Advertisement

The dirty dozen: taxonomical and taphonomical overview of a unique ankylosaurian (Dinosauria: Ornithischia) assemblage from the Santonian Iharkút locality, Hungary

  • Attila ŐsiEmail author
  • Gábor Botfalvai
  • Gáspár Albert
  • Zsófia Hajdu
Original Paper

Abstract

Ankylosaurian fossils are usually standard elements of Cretaceous continental vertebrate localities; however, bone-yielding horizons including more than one individual are extremely rare. Here, we present a unique assemblage of 12 partial, articulated or associated ankylosaurian skeletons and thousands of isolated bones and teeth discovered from the Santonian Iharkút vertebrate locality, western Hungary. Collected from an area of 600 m2 and from a single bone bed, this material is one of the richest ankylosaurian accumulation worldwide. The 12 skeletons are not monospecific but mostly based on the pelvic armour composition: six of them are from Hungarosaurus, two are referred to Struthiosaurus and four can be assigned to Nodosauridae indet. Sedimentological and taphonomical examinations revealed a single mass mortality event as the cause of the death and accumulation of these quadruped animals that are described here. The ankylosaur assemblage from Iharkút suggests at least a temporarily gregarious behaviour of these animals and also shows that Hungarosaurus and Struthiosaurus might live in the same moist habitat or at least preferred relatively close environments.

Keywords

Hungarosaurus Struthiosaurus Mass death assemblage Bone mapping Late Cretaceous Hungary 

Notes

Acknowledgements

We are grateful to Xabier Pereda-Suberbiola and James Kirkland for their constructive comments that greatly improved the manuscript. We thank R. Kalmár (Hungarian Natural History Museum, Budapest) for technical assistance both on the field and in the collection. We thank Péter Gulyás for the preparation of many of the specimens, and János Magyar and Márton Szabó for taking photographs. We thank the 2001–2016 field crews for their assistance in the fieldwork. We are grateful to the Bakony Bauxite Mines and to Geovolán Zrt. for their logistic help.

Funding information

Field and laboratory work was supported by the Hungarian Natural History Museum, the National Geographic Society (Grant nos. 7228-02, 7508-03) and the Hungarian Scientific Research Fund (OTKA T-38045, PD 73021, NF 84193). This project was supported by the National Research, Development and Innovation Office (Grant no. NKFIH, 116665); Lendület Program of the Hungarian Academy of Sciences (Grant no. 95102); the Jurassic Foundation; the Hungarian Dinosaur Foundation; the ÚNKP-17-3 New National Excellence Program of the Ministry of Human Capacities (Grant no. ELTE/12422/16); and the Sepkoski Grants for 2018 of Paleontological Society International Research Program (PalSIRP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12549_2018_362_MOESM1_ESM.pdf (1.6 mb)
Supplementary Data 1 Bone maps of the ankylosaur skeletons discovered in Iharkút, Hungary. From the 12th skeleton no bone map could have drawn due to technical and logistical problems. (PDF 1600 kb)
12549_2018_362_MOESM2_ESM.xls (53 kb)
Supplementary Data 2 Skeletal completeness data of the ankylosaur skeletons discovered from the Iharkút locality. (XLS 53 kb)

References

  1. Albert, G., Botfalvai, G., & Ősi, A. (2017). Making high resolution 3D model of a bonebed from GPS data to assist taphonomical analyses—case study of the Santonian vertebrate site of Iharkút (Hungary). Vienna, Austria: 8th International Meeting on taphonomy and Fossilization, Abstract Book, 36 pp.Google Scholar
  2. Arbour, V. M., & Mallon, J. C. (2017). Unusual cranial and postcranial anatomy int he archetypal ankylosaur Ankylosaurus magniventris. FACETS, 2, 764–794.  https://doi.org/10.1139/facets-2017-0063.CrossRefGoogle Scholar
  3. Arbour, V. M., Burns, M. E., Bell, P. R., & Currie, P. J. (2014). Epidermal and dermal integumentary structures of ankylosaurian dinosaurs. Journal of Morphology, 275, 39–50.  https://doi.org/10.1002/jmor.20194.CrossRefGoogle Scholar
  4. Arbour, V. M., Zanno, L. E., & Gates, T. (2016). Ankylosaurian dinosaur palaeoenvironmental associations were influenced by extirpation, sea-level fluctuation, and geodispersal. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 289–299.  https://doi.org/10.1016/j.palaeo.2016.02.033.CrossRefGoogle Scholar
  5. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology, 146(10), 1–106.Google Scholar
  6. Behrensmeyer, A. K. (1991). Terrestrial vertebrate accumulations. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: releasing the data locked in the fossil record (pp. 291–335). New York: Plenum Press.CrossRefGoogle Scholar
  7. Blows, W. T. (1982). A preliminary account of a new specimen Polacanthus foxi (Ankylosauria, Reptilia) from the Wealden of the Isle of Wight. Proceedings of the Isle of Wight Natural History and Archaeological Society, 7(5), 303–306.Google Scholar
  8. Blows, W. T. (1987). The armoured dinosaur Polacanthus foxi from the Lower Cretaceous of the Isle of Wight. Palaeontology, 30(3), 557–580.Google Scholar
  9. Blows, W. T. (1996). A new species of Polacanthus (Ornithischia: Ankylosauria) from the Lower Cretaceous of Sussex, England. Geological Magazine, 133(6), 671–682.  https://doi.org/10.1017/S0016756800024535.CrossRefGoogle Scholar
  10. Blows, W. T. (2015). British Polacanthid dinosaurs—observations on the history and palaeontology of the UK Polacanthid armoured dinosaurs and their relatives. Siri Scientific Press. 220 pp.Google Scholar
  11. Bodor, E., & Baranyi, V. (2012). Palynomorphs of the Normapolles group and related plant mesofossils from the Iharkút vertebrate site, Bakony Mountains (Hungary). Central European Geology, 55, 259–292.  https://doi.org/10.1556/CEuGeol.55.2012.3.3.CrossRefGoogle Scholar
  12. Bodrogi, I., Fogarasi, A., Yazikova, E. A., Sztanó, O., & Báldi-Beke, M. (1998). Upper Cretaceous of the Bakony Mts. (Hungary): sedimentology, biostratigraphy, correlation. Zentralblatt für Geologie und Paläontologie, 1(11/12), 1179–1194.Google Scholar
  13. Botfalvai, G., & Ősi, A. (2017). Ankylosaur mass death assemblage from the Late Cretaceous of Iharkut (Hungary) and its effect on an ancient river ecosystem. In M. Zuschin, M. Harzhauser, S. Mayrhofer (Eds.), 8th Internacional meeting on taphonomy and fossilization (Taphos 2017) (pp. 36–37). Vienna, Austria. 14–17 September 2017.Google Scholar
  14. Botfalvai, G., Ősi, A., & Mindszenty, A. (2015). Taphonomic and paleoecologic investigations of the Late Cretaceous (Santonian) Iharkút vertebrate assemblage (Bakony Mts, northwestern Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 379–405.  https://doi.org/10.1016/j.palaeo.2014.09.032.CrossRefGoogle Scholar
  15. Botfalvai, G., Haas, J., Mindszenty, A., & Ősi, A. (2016). Facies architecture and paleoenvironmental implications of the Upper Cretaceous (Santonian) Csehbánya Formation at the Iharkút vertebrate locality (Bakony Mountains, northwestern Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 659–678.  https://doi.org/10.1016/j.palaeo.2015.10.018.CrossRefGoogle Scholar
  16. Botfalvai, G., Csiki-Sava, Z., Grigorescu, D., & Vasile, S. (2017). Taphonomical and palaeoecological investigation of the Late Cretaceous (Maastrichtian) Tuştea vertebrate assemblage (Romania; Haţeg Basin)—insights into a unique dinosaur nesting locality. Palaeogeography, Palaeoclimatology, Palaeoecology, 468, 228–262.  https://doi.org/10.1016/j.palaeo.2016.12.003.CrossRefGoogle Scholar
  17. Brand, L., Hussey, M., & Taylor, J. (2003). Taphonomy of freshwater turtles: decay and disarticulation in controlled experiments. Journal of Taphonomy, 1, 233–245.Google Scholar
  18. Bunzel, E. (1871). Die Reptilfauna der Gosauformation in der Neuen Welt bei Weiner-Neustadt. Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, 5, 1–18.Google Scholar
  19. Burns, M. E. (2008). Taxonomic utility of ankylosaur (Dinosauria, Ornithischia) osteoderms: Glyptodontopelta mimus Ford, 2000: a test case. Journal of Vertebrate Paleontology, 28, 1102–1109.  https://doi.org/10.1671/0272-4634-28.4.1102.CrossRefGoogle Scholar
  20. Burns, M. E., & Currie, P. J. (2014). External and internal structure of ankylosaur (Dinosauria, Ornithischia) osteoderms and their systematic relevance. Journal of Vertebrate Paleontology, 34, 835–851.  https://doi.org/10.1080/02724634.2014.840309.CrossRefGoogle Scholar
  21. Burns, M. E., Currie, P. J., Sissons, R. L., & Arbour, V. M. (2011). Juvenile specimens of Pinacosaurus grangeri Gilmore, 1933 (Ornithischia: Ankylosauria) from the Late Cretaceous of China, with comments on the specific taxonomy of Pinacosaurus. Cretaceous Research, 32, 174–186.  https://doi.org/10.1016/j.cretres.2010.11.007.CrossRefGoogle Scholar
  22. Cambra-Moo, O., & Buscalioni, A. D. (2003). Biostratinomic patterns in archosaur fossils: influence of morphological organization on dispersal. Journal of Taphonomy, 1(4), 247–275.Google Scholar
  23. Cameron, A. C., & Oxenham, M. (2012). Disarticulation sequences and scattering patterns in temperate southeastern Australia. Australian Journal of Forensic Sciences, 44(2), 197–211.  https://doi.org/10.1080/00450618.2011.650206.CrossRefGoogle Scholar
  24. Capaldo, S. D., & Peters, C. R. (1995). Skeletal inventories from wildebeest drownings at lakes Masek and Ndutu in the Serengeti ecosystem of Tanzania. Journal of Archaeological Science, 22(3), 385–408.  https://doi.org/10.1006/jasc.1995.0039.CrossRefGoogle Scholar
  25. Carpenter, K. (2001). Skull of the polacanthid ankylosaur Hylaeosaurus armatus Mantell, 1833, from the Lower Cretaceous of England. In K. Carpenter (Ed.), The armored dinosaurs (pp. 169–172). Bloomington: Indiana University Press.Google Scholar
  26. Carpenter, K., Kirkland, J. I., Burge, D., & Bird, J. (2001). Disarticulated skull of a new primitive ankylosaurid from the Lower Cretaceous of eastern Utah. In K. Carpenter (Ed.), The armored dinosaurs (pp. 211–238). Bloomington: IndianaUniversity Press.Google Scholar
  27. Coard, R., & Dennell, R. W. (1995). Taphonomy of some articulated skeletal remains: transport potential in an artificial environment. Journal of Archaeological Science, 22(3), 441–448.  https://doi.org/10.1006/jasc.1995.0043.CrossRefGoogle Scholar
  28. Company, J. (2004). Vertebrados continentales del Cretácico Superior (Campaniense–Maastrichtiense) de Valencia. Tesis doctoral, Universidad de Valencia Spain, 410 pp. (unpublished).Google Scholar
  29. Davis, P. G., & Briggs, D. E. G. (1998). The impact of decay and disarticulation on the preservation of fossil birds. Palaios, 13(1), 3–13.  https://doi.org/10.1043/0883-1351(1998)013<0003:TIODAD>2.0.CO;2.CrossRefGoogle Scholar
  30. Dodson, P. (1971). Sedimentology and taphonomy of the Oldman Formation (Campanian), Dinosaur Provincial Park, Alberta (Canada). Palaeogeography, Palaeoclimatology, Palaeoecology, 10(1), 21–74.  https://doi.org/10.1016/0031-0182(71)90044-7.CrossRefGoogle Scholar
  31. Eberth, D. A. (2015). Origins of dinosaur bonebeds in the Cretaceous of Alberta, Canada. Canadian Journal of Earth Sciences, 52(8), 655–681.  https://doi.org/10.1139/cjes-2014-0200.CrossRefGoogle Scholar
  32. Evans, D. C., Eberth, D. A., & Ryan, M. J. (2015). Hadrosaurid (Edmontosaurus) bonebeds from the Horseshoe Canyon Formation (Horsethief Member) at Drumheller, Alberta, Canada: geology, preliminary taphonomy, and significance. Canadian Journal of Earth Science, 52(8), 642–654.  https://doi.org/10.1139/cjes-2014-0184.CrossRefGoogle Scholar
  33. Fiorillo, A. R., Padian, K., & Musikasinthorn, C. (2000). Taphonomy and depositional setting of the Placerias quarry (Chinle Formation: Late Triassic, Arizona). Palaios, 15(5), 373–386.  https://doi.org/10.1669/0883-1351(2000)015<0373:TADSOT>2.0.CO;2.CrossRefGoogle Scholar
  34. Frostic, L., & Reid, I. (1983). Taphonomic significance of sub-aerial transport of vertebrate fossils on steep semi-arid slopes. Lethaia, 16(2), 157–164.  https://doi.org/10.1111/j.1502-3931.1983.tb01711.x.CrossRefGoogle Scholar
  35. Garcia, G., & Pereda-Suberbiola, X. (2003). A new species of Struthiosaurus (Dinosauria: Ankylosauria) from the Upper Cretaceous of Villeveyrac (southern France). Journal of Vertebrate Paleontology, 23, 156–165. https://doi.org/10.1671/0272-4634(2003)23[156:ANSOSD]2.0.CO;2.Google Scholar
  36. Haynes, G. (1980). Prey bones and predators: potential ecologic information from analysis of bone sites. Ossa, 7, 75–97.Google Scholar
  37. Hill, A. (1979). Disarticulation and scattering of mammal skeletons. Paleobiology, 5(3), 261–274.  https://doi.org/10.1017/S0094837300006552.CrossRefGoogle Scholar
  38. Hill, A., & Behrensmeyer, A. K. (1984). Disarticulation patterns of some modern East African mammals. Paleobiology, 10(3), 366–376.  https://doi.org/10.1017/S0094837300008332.CrossRefGoogle Scholar
  39. Hill, R. V., Witmer, L. M., & Norell, M. A. (2003). A new specimen of Pinacosaurus grangeri (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia: ontogeny and phylogeny of ankylosaurs. American Museum Novitates, 3395, 1–29.  https://doi.org/10.1206/0003-0082(2003)395<0001:ANSOPG>2.0.CO;2.CrossRefGoogle Scholar
  40. Holz, M., & Barberena, M. C. (1994). Taphonomy of the south Brazilian Triassic paleoherpetofauna: pattern of death, transport and burial. Palaeogeography, Palaeoclimatology, Palaeoecology, 107(1–2), 179–197.  https://doi.org/10.1016/0031-0182(94)90170-8.CrossRefGoogle Scholar
  41. Hulke, J. W. (1882). Polacanthus foxii, a large undescribed dinosaur from the Wealden Formation in the Isle of Wight. Philosophical Transactions of the Royal Society of London, 172, 653–662.  https://doi.org/10.1098/rstl.1881.0015.CrossRefGoogle Scholar
  42. Hulke, J. W. (1888). Supplemental note on Polacanthus foxii, describing the dorsal shield and some parts of the endoskeleton, imperfectly known in 1881. Philosophical Transactions of the Royal Society of London, 178, 169–172.Google Scholar
  43. Kahlke, R. D., & Gaudzinski, S. (2005). The blessing of a great flood: differentiation of mortality patterns in the large mammal record of the Lower Pleistocene fluvial site of Untermassfeld (Germany) and its relevance for the interpretation of faunal assemblages from archaeological sites. Journal of Archaeological Science, 32(8), 1202–1222.  https://doi.org/10.1016/j.jas.2005.03.004.CrossRefGoogle Scholar
  44. Kinneer, B., Carpenter, K., & Shaw, A. (2016). Redescription of Gastonia burgei (Dinosauria: Ankylosauria, Polacanthidae), and description of a new species. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 282(1), 37–80.  https://doi.org/10.1127/njgpa/2016/0605.CrossRefGoogle Scholar
  45. Kirkland, J. I. (1998). A polacanthine ankylosaur (Ornithischia: Dinosauria) from the Early Cretaceous (Barremian) of eastern Utah. New Mexico Museum of Natural History and Science Bulletin, 14, 271–281.Google Scholar
  46. Kirkland, J. I., Alcalá, L., Loewen, M. A., Espílez, E., Mampei, L., & Wiersma, J. P. (2013). The basal nodosaurid Europelta carbonensis n. gen., n. sp. from the Lower Cretaceous (Lower Albian) Escucha Formation of northeastern Spain. PLoS One, 8(12), 1–40.  https://doi.org/10.1371/journal.pone.0080405.CrossRefGoogle Scholar
  47. Mantell, G. A. (1833). The geology of the south-east of England. London: Longman Ltd. 415 pp.  https://doi.org/10.5962/bhl.title.106921.CrossRefGoogle Scholar
  48. Mantell, G. A. (1841). Memoir on a portion of the lower jaw of the Iguanodon, and on the remains of the Hylaeosaurus and other saurians, discovered in the strata of the Tilgate Forest, in Sussex. Philosophical Transactions of the Royal Society of London, 131, 131–151.CrossRefGoogle Scholar
  49. Marsh, O. C. (1889). Notice of gigantic horned Dinosauria from the Cretaceous. American Journal of Science, 39, 418–426.  https://doi.org/10.2475/ajs.s3-38.224.173.CrossRefGoogle Scholar
  50. Marsh, C. O. (1890). Additional characters of the Ceratopsidae with notice of new Cretaceous dinosaurus. American Journal of Science, 39, 418–426.CrossRefGoogle Scholar
  51. Müller, R. T., de Araújo-Júnior, H. I., Aires, A. S. S., Roberto-da-Silva, L., & Dias-da-Silva, S. (2015). Biogenic control on the origin of a vertebrate monotypic accumulation from the Late Triassic of southern Brazil. Geobios, 48, 331–340.  https://doi.org/10.1016/j.geobios.2015.05.001.CrossRefGoogle Scholar
  52. Naish, D., & Martill, D. M. (2001). Armoured dinosaurs: thyreophorans. In D. M. Martill & D. Naish (Eds.), Dinosaurs of the Isle of Wight (pp. 147–184). London: Palaeontological Association.Google Scholar
  53. Nasti, A. (2005). Dragging and scattering of camelid bones by fluvial action in the Real Grande Gorge, Province of Catamarca, Southern Argentinean Puna. Journal of Taphonomy, 3(4), 173–183.Google Scholar
  54. Nopcsa, F. (1915). Die Dinosaurier der Siebenbürgischen Landesteile Ungarns. Mitteilungen aus dem Jahrbuch der königlichen Ungarischen Geologischen Reichsanstalt Budapest, 23(1), 1–24.Google Scholar
  55. Nopcsa, F. (1929). Dinosaurierreste aus Siebenbürgen. V. Geologica Hungarica. Series Palaeontologica, 4, 1–76.Google Scholar
  56. Osborn, H. F. (1923). Two Lower Cretaceous dinosaurs from Mongolia. American Museum Novitates, 95, 110.Google Scholar
  57. Ősi, A. (2005). Hungarosaurus tormai, a new ankylosaur (Dinosauria) from the Upper Cretaceous of Hungary. Journal of Vertebrate Paleontology, 25(2), 370–383.CrossRefGoogle Scholar
  58. Ősi, A. (2015). The European ankylosaur record: a review. Hantkeniana, 10, 89–106.Google Scholar
  59. Ősi, A., & Makádi, L. (2009). New remains of Hungarosaurus tormai (Ankylosauria, Dinosauria) from the Upper Cretaceous of Hungary: skeletal reconstruction and body mass estimation. Paläontologische Zeitschrift, 83, 227–245.CrossRefGoogle Scholar
  60. Ősi, A., & Pereda-Suberbiola, X. (2017). Notes on the pelvic armor of European ankylosaurs (Dinosauria: Ornithischia). Cretaceous Research, 75, 11–22.  https://doi.org/10.1016/j.cretres.2017.03.007.CrossRefGoogle Scholar
  61. Ősi, A., & Prondvai, E. (2013). Sympatry of two ankylosaurs (Hungarosaurus and cf. Struthiosaurus) in the Santonian of Hungary. Cretaceous Research, 75, 11–22.  https://doi.org/10.1016/j.cretres.2013.03.006.CrossRefGoogle Scholar
  62. Ősi, A., & Rudolf, J. (2017). Systematics of Late Cretaceous European ankylosaurs: the importance of the dermal armour. Birmingham, UK: Abstract volume of the 65th symposium on vertebrate palaeontology and comparative anatomy. 72 pp.Google Scholar
  63. Ősi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., & Gulyás, P. (2012). The Late Cretaceous continental vertebrate fauna from Iharkút (western Hungary): a review. In P. Godefroit (Ed.), Bernissart Dinosaurs and Early Cretaceous terrestrial ecosystems (532–569 pp). Bloomington: Indiana University Press.Google Scholar
  64. Ősi, A., Pereda-Suberbiola, X., & Földes, T. (2014a). Partial skull and endocranial cast of the ankylosaurian dinosaur Hungarosaurus from the Late Cretaceous of Hungary: implications for locomotion. Palaeontologia Electronica http://palaeo-electronica.org/content/pdfs/405.pdf.
  65. Ősi, A., Barrett, P., Földes, T., & Tokai, R. (2014b). Wear pattern, dental function, and jaw mechanism in the Late Cretaceous ankylosaur Hungarosaurus. The Anatomical Record, 297, 1165–1180.  https://doi.org/10.1002/ar.22910.CrossRefGoogle Scholar
  66. Ősi, A., Prondvai, E., & Csiki-Sava, Z. (2014c). New ankylosaurian material from the Upper Cretaceous of Transylvania. Annales de Paléontologie, 100, 257–271.  https://doi.org/10.1016/j.annpal.2014.02.001.CrossRefGoogle Scholar
  67. Ősi, A., Bodor, E. R., Makádi, L., & Rabi, M. (2016a). Vertebrate remains from the Upper Cretaceous (Santonian) Ajka Coal Formation, western Hungary. Cretaceous Research, 57, 228–238.  https://doi.org/10.1016/j.cretres.2015.04.014.CrossRefGoogle Scholar
  68. Ősi, A., Prondvai, E., Mallon, J., & Bodor, E. R. (2016b). Diversity and convergences in the evolution of feeding adaptations in ankylosaurs (Dinosauria: Ornithischia). Historical Biology, 29(4), 539–570.  https://doi.org/10.1080/08912963.2016.1208194.CrossRefGoogle Scholar
  69. Owen, R. (1842). Report on British fossil reptiles, part II. Report of the British Association for the Advancement of Science, 11, 60–204.Google Scholar
  70. Owen, R. (1858). Monograph on the fossil Reptilia of the Wealden and Purbeck formations—part IV. Dinosauria (Hylaeosaurus). Wealden: The Palaeontological Society London 8–26 pp.Google Scholar
  71. Owen, R. (1865). The Reptilia of the Liassic formations, part III. Monograph of the Palaeontographical Society. 1–40 pp.Google Scholar
  72. Pereda-Suberbiola, X. (1992). A revised census of European Late Cretaceous nodosaurids (Ornithischia: Ankylosauria): last occurrence and possible extinction scenarios. Terra Nova, 4(6), 641–648.  https://doi.org/10.1111/j.1365-3121.1992.tb00613.x.CrossRefGoogle Scholar
  73. Pereda-Suberbiola, X. (1993a). Hylaeosaurus, Polacanthus, and the systematics and stratigraphy of Wealden armoured dinosaurs. Geological Magazine, 130(6), 767–781.  https://doi.org/10.1017/S0016756800023141.CrossRefGoogle Scholar
  74. Pereda-Suberbiola, X. (1993b). Un dinosaure cuirassé (Ornithischia, Ankylosauria) dans le Crétacé supérieur de Laño (Bassin Basco-Cantabrique). Paleontologia i Evolució, 26–27, 231–235.Google Scholar
  75. Pereda-Suberbiola, X. (1994). Polacanthus (Ornithischia, Ankylosauria), a transatlantic armoured dinosaur from the Early Cretaceous of Europe and North America. Palaeontographica Abteilung A, 232, 133–159.Google Scholar
  76. Pereda-Suberbiola, X. (1999). Ankylosaurian dinosaur remains from the Upper Cretaceous of Laño (Iberian Peninsula). Estudios del Museo de Ciencias Naturales de Alava, 14(1), 273–288.Google Scholar
  77. Pereda-Suberbiola, X., & Galton, P. M. (1994). A revision of the cranial features of the dinosaur Struthiosaurus austriacus Bunzel (Ornithischia: Ankylosauria) from the Late Cretaceous of Europe. Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen, 191(3), 173–200.Google Scholar
  78. Pereda-Suberbiola, X., & Galton, P. M. (2001). Reappraisal of the nodosaurid ankylosaur Struthiosaurus austriacus Bunzel from the Upper Cretaceous Gosau beds of Austria. In K. Carpenter (Ed.), The armored dinosaurs (pp. 173–210). Bloomington: Indiana University Press.Google Scholar
  79. Prondvai, E., Botfalvai, G., Stein, K., Szentesi, Z., & Ősi, A. (2017). Collection of the thinnest: a unique eggshell assemblage from the Late Cretaceous vertebrate locality of Iharkút (Hungary). Central European Geology, 60(1), 73–133.  https://doi.org/10.1556/24.60.2017.004.CrossRefGoogle Scholar
  80. Rogers, R. R., & Kidwell, S. M. (2007). A conceptual framework for the genesis and analysis of vertebrate skeletal concentrations. In R. R. Rogers, D. A. Eberth, & A. R. Fiorillo (Eds.), Bonebeds: genesis, analysis, and paleobiological significance (pp. 1–61). Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  81. Ryan, M. J., Russel, A. P., Eberth, D. A., & Currie, P. J. (2001). The taphonomy of a centrosaurus (Ornithischia: Certopsidae) bone bed from the Dinosaur Park Formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny. Palaios, 16(5), 482–506.  https://doi.org/10.1669/0883-1351(2001)016<0482:TTOACO>2.0.CO;2.CrossRefGoogle Scholar
  82. Seeley, H. G. (1881). The reptile fauna of the Gosau Formation preserved in the Geological Museum of the University of Vienna. Quarterly Journal of the Geological Society of London, 37(148), 620–707.  https://doi.org/10.1144/GSL.JGS.1881.037.01-04.49.CrossRefGoogle Scholar
  83. Segesdi, M., Botfalvai, G., Bodor, E. R., Ősi, A., Buczkó, K., Dallos, Z., Tokai, R., & Földes, T. (2017). First report on vertebrate coprolites from the Upper Cretaceous (Santonian) Csehbánya Formation of Iharkút, Hungary. Cretaceous Research, 74, 87–99.  https://doi.org/10.1016/j.cretres.2017.02.010.CrossRefGoogle Scholar
  84. Siegel-Farkas, A., & Wagreich, M. (1996). Age and palaeoenvironment of the spherulite-bearing Polány Marl Formation (Late Cretaceous, Hungary) on the basis of palynological and nannoplankton investigations. Acta Biolgica Szegediensis, 35, 23–36.Google Scholar
  85. Subalusky, A. L., Dutton, C. L., Rosi, E. J., & Post, D. M. (2017). Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7647–7652.  https://doi.org/10.1073/pnas.1614778114.CrossRefGoogle Scholar
  86. Tooth, H. (1965). Sequence of disarticulation in mammalian skeletons. Rocky Mountain Geology, 4(1), 37–39.Google Scholar
  87. Vickaryous, M. K., Maryanska, T., & Weishampel, D. B. (2004). Ankylosauria. In D. B. Weishampel, P. Dodson, & H. Osmólska (Eds.), The Dinosauria, second edition (pp. 363–392). Berkeley: University of California Press.Google Scholar
  88. Weigelt, J. (1989). Recent vertebrate carcass and their archaeological implications (pp. 1–198). Chicago: University of Chicago Press.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Attila Ősi
    • 1
    • 2
    Email author
  • Gábor Botfalvai
    • 2
    • 3
  • Gáspár Albert
    • 4
  • Zsófia Hajdu
    • 5
  1. 1.Department of PaleontologyEötvös UniversityBudapestHungary
  2. 2.Hungarian Natural History MuseumBudapestHungary
  3. 3.Department of Physical and Applied GeologyEötvös UniversityBudapestHungary
  4. 4.Department of Cartography and GeoinformaticsEötvös UniversityBudapestHungary
  5. 5.MTA–ELTE Lendület Dinosaur Research GroupBudapestHungary

Personalised recommendations