstruction of Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62, 463–484.CrossRefGoogle Scholar
  31. Gingras, M. K., Baniak, G., Gordon, J., Hovikoski, J., Konhauser, K. O., Croix, A. L., Lemiski, R., Mendoza, C., Pemberton, S. G., Polo, C., & Zonneveld, J. P. (2012). Porosity and permeability in bioturbated sediments. In D. Knaust & R. G. Bromley (Eds.), Trace Fossils as Indicators of Sedimentary Environments, Developments in Sedimentology (pp. 837–868). Amsterdam: Elsevier.CrossRefGoogle Scholar
  32. Gross, T., Williams III, A. J., & Grant, W. (1986). Long-term in situ calculations of kinetic energy and Reynolds stress in a deep sea boundary layer. Journal of Geophysical Research, Oceans, 91(C7), 8461–8469.CrossRefGoogle Scholar
  33. Gross, T. F., Williams III, A., & Newell, A. (1988). A deep-sea sediment transport storm. Nature, 331(6156), 518–521.CrossRefGoogle Scholar
  34. Gunatilaka, A., Al-Zamel, A., Shearman, D., & Reda, A. (1987). A spherulitic fabric in selectively dolomitized siliciclastic crustacean burrows, northern Kuwait. Journal of Sedimentary Research, 57(5), 922–927.Google Scholar
  35. Hallam, A. (1988). A reevaluation of Jurassic eustasy in the light of new data and the revised exxon curve. In C. K. Wilgus, B. S. Hastings, C. G. S. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. Van Wagoner (Eds.), Sea-Level Changes: An Integrated Approach (pp. 261–274). SEPM Society for Sedimentary Geology, 42.Google Scholar
  36. Haq, B., Hardenbol, J., & Vail, P. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.CrossRefGoogle Scholar
  37. Hesselbo, S. P., & Palmer, T. J. (1992). Reworked early diagenetic concretions and the bioerosional origin of a regional discontinuity within British Jurassic marine mudstones. Sedimentology, 39(6), 1045–1065.CrossRefGoogle Scholar
  38. Jensen, S. (1997). Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42, 1–111.Google Scholar
  39. Kaźmierczak, J. (1974). Crustacean associated hiatus concretions and eogenetic cementation in the Upper Jurassic of central Poland. Neues Jahrbuch für Geologie und Paläontologie, 147, 329–342.Google Scholar
  40. Kelly, S., & Bromley, R. (1984). Ichnological, nomenclature of clavate borings. Palaeontology, 27(4), 793–807.Google Scholar
  41. Kennedy, W., & Klinger, H. C. (1972). Hiatus concretions and hardground horizons in the Cretaceous of Zululand (South Africa). Palaeontology, 15(Part 4), 539–549.Google Scholar
  42. Kinoshita, K., Wada, M., Kogure, K., & Furota, T. (2007). Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea). Marine Biology, 153, 277–283.CrossRefGoogle Scholar
  43. Leonowicz, P. (2013). The significance of mudstone fabric combined with palaeoecological evidence in determining sedimentary processes – an example from the Middle Jurassic of southern Poland. Geological Quarterly, 57(2), 243–260.CrossRefGoogle Scholar
  44. Leonowicz, P. (2015). Storm-influenced deposition and cyclicity in a shallow-marine mudstone succession – example from the Middle Jurassic ore-bearing clays of the Polish Jura (southern Poland). Geological Quarterly, 59(2), 325–344.CrossRefGoogle Scholar
  45. Leonowicz, P. (2016). Tubular tempestites from Jurassic mudstones of southern Poland. Geological Quarterly, 60(2), 385–394.Google Scholar
  46. MacEachern, J. A., Gingras, M. K., Bann, K., Dafoe, L. T., & Pemberton, S. G. (2007). Applications of ichnology to high-resolution genetic stratigraphic paradigms. Applied Ichnology, SEPM Society for Sedimentary Geology, 52, 95–129.Google Scholar
  47. Majewski, W. (2000). Middle Jurassic concretions from Czestochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50(4), 431–439.Google Scholar
  48. Marynowski, L., Zatoń, M., Simoneit, B. R. T., Otto, A., Jędrysek, M. O., Grelowski, C., & Kurkiewicz, S. (2007). Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry, 22, 2456–2485.CrossRefGoogle Scholar
  49. Matyja, B. A., & Wierzbowski, A. (2000). Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geologica Polonica, 50(2), 191–209.Google Scholar
  50. Palanques, A., Puig, P., Guillén, J., Jiménez, J., Gracia, V., Sánchez-Arcilla, A., & Madsen, O. (2002). Near-bottom suspended sediment fluxes on the microtidal low-energy Ebro continental shelf (NW Mediterranean). Continental Shelf Research, 22(2), 285–303.CrossRefGoogle Scholar
  51. Papaspyrou, S., Gregersen, T., Cox, R., Thessalou-Legaki, M., & Kristensen, E. (2005). Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquatic Microbial Ecology, 38, 181–190.CrossRefGoogle Scholar
  52. Pemberton, S. G., & Gingras, M. K. (2005). Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89(11), 1493–1517.CrossRefGoogle Scholar
  53. Sherwood, C., Butman, B., Cacchione, D., Drake, D., Gross, T., Sternberg, R., Wiberg, P., & Williams, A. (1994). Sediment-transport events on the northern California continental shelf during the 1990–1991 STRESS experiment. Continental Shelf Research, 14(10), 1063–1099.CrossRefGoogle Scholar
  54. Szczepanik, P., Witkowska, M., & Sawłowicz, Z. (2007). Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geological Quarterly, 51(1), 57–56.Google Scholar
  55. Tchoumatchenco, P., & Uchman, A. (2001). The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic – Lower Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeo-graphy, Palaeoclimatology, Palaeo-ecology, 169, 85–99.Google Scholar
  56. Uchman, A. (2009). The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1), 107–119.CrossRefGoogle Scholar
  57. Voigt, E. (1968). Uber-Hiatus-Konkretion (dargestellt an Beispielen aus dem Lias). Geologische Rundschau, 58, 281–296.CrossRefGoogle Scholar
  58. Wanless, H. R., Tedesco, L. P., & Tyrrell, K. M. (1988). Production of subtidal tubular and surficial tempestites by hurricane Kate, Caicos Platform, British West Indies. Journal of Sedimentary Research, 58(4), 739–750.Google Scholar
  59. Wetzel, A., & Aigner, T. (1986). Stratigraphic completeness: tiered trace fossils provide a measuring stick. Geology, 14(3), 234–237.CrossRefGoogle Scholar
  60. Wetzel, A., & Allia, V. (2000). The significance of hiatus beds in shallow-water mudstones: an example from the Middle Jurassic of Switzerland. Journal of Sedimentary Research, 70, 170–180.CrossRefGoogle Scholar
  61. Wilson, M. (1985). Disturbance and ecologic succession in an upper Ordovician cobble-dwelling hardground fauna. Science, 228(4699), 575–577.CrossRefGoogle Scholar
  62. Wilson, M. A. (1987). Ecological dynamics on pebbles, cobbles, and boulders. Palaios, 2(6), 594–599.CrossRefGoogle Scholar
  63. Wilson, M. A., Zatoń, M., & Avni, Y. (2012). Origin, palaeoecology and stratigraphic significance of bored and encrusted concretions from the Upper Cretaceous (Santonian) of southern Israel. Palaeobiodiversity and Palaeoenvironments, 92(3), 343–352.CrossRefGoogle Scholar
  64. Yanin, B. T., & Baraboshkin, E. Y. (2013). Thalassinoides burrows (Decapoda dwelling structures) in lower cretaceous sections of southwestern and central Crimea. Stratigraphy and Geological Correlation, 21(3), 280–290.CrossRefGoogle Scholar
  65. Zatoń, M. (2010). Hiatus concretions. Geology Today, 26(5), 186–189.CrossRefGoogle Scholar
  66. Zatoń, M., Marynowski, L., & Bzowska, G. (2006). Konkrecje hiatusowe z iłów rudonośnych Wyżyny Krakowsko-Czestochowskiej. Przegląd Geologiczny, 54(2), 131–138.Google Scholar
  67. Zatoń, M., Marynowski, L., Szczepanik, P., Bond, D. P. G., & Wignall, P. B. (2009). Redox conditions during sedimentation of the Middle Jurassic (upper Bajocian–Bathonian) clays of the Polish Jura (south-central Poland). Facies, 55(1), 103–114.CrossRefGoogle Scholar
  68. Zatoń, M., Machocka, S., Wilson, M., Marynowski, L., & Taylor, P. (2011). Origin and paleoecology of Middle Jurassic hiatus concretions from Poland. Facies, 57, 275–300.CrossRefGoogle Scholar
  69. Zatoń, M., Kremer, B., Marynowski, L., Wilson, M. A., & Krawczyński, W. (2012). Middle Jurassic (Bathonian) encrusted oncoids from the Polish Jura, southern Poland. Facies, 58(1), 57–77.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of Earth SciencesUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations