Advertisement

Morphometrics and palaeoecology of syringoporoid tabulate corals from the upper Famennian (Devonian) Etoucun Formation, Huilong, South China

  • Kun LiangEmail author
  • Wenkun Qie
  • Luozhong Pan
  • Baoan Yin
Original Paper

Abstract

Syringoporoid tabulate corals are one of the most common benthic sessile organisms in the upper Famennian Etoucun Formation at the Huilong section, Guilin, South China. A multivariate morphometric analysis based on five morphological characters was applied to 29 coralla from three intervals in the formation. Cluster analysis, principal coordinate analysis, non-metric multidimensional scaling, and an examination of the qualitative morphological characteristics revealed the presence of four morphospecies representing Chia hunanensis Jia, 1977, Tetraporinus virgatus Tchudinova, 1986, Fuchungopora multispinosa Lin, 1963, and a new species designated as F. huilongensis. Interval A belongs to foraminifer biozones DFZ4 to DFZ6 and contains abundant C. hunanensis and scattered coralla of T. virgatus, whereas intervals B and C which are within foraminifer biozone DFZ7 contain abundant F. multispinosa, sporadic F. huilongensis, and rare fragmented corallites of C. hunanensis. The coralla are commonly tilted or overturned, which is especially obvious in intervals B and C, indicating that most of them settled on a soft substrate and were subjected to periodic high-energy events. The species of Fuchungopora display flexible growth strategies characterised by the fusion of their corallites. The high diversity of syringoporids recorded from South China indicates an obvious radiation of the tabulate corals in the uppermost Famennian. Syringoporids accounted for the majority of tabulate corals recorded in South China in the upper Famennian and represented a relatively high level of palaeobiodiversity before the Hangenberg Crisis.

Keywords

Syringoporoid tabulate corals Famennian South China Multivariate morphometric analysis 

Notes

Acknowledgements

We thank C. M. Yu and W. H. Liao for their valuable comments, and Y. D. Chen for the preparation of thin sections. We are grateful to the reviewers, E. Poty and M. Aretz, for providing helpful suggestions.

Funding information

This study was supported by grants from the Chinese Academy of Sciences (XDB26000000) and National Science Foundation of China (Grant Nos. 41772004 and 41402013) to KL and WKQ.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aretz, M. (2010). Habitats of colonial rugose corals: the Mississippian of western Europe as example for a general classification. Lethaia, 43, 558–572.CrossRefGoogle Scholar
  2. Bae, B.-Y., Elias, R. J., & Lee, D.-J. (2006). Morphometrics of Catenipora (Tabulata; Upper Ordovician; southern Manitoba, Canada). Journal of Paleontology, 80, 889–901.CrossRefGoogle Scholar
  3. Bae, B.-Y., Elias, R. J., & Lee, D.-J. (2008). Morphometrics of Manipora (Tabulata; Upper Ordovician; southern Manitoba, Canada). Journal of Paleontology, 82, 78–90.CrossRefGoogle Scholar
  4. Chen, D. Z., Tucker, M. E., Zhu, J. Q., & Jiang, M. S. (2001). Carbonate sedimentation in a starved pull-apart basin, Middle to Late Devonian, southern Guilin, South China. Basin Research, 13, 141–167.CrossRefGoogle Scholar
  5. Chen, D. Z., Guo, Z. H., Jiang, M. S., Guo, C., & Ding, Y. (2016). Dynamics of cyclic carbonate deposition and biotic recovery on platforms during the Famennian of Late Devonian in Guangxi, South China: constraints from high-resolution cycle and sequence stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 245–265.CrossRefGoogle Scholar
  6. Chi, Y. S. (1931). Weiningian (Middle Carboniferous) corals of China. Palaeontologia Sinica, B, XXI(5), 1–70.Google Scholar
  7. Chi, Y. S. (1933). Lower Carboniferous Syringopora of China. Palaeontologia Sinica, B, XXI(4), 1–48.Google Scholar
  8. Dai, M., Liu, L., Lee, D. J., Peng, Y., & Miao, A. (2015). Morphometrics of Heliolites (Tabulata) from the Late Ordovician, Yushan, Jiangxi, South China. Acta Geologica Sinica (English Edition), 89, 38–54.CrossRefGoogle Scholar
  9. de Fromentel, E. (1861). Introduction a l'etude des polypiers fossiles. 357 pp. Paris: F. Savy.Google Scholar
  10. Dong, D. Y. (1964). Stromatoporoids from the Early Carboniferous of Kwangsi and Kueichow. Acta Paleontologica Sinica, 12, 280–299.Google Scholar
  11. Dong, D. Y. (2001). Stromatoporoids of China. 423 pp. Beijing: Science Press.Google Scholar
  12. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.Google Scholar
  13. Hance, L., Muchez, P. H., Coen, M., Fang, X.-S., Groessens, E., Hou, H., Poty, E., Steemans, P. H., Streel, M., Tan, Z., Tourneur, F., Van Steenwinkel, M., & Xu, S.-C. (1994). Biostratigraphy and sequence stratigraphy at the Devonian–Carboniferous transition in southern China (Hunan Province). Comparison with southern Belgium. Annales de la Société géologique de Belgique, 116, 359–378.Google Scholar
  14. Hance, L., Hou, H., & Vachard, D. (2011). Upper Famennian to Viséan foraminifers and some carbonate microproblematica from South China. Beijing: Geological Publishing House.Google Scholar
  15. Hill, D. (1981). Part F, Coelenterata, Supplement 1, Rugosa and Tabulata, Vol. 2. In C. Teichert (Ed.), Treatise on Invertebrate Paleontology (pp. 379–762). Boulder and Lawrence: Geological Society of America and University of Kansas.Google Scholar
  16. Jia, H. Z., Xu, S. Y., Kuang, G. D., Zhang, B. F., Zuo, Z. B., & Wu, J. Z. (1977). Anthozoa. In Palaeontological atlas of central and South China, Late Palaeozoic (pp. 109–270). Beijing: Geological Publishing House.Google Scholar
  17. Jiang, S. L. (1982). Corals. In Ministry of geology and mineral resources, geological memoirs, series 2, stratigraphy and palaeontology (Ed.), Palaeontological atlas of Hunan (pp. 290–347). Beijing: Geological Publishing House.Google Scholar
  18. Kershaw, S. (1994). Classification and geological significance of biostromes. Facies, 31, 81–91.CrossRefGoogle Scholar
  19. Li, R. S., Xu, J. B., & Wu, X. H. (2001). Establishment and significance of foraminifera zones of Etoucun FM. – Yingtang FM. In northern Guangxi. Guangxi Geology, 14, 7–12.Google Scholar
  20. Liang, K., Elias, R. J., Choh, S.-J., Lee, D.-C., & Lee, D.-J. (2016). Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China. Journal of Paleontology, 90, 1027–1048.CrossRefGoogle Scholar
  21. Liang, K., Elias, R. J., & Lee, D.-J. (2018). The early record of halysitid tabulate corals, and morphometrics of Catenipora from the Ordovician of north-central China. Papers in Palaeontology, 4, 363–379.CrossRefGoogle Scholar
  22. Liao, W. H. (2004). Coral recovery from the Frasnian-Famennian mass extinction event in South China. In J. Y. Rong & Z. J. Fang (Eds.), Mass Extinction and Recovery — Evidences from the Palaeozoic and Triassic of South China (pp. 259–280). Hefei: University of Science and Technology of China Press.Google Scholar
  23. Lin, B. Y. (1958). New data on Lower Carboniferous syringoporids of the eastern parts of the Tsin-lin. Acta Palaeontologica Sinica, 6, 479–485.Google Scholar
  24. Lin, B. Y. (1963a). Some Tabulata from the Carboniferous and Permian strata of Southern China. Acta Palaeontologica Sinica, 11, 579–596.Google Scholar
  25. Lin, B. Y. (1963b). Some Carboniferous tabulate corals from Nanling range. Professonal Papers Chinese Academy of Geological Sciences, Series B, Stratigraphy and Paleontology, 4, 1–75.Google Scholar
  26. Lin, B. Y. (1985). A preliminary study on the stratigraphical distribution and zoogeographical provinces of the Carboniferous tabulate corals of China. Memorial Geology and Paleontology, 12, 27–46.Google Scholar
  27. Ma, X. P., Gong, Y. M., Chen, D. Z., Racki, G., Chen, X. Q., & Liao, W. H. (2016). The Late Devonian Frasnian–Famennian event in South China — patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 224–244.CrossRefGoogle Scholar
  28. McGhee, G. R. (1996). The Late Devonian mass extinction — the Frasnian/Famennian crisis: critical moments in paleobiology and earth history series (pp. 303). New York: Columbia University Press.Google Scholar
  29. Milhau, B., Mistiaen, B., Brice, D., Degardin, J. M., Derycke, C., Hou, H. F., Rohart, J. C., Vachard, D., & Wu, X. T. (1997). Comparative faunal content of Strunian (Devonian) between Etaoucun (Guilin, Guangxi, South China) and the stratotype area (Etroeungt, Avesnois, north of France). Proceedings of the 30th International Geological Congress, Beijing, 12, 79–94.Google Scholar
  30. Nowinski, A. (1982). Some new species of Tabulata from the Lower Permian of Hornsund, Spitsbergen. Palaeontologia Polonica, 43, 83–96.Google Scholar
  31. Poty, E. (1986). Late Devonian to early Tournaisian rugose corals. Annales de la Société Géologique de Belgique, 109, 65–74.Google Scholar
  32. Poty, E. (1999). Famennian and Tournaisian recoveries of shallow water Rugosa following late Frasnian and late Strunian major crises, southern Belgium and surrounding areas, Hunan (South China) and the Omolon region (NE Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 11–26.CrossRefGoogle Scholar
  33. Poty, E. (2010). Morphological limitation to the diversification of the rugose and tabulate corals. Palaeoworld, 19, 389–400.CrossRefGoogle Scholar
  34. Poty, E., Devuyst, F.-X., & Hance, L. (2006). Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and northern France: a tool for Eurasian correlations. Geological Magazine, 143, 829–857.CrossRefGoogle Scholar
  35. Racki, G. (2005). Toward understanding Late Devonian global events: few answers, and many questions. In D. J. Over, J. R. Morrow, & P. B. Wignall (Eds.), Understanding Late Devonian and Permian–Triassic biotic and climatic events: Towards an integrated approaches developments in palaeontology and stratigraphy (pp. 5–36). Amsterdam: Elsevier BV.Google Scholar
  36. Shen, J. W., & Webb, G. E. (2004a). Famennian (Upper Devonian) calcimicrobial (Renalcis) reef at Miaomen, Guilin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 373–379.CrossRefGoogle Scholar
  37. Shen, J. W., & Webb, G. E. (2004b). Famennian (Upper Devonian) stromatolite reef at Shatang, Guilin, South China. Sedimentary Geology, 170, 63–84.CrossRefGoogle Scholar
  38. Shen, J. W., Yu, C. M., & Bao, H. M. (1997). A Late-Devonian (Famennian) RenalcisEpiphyton reef at Zhaijiang, Guilin, South China. Facies, 37, 195–260.CrossRefGoogle Scholar
  39. Shen, J. W., Webb, G. E., & Jell, J. S. (2008). Platform margins, reef facies and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China. Earth Science Reviews, 88, 33–59.CrossRefGoogle Scholar
  40. Sokolov, B. S. (1947). Nobye Siringoporidy Taimyra. Moskovskogo Obshchestva Ispytatelei Prirody. Byulletin (Geologiia), 22, 19–28.Google Scholar
  41. Sokolov, B. S. (1950). Sistematika i istoriya razvitiya paleozoyskikh korallov Anthozoa Tabulata. Voprosy Paleontologii, 1, 134–210.Google Scholar
  42. Sun, N., Elias, R. J., Choh, S. J., Lee, D.-C., Wang, X. L., & Lee, D.-J. (2016). Morphometrics and palaeoecology of the coral Agetolites from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China. Alcheringa, 40, 1–24.CrossRefGoogle Scholar
  43. Tchudinova, I. I. (1986). Sostav, sistema i fllogenlya iskopayemykh korallov. Otryad Sirlngoporlda. Trudy Paleontologlcheskogo Instltuta Akademii Nauk. URSS, 216, 1–205.Google Scholar
  44. Wu, W. S., & Zhao, J. M. (1981). Corals from the Shaodong Formation (Etroeungt) of South China. Acta Palaeontologica Sinica, 20, 1–14.Google Scholar
  45. Yang, S. W. (1978). Tabulata. In Stratigraphy and Palaeontology Team, Guizhou Province (Eds.) Palaeontological atlas of Southwest China, Guizhou volume 2, Carboniferous-Quaternary (pp. 189–228). Beijing: Geological Publishing House.Google Scholar
  46. Yu, J. Z. (1933). Lower Carboniferous corals of China. Palaeontologia Sinica, B, 12, 1–211.Google Scholar
  47. Yu, J. Z. (1934). Description of corals collected from the Maping and the Huanglung limestone in South China. Memoirs of the National Research Institute of Geology, Academia Sinica, 14, 55–82.Google Scholar
  48. Yu, C. M. (1988). Devonian-Carboniferous boundary in Nanbiancun, Guilin, China–aspects and records (pp. 379). Beijing: Science Press.Google Scholar
  49. Yu, C. M., & Shen, J. W. (1998). Devonian reef complexes in Guilin, South China. 168 pp. Nanjing: Jiangsu Science and Technology Publishing House.Google Scholar
  50. Zapalski, M. K., Hubert, B., Nicollin, J., Mistiaen, B., & Brice, D. (2007). The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of the Ardennes—Changes through time. Bulletin de la Societe Geologique de France, 178, 383–390.CrossRefGoogle Scholar
  51. Zapalski, M. K., Berkowski, B., & Wrzołek, T. (2016). Tabulate corals after the Frasnian/Famennian crisis: a unique fauna from the Holy Cross Mountains, Poland. PLoS One, 11, e0149767.CrossRefGoogle Scholar
  52. Zapalski, M. K., Nowicki, J., Jakubowicz, M., & Berkowski, B. (2017). Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 416–429.CrossRefGoogle Scholar
  53. Zhang, F. (2016). Recognizing morphospecies in the heliolitid coral Plasmoporella. Palaeoworld, 25, 32–42.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kun Liang
    • 1
    Email author
  • Wenkun Qie
    • 1
  • Luozhong Pan
    • 2
  • Baoan Yin
    • 2
  1. 1.CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PaleoenvironmentChinese Academy of SciencesNanjingChina
  2. 2.Guangxi Institute of Regional Geological SurveyGuilinChina

Personalised recommendations