Advertisement

Fire in the paradise: evidence of repeated palaeo-wildfires from the Araripe Fossil Lagerstätte (Araripe Basin, Aptian-Albian), Northeast Brazil

  • Flaviana Jorge de LimaEmail author
  • Etiene Fabbrin Pires
  • André Jasper
  • Dieter Uhl
  • Antônio Álamo Feitosa Saraiva
  • Juliana Manso Sayão
Original Paper
  • 99 Downloads

Abstract

Reports on Cretaceous charcoals are relatively common on a global scale and have been increasing in recent years. Fossil charcoal from the Early Cretaceous mostly belongs to conifers (and other gymnosperms) and ferns whereas angiosperms become more common only during the Late Cretaceous. However, so far, reports of Cretaceous macroscopic charcoal are rare (three) for South America. Here, charcoal is identified from the Crato, Ipubi and Romualdo formations of the Early Cretaceous Santana Group within the Araripe Basin, Brazil. The presence of charcoal provides for the first time compelling evidence for the repeated occurrence of Early Cretaceous palaeo-wildfires in this region. The charred wood remains were identified as belonging to gymnosperms, which were important components of the palaeoflora during the Cretaceous in Northeast Brazil. The results presented here provide additional evidence for the occurrence of palaeo-wildfires in Northern Gondwana during the Early Cretaceous, increasing our understanding for the relevance of such events and their influence on palaeoenvironmental dynamics.

Keywords

Charcoal Wildfires Cretaceous Crato Formation Ipubi Formation Romualdo Formation 

Notes

Acknowledgements

A. Jasper and D. Uhl acknowledge CAPES (Brazil, 8107-14-9; A072/2013), CNPq (305436/2015-5) and Alexander von Humboldt Foundation (Germany BRA 1137359 STPCAPES). We would also like to thank the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for the research in the region. We thank Renan Bantim for helping with the images. Last but not least, we thank the careful reviews by Prof. Dr. Rose Prevec and an anonymous reviewer.

Funding information

This study was financially supported by the Programa de Pós-Graduação em Geociências, Universidade Federal de Pernambuco (UFPE), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants FJL #142390/2013-5; JMS CNPq proc. N. 310799/2014-7; 458164/2014-3; 444330/2014-3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Refences

  1. Abu Hamad, A. M. B., Amireh, B., El Atfy, H., Jasper, A., & Uhl, D. (2016). Fire in a Weichselia-dominated coastal ecosystem from the Early Cretaceous (Barremian) of the Kurnub Group in NW Jordan. Cretaceous Research, 66, 82–93.  https://doi.org/10.1016/j.cretres.2016.06.001.CrossRefGoogle Scholar
  2. Assine, M. L. (1992). Análise estratigráfica da Bacia do Araripe, Nordeste do Brasil. Revista Brasileira de Geociencias, 22, 289–300.CrossRefGoogle Scholar
  3. Assine, M. L. (2007). Bacia do Araripe. Boletim de Geociências da Petrobras, 15, 371–389.Google Scholar
  4. Baez, A. M., Moura, G. J. B., & Batten, R. G. (2009). Anurans from the Lower Cretaceous Crato Formation of northeastern Brazil: implications for the early divergence of neobatrachians. Cretaceous Research, 30, 829–846.  https://doi.org/10.1016/j.cretres.2009.01.002.CrossRefGoogle Scholar
  5. Bantim, R. A. M., Saraiva, A. A. F., Oliveira, G. R., & Sayão, J. M. (2014). A new toothed pterosaur (Pterodactyloidea: Anhangueridae) from the Early Cretaceous Romualdo Formation, NE Brazil. Zootaxa, 3869, 201–223.  https://doi.org/10.11646/zootaxa.3869.3.1.CrossRefGoogle Scholar
  6. Belcher, C.M. (2013). Fire phenomena and the earth system: an interdisciplinary guide to fire science. Chichester: John Wiley & Sons, Ltd., 333p.  https://doi.org/10.1002/9781118529539.
  7. Belcher, C. M., & Hudspith, V. A. (2017). Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytologist, 321, 1197–1200.  https://doi.org/10.1111/nph.14264.CrossRefGoogle Scholar
  8. Bergman, N. M., Lenton, T. M., & Watson, A. J. (2004). COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science, 304, 397–437.  https://doi.org/10.2475/ajs.304.5.397.CrossRefGoogle Scholar
  9. Bernardes-de-Oliveira, M.E.C., Dilcher, D., Barreto, A.M.F., Branco, F.R., Mohr, B., & Fernandes, M.C.C (2003). La Flora del Miembro Crato, Formación Santana, Cretácico Temprano de la Cuenca de Araripe, Noreste del Brasil. 10 Congreso Geológico Chileno, Concepción. Actas, p. s/n-s/n.Google Scholar
  10. Berner, R. A. (2009). Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. American Journal of Science, 309, 603–606.  https://doi.org/10.2475/07.2009.03.CrossRefGoogle Scholar
  11. Berthou, P. Y., Depeche, F., Colin, J. P., Filgueira, J. B. M., & Teles, M. S. L. (1994). New data on the ostracods from Crato lithologic units (lower member of the Santana Formation, Latest Aptian-Lower Albian) of the Araripe Basin (Northeastern Brazil). Acta Geologica Leopoldensia, 39(2), 539–554.Google Scholar
  12. Beurlen, K. (1971). As condições ecológicas e faciológicas da Formação Santana na Chapada do Araripe (Nordeste do Brasil). Anais da Academia Brasileira de Ciências, 43, 411–415.Google Scholar
  13. Bond, W. J., & Midgley, G. F. (2012). Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society Biological Sciences, 367, 601–612.  https://doi.org/10.1098/rstb.2011.0182.CrossRefGoogle Scholar
  14. Bond, W. J., & Scott, A. C. (2010). Fire and the spread of flowering plants in the cretaceous. New Phytologist, 188, 1137–1150  https://doi.org/10.1111/j.1469-8137.2010.03418.x.CrossRefGoogle Scholar
  15. Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., & Pyne, S. J. (2009). Fire in the earth system. Science, 324, 481–484.  https://doi.org/10.1126/science.1163886.CrossRefGoogle Scholar
  16. Brown, S. A. E., Scott, A. C., Glasspool, I. J., & Collinson, M. E. (2012). Cretaceous wildfires and their impact on the earth system. Cretaceous Research, 36, 162–190.  https://doi.org/10.1016/j.cretres.2012.02.008.CrossRefGoogle Scholar
  17. Carvalho, I. S., & Viana, M. S. S. (1993). Os conchostráceos da Bacia do Araripe. Anais da Academia Brasileira de Ciências, 65(2), 181–188.Google Scholar
  18. Carvalho, I. S., Novas, F. E., Agnolín, F. L., Isasi, M. P., Freitas, F. I., & Andrade, J. A. (2015). A Mesozoic bird from Gondwana preserving feathers. Nature Communications, 6, 7141.  https://doi.org/10.1038/ncomms8141.CrossRefGoogle Scholar
  19. Castro-Leal, M. E., & Brito, P. M. (2004). The ichthyodectiform Cladocyclus gardneri (Actinopterygii: Teleostei) from the Crato and Santana formations, Lower Cretaceous of Araripe Basin, north-eastern Brazil. Annales de Paléontologie, 90, 103–113.  https://doi.org/10.1016/j.annpal.2004.01.001.CrossRefGoogle Scholar
  20. Chaloner, W. G., & Creber, G. T. (1990). Do fossil plants give a climatic signal? Journal of the Geological Society, 147, 343–350.  https://doi.org/10.1144/gsjgs.147.2.0343.CrossRefGoogle Scholar
  21. Coimbra, J. C., Arai, M., & Carreño, A. L. (2002). Biostratigraphy of Lower Cretaceous microfossils from the Araripe Basin, northeastern Brazil. Geobios, 35, 687–698.  https://doi.org/10.1016/s0016-6995(02)00082-7.CrossRefGoogle Scholar
  22. Collinson, M. E., Featherstone, C., Cripps, J. A., Nichols, G. J., & Scott, A. C. (1999). Charcoal-rich plant debris accumulations in the Lower Cretaceous of the Isle of Wight, England. Acta Palaeobotanica, 2, 93–105.Google Scholar
  23. Crane, P. R., & Maisey, J. G. (1991). Fossil plants. In J. G. Maisey (Ed.), Santana fossils: an illustrated atlas (pp. 414–419). Neptune City: T.F.H. Publications.Google Scholar
  24. Custódio, M. A., Quaglio, F., Warren, L. V., Simões, M. G., Fürsich, F. T., Perinotto, J. A., & Assine, M. L. (2017). The transgressive-regressive cycle of the Romualdo Formation (Araripe Basin): sedimentary archive of the Early Cretaceous marine ingression in the interior of Northeast Brazil. Sedimentary Geology, 359, 1–15.  https://doi.org/10.1016/j.sedgeo.2017.07.010.CrossRefGoogle Scholar
  25. Dos Santos, A. C. S., Holanda, E. C., de Souza, V., Guerra-Sommer, M., Manfroi, J., Uhl, D., & Jasper, A. (2016). Evidence of palaeo-wildfire from the upper Lower Cretaceous (Serra do Tucano formation, Aptian-Albian) of Roraima (North Brazil). Cretaceous Research, 57, 46–49.  https://doi.org/10.1016/j.cretres.2015.08.003.CrossRefGoogle Scholar
  26. Duarte, L. (1985). Vegetais fósseis da Chapada do Araripe, Brasil. Coletânea de Trabalhos Paleontológicos, DNPM, 27, 585–617.Google Scholar
  27. El Atfy, H. A., Sallam, H., Jasper, A., & Uhl, D. (2016). The first evidence of palaeo-wildfire from the Campanian (Late Cretaceous) of North Africa. Cretaceous Research, 57, 306–310.  https://doi.org/10.1016/j.cretres.2015.09.012.CrossRefGoogle Scholar
  28. Falcon-Lang, H. J., Kvaček, J., & Ulicny, D. (2001). Fire-prone plant communities and palaeoclimate of a Late Cretaceous fluvial to estuarine environment, Pecínov quarry, Czech Republic. Geological Magazine, 138, 563–576.  https://doi.org/10.1017/s0016756801005714.CrossRefGoogle Scholar
  29. Fara, E., Saraiva, A. A. F., Campos, D. A., Moreira, J. K. R., Siebra, D. C., & Kellner, A. W. A. (2005). Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): stratigraphic, palaeo-environmental and palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 145–160.  https://doi.org/10.1016/j.palaeo.2004.12.012.CrossRefGoogle Scholar
  30. Figueiredo, R. G., & Kellner, A. W. A. (2009). A new crocodylomorph specimen from the Araripe Basin (Crato Member, Santana Formation), northeastern Brazil. Paläontologische Zeitschrift, 83, 323–331.  https://doi.org/10.1007/s12542-009-0016-6.CrossRefGoogle Scholar
  31. Francis, J. E., Ashworth, D. J., Cantill, J. A., Crame, J., How, R., Stephens, A.-M., & Tosolini, T. V. (2008). 100 million years of Antartic climate evolution: evidence from fossil plants. In A. K. Cooper (Ed.), Antartica: a keystone in a changing world (pp. 112–203). Washington: The National Academic Press.Google Scholar
  32. Freitas, L. C. B., Moura, G. J. B., & Saraiva, A. A. F. (2016). First occurrence and paleo-ecological implications of insects (Orthoptera: Ensifera Gryllidae) in the Romualdo Member of the Santana Formation, Eo-Cretaceous of the Araripe Basin. Anais da Academia Brasileira de Ciências, 88(4), 2113–2120.  https://doi.org/10.1590/0001-376520150375.CrossRefGoogle Scholar
  33. Frey, E., & Martill, D. M. (1994). A new pterosaur from the Crato Formation (Lower Cretaceous, Aptian) of Brazil. Neues Jahrbuch für Geologie und Paläontologie, 194, 379–412.Google Scholar
  34. Friis, E. M., Pedersen, K. R., & Crane, P. R. (2006). Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 251–293.  https://doi.org/10.1016/j.palaeo.2005.07.006.CrossRefGoogle Scholar
  35. Friis, E.M., Crane, P.R., & Pedersen, K.R. (2011). Early flowers and angiosperm evolution. Cambridge University Press, 585 p.  https://doi.org/10.1017/cbo9780511980206.
  36. Glasspool, I. J., & Scott, A. C. (2010). Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3, 627–630  https://doi.org/10.1038/ngeo923.CrossRefGoogle Scholar
  37. Harris, T. M. (1981). Burnt ferns from the English Wealden. Proceedings of the Geologists’ Association, 92, 47–58.  https://doi.org/10.1016/s0016-7878(81)80019-3.CrossRefGoogle Scholar
  38. Heimhofer, U., & Hochuli, P. A. (2010). Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Review of Palaeobotany and Palynology, 161, 105–126.  https://doi.org/10.1016/j.revpalbo.2010.03.010.CrossRefGoogle Scholar
  39. Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R., & Kobylinska, J. (1999). A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of the central Georgia, USA. Annals of the Missouri Botanical Garden, 86, 407–471.  https://doi.org/10.2307/2666182.CrossRefGoogle Scholar
  40. Hickey, L. J., & Doyle, J. A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review, 43(1), 1–102.CrossRefGoogle Scholar
  41. Hirayama, R. (1998). Oldest known sea turtle. Nature, 392, 705–708.  https://doi.org/10.1038/33669.CrossRefGoogle Scholar
  42. Jane, F. W. (1962). The structure of wood (427 pp). London: A&C. Black.Google Scholar
  43. Johnson, B. (1984). The great fire of Borneo (24 pp). Godalming, Surrey, U.K.: World Wild Life Fund.Google Scholar
  44. Jones, T. P., & Chaloner, W. G. (1991). Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 39–50.  https://doi.org/10.1016/0031-0182(91)90180-y.CrossRefGoogle Scholar
  45. Kellner, A. W. A. (2002). Membro Romualdo da Formação Santana, Chapada do Araripe, CE. Um dos mais importantes depósitos fossilíferos do Cretáceo brasileiro. In C. Schobbenhaus, D. A. Campos, E. T. Queiroz, M. Winge, & M. L. C. B. Born (Eds.), Sítios Geológicos e Paleontológicos do Brasil (pp. 121–130). DNPM/CPRM/SIGEP: Brasília.Google Scholar
  46. Kellner, A. W. A., & Campos, D. A. (1986). Primeiro registro de Amphibia (Anuro) no Cretáceo Inferior da Bacia do Araripe, Nordeste do Brasil. Anais da Academia Brasileira de Ciências, 58(4), 610.  https://doi.org/10.1016/0031-0182(91)90180-y.CrossRefGoogle Scholar
  47. Kellner, A. W. A., & Campos, D. A. (2000). Brief review of dinosaur studies and perspectives in Brazil. Anais da Academia Brasileira de Ciências, 72(4), 509–539.  https://doi.org/10.1590/s0001-37652000000400005.CrossRefGoogle Scholar
  48. Kellner, A. W. A., & Campos, D. A. (2007). Short note on the ingroup relationships of the Tapejaridae (Pterosauria, Pterodactyloidea). Boletim do Museu Nacional, 75, 1–14.Google Scholar
  49. Kellner, A. W. A., & Tomida, Y. (2000). Description of a new species of Anhangueridae (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation (Aptian-Albian), northeastern Brazil (p. 1–135). London: National Science Museum (Monographs 17).Google Scholar
  50. Komarek, E.V. (1973). Ancient fires. Proceedings 12th Annual Tall Timbers Fire Ecology Conference, pp. 219–24/t.Google Scholar
  51. Kubik, R., Uhl, D., & Marynowski, L. (2015). Evidence of wildfires during deposition of the Upper Silesian Keuper Succession, Southern Poland. Annales Societatis Geologorum Poloniae, 85, 685–696.  https://doi.org/10.14241/asgp.2014.009.CrossRefGoogle Scholar
  52. Lima, F. J., Saraiva, A. A. F., & Sayão, J. M. (2012). Revisão da paleoflora das formações Missão Velha, Crato e Romualdo, Bacia do Araripe, Nordeste do Brasil. Estudos Geológicos, 22, 99–115.  https://doi.org/10.18190/1980-8208/estudosgeologicos.v22n1p99-115.CrossRefGoogle Scholar
  53. Lima, F. J., Saraiva, A. A. F., Silva, M. A. P., Bantim, R. A. M., & Sayão, J. M. (2014). A new angiosperm from the Crato Formation (Araripe Basin, Brazil) and comments on the Early Cretaceous monocotyledons. Anais da Academia Brasileira de Ciências, 86, 1657–1672.  https://doi.org/10.1590/0001-3765201420140339.CrossRefGoogle Scholar
  54. Mabesoone, J. M., & Tinoco, I. M. (1973). Palaeoecology of the Aptian Santana formation (northeastern Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 14, 97–118.  https://doi.org/10.1016/0031-0182(73)90006-0.CrossRefGoogle Scholar
  55. Mabesoone, J. M., Viana, M. S. S., & Lima Filho, M. F. (1994). Sedimentary fill of the Araripe–Potiguar depression (NE Brazil). Abstracts, 14th Intern. Sedim. Cong., Recife-Brazil (p. 46–47). Pernambuco: Universidade Federal de Pernambuco.Google Scholar
  56. Maisey, J. G. (1991). Santana fossils: an illustrated atlas (459 p). Neptune: T.F.C. Publications.Google Scholar
  57. Manfroi, J., Dutra, T. L., Gnaedinger, S., Uhl, D., & Jasper, A. (2015). The first report of a Campanian palaeo-wildfire in the West Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 12–18  https://doi.org/10.1016/j.palaeo.2014.11.012.CrossRefGoogle Scholar
  58. Martill, D. M. (1993). Fossil of the Santana and Crato formations, Brazil. Paleontological Association Field Guide to Fossils, n., 5, 159p.Google Scholar
  59. Martill, D. M. (2007). The geology of the Crato Formation. In D. M. Martill et al. (Eds.), The Crato fossil beds of Brazil, window to an ancient world (pp. 8–24). Cambridge: University Press.  https://doi.org/10.1017/cbo9780511535512.003.CrossRefGoogle Scholar
  60. Martill, D. M., & Wilby, P. R. (1993). Stratigraphy. In D.M. Martill (Ed.), Fossils of the Santana and Crato Formations, Brazil [Field Guide to Fossils, n. 5] (p. 159). London: Paleontological Association.Google Scholar
  61. Martill, D. M., Bechly, G., & Loveridge, R. (2007). The Crato fossil beds of Brazil. Window into an ancient world: Cambridge University Press.CrossRefGoogle Scholar
  62. Martill, D. M., Loveridge, R. F., Mohr, B. A. R., & Simmonds, E. (2012). A wildfire origin for terrestrial organic debris in the Cretaceous Santana Formation Fossil Lagerstätte (Araripe Basin) of north-east Brazil. Cretaceous Research, 34, 135–141.  https://doi.org/10.1016/j.cretres.2011.10.011.CrossRefGoogle Scholar
  63. Martins-Neto, R.G. (2001). Primeiro registro de Trichoptera (Insecta) na Formação Santana (Cretáceo Inferior), Bacia do Araripe, nordeste do Brasil, com descrição de sete novos táxons. In Simpósio sobre a Bacia do Araripe e Bacias Interiores do Nordeste, 1 e 2, Crato, 1990/1997. Boletim, p. 212–226.Google Scholar
  64. Matos, R. M. D. (1992). The Northeast Brazilian rift system. American Geophysical Union, USA. Tectonics, 11, 766–791.  https://doi.org/10.1029/91tc03092.CrossRefGoogle Scholar
  65. Menor, E.A., & Amaral, A.J.R. (1991). Considerações sobre eventos evaporíticos da Formação Santana, Bacia do Araripe. Boletim Núcleo Nordeste Sociedade Brasileira Geologia, 12, Atas 14 Simpósio Geologia do Nordeste, Recife (PE), 30–34.Google Scholar
  66. Mohr, B. A. R., & Friis, E. M. (2000). Early angiosperms from the Aptian Crato Formation (Brazil), a preliminary report. International Journal of Plant Sciences, 161(6), 155–167.  https://doi.org/10.1086/317580.CrossRefGoogle Scholar
  67. Muir, R. A., Bordy, E. M., & Prevec, R. (2015). Lower Cretaceous deposit reveals first evidence of a post-wildfire debris flow in the Kirkwood Formation, Algoa Basin, Eastern Cape, South Africa. Cretaceous Research, 56, 161–179.  https://doi.org/10.1016/j.cretres.2015.04.005.CrossRefGoogle Scholar
  68. Nascimento Jr., D. R., da Silva Filho, W. F., Freire Jr., J. G., & dos Santos, F. H. (2016). Syngenetic and diagenetic features of evaporite-lutite successions of the Ipubi Formation, Araripe Basin, Santana do Cariri, NE Brazil. Journal of South American Earth Sciences, 72, 315–327.  https://doi.org/10.1016/j.jsames.2016.10.001.CrossRefGoogle Scholar
  69. Neumann, V. H., Borrego, A. G., Cabrera, L., & Dino, R. (2003). Organic matter composition and distribution through the Aptian-Albian lacustrine sequences of the Araripe Basin, northeastern Brazil. International Journal of Coal Geology, 54, 21–40.  https://doi.org/10.1016/s0166-5162(03)00018-1.CrossRefGoogle Scholar
  70. Nichols, G. J., Cripps, J. A., Collinson, E. M., & Scott, A. C. (2000). Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 164, 43–56.  https://doi.org/10.1016/S0031-0182(00)00174-7.CrossRefGoogle Scholar
  71. Oliveira, G. R., & Romano, P. S. R. (2007). Histórico dos achados de tartarugas fósseis do Brasil. Arquivos do Museu Nacional, 65, 113–133.Google Scholar
  72. Oliveira, G. R., Saraiva, A. A. F., Silva, P. H., Andrade, J. A. F. G., & Kellner, A. W. A. (2011). First turtle from the Ipubi Formation (Early Cretaceous), Santana Group, Araripe Basin, Brazil. Revista Brasileira Paleontologia, 14(1), 61–66.  https://doi.org/10.4072/rbp.2011.1.06.CrossRefGoogle Scholar
  73. Passalia, M. G. (2007). A mid-Cretaceous flora from the Kachaike Formation, Patagonia, Argentina. Cretaceous Research, 28, 830–840.  https://doi.org/10.1016/j.cretres.2006.12.00.CrossRefGoogle Scholar
  74. Patterson, W. A., Edwards, K. J., & Maguire, D. J. (1987). Microscopic charcoal as an indicator of fire. Quaternary Science Reviews, 6, 3–23.  https://doi.org/10.1016/0277-3791(87)90012-6.CrossRefGoogle Scholar
  75. Pêgas, R. V., Leal, M. E. C., & Kellner, A. W. A. (2016). A basal Tapejarine (Pterosauria; Pterodactyloidea; Tapejaridae) from the Crato Formation, Early Cretaceous of Brazil. PLoS One, 11, e0162692.  https://doi.org/10.1371/journal.pone.0162692.CrossRefGoogle Scholar
  76. Pereira, P. A., Cassab, R. C. T., & Barreto, A. M. F. (2016). Cassiopidae gastropods, influence of Tethys Sea of the Romualdo Formation (Aptian-Albian), Araripe Basin, Brazil. Journal of South American Earth Sciences, 70, 211–223.  https://doi.org/10.1016/j.jsames.2016.05.005.CrossRefGoogle Scholar
  77. Pinheiro, F. L., Fortier, D. C., Schultz, C. L., De Andrade, J. A. F. G., & Bantim, R. A. M. (2011). New information on Tupandactylus imperator, with comments on the relationships of Tapejaridae (Pterosauria). Acta Palaeontologica Polonica, 56(3), 567–580.  https://doi.org/10.4202/app.2010.0057.CrossRefGoogle Scholar
  78. Pires, E. F., & Guerra-Sommer, M. (2011). Growth ring analysis of fossil coniferous woods from Early Cretaceous of the Araripe Basin (Brazil). Anais da Academia Brasileira de Ciências, 83, 409–423.  https://doi.org/10.1590/S0001-37652011005000005.CrossRefGoogle Scholar
  79. Pires, E. F., Guerra-Sommer, M., Scherer, C. M. S., Santos, A. R., & Cardoso, E. (2011). Early Cretaceous coniferous woods from a Paleoerg (Paraná Basin, Brazil). Journal of South American Earth Sciences, 32, 96–109.  https://doi.org/10.1016/j.jsames.2011.04.001.CrossRefGoogle Scholar
  80. Ponte, F. C., & Ponte Filho, F. C. (1996). Estrutura geológica e evolução tectônica da Bacia do Araripe (68p). Recife: Departamento Nacional da Produção Mineral.Google Scholar
  81. Poole, I., & Cantrill, D. J. (2006). Cretaceous and Tertiary vegetation of Antarctica implications from the fossil wood record. In J. E. Francis, D. Pirrie, & J. A. Crame (Eds.), Cretaceous/Tertiary High-latitude Palaeoenvironments, James Ross Basin, Antarctica, Geological Society of London, Special Publication (Vol. 258, pp. 63–81).Google Scholar
  82. Potonié, R. (1929). Spuren von Wald- und Moorbränden in Vergangen-heit und Gegenwart. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt und Bergakademie zu Berlin, 49, 1184–1203.Google Scholar
  83. Prado, G. M., Anelli, L. E., Petri, S., & Romero, G. R. (2016). New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil. PeerJ, 4, e1916.  https://doi.org/10.7717/peerj.1916.CrossRefGoogle Scholar
  84. Price, L. I. (1959). Sobre um crododilideo notosúquio do cretácico brasileiro. Boletins Diversos de Geologia Mineral, 188, 1–155.Google Scholar
  85. Riff, D., Romano, P. S. R., Oliveira, G. R., & Aguilera, O. A. (2010). Neogene crocodile and turtle fauna in northern South America. In C. Hoorn, & E. P. Wesselingh (Eds.), Amazonia, landscape and species evolution: a look into the past. Oxford: Blackwell Publishing.Google Scholar
  86. Sales, A. M. F. (2005). Análise tafonômica das ocorrências fossilíferas de Macroinvertebrados do Membro Romualdo (Albiano) da Formação Santana, Bacia do Araripe, NE do Brasil: Significado Estratigráfico e Paleoambiental (131p). Tese de doutorado: Universidade de São Paulo.Google Scholar
  87. Salisbury, S. W., Frey, E., Martill, D. M., & Buchy, M. C. (2003). A new crocodilian from the Lower Cretaceous Crato Formation of northeastern Brazil. Paleontographica Abteilung A, 270, 3–47.Google Scholar
  88. Saraiva, A. A. F., Hessel, M. H., Guerra, N. C., & Fara, E. (2007). Concreções calcárias da Formação Santana, Bacia do Araripe: uma proposta de classificação. Estudos Geológicos, 17(1), 40–58.Google Scholar
  89. Saraiva, A. A. F., Barros, O. A., Bantim, R. A. M., & Lima, F. J. (2015). Guia para trabalhos de campo em Paleontologia na Bacia do Araripe. 2ª edição revisada, Crato, 143p.Google Scholar
  90. Sayão, J. M., & Kellner, A. W. A. (2000). Description of a pterosaur rostrum from the Crato Member, Santana Formation (Aptian-Albian) northeastern Brazil. Boletim do Museu Nacional, 54, 1–8.Google Scholar
  91. Sayão, J. M., & Kellner, A. W. A. (2006). Novo esqueleto parcial de pterossauros (Pterodactyloidea, Tapejaridae) do Membro Crato (Aptiano), Formação Santana, Bacia do Araripe, Nordeste do Brasil. Estudos Geológicos, 16, 16–40.Google Scholar
  92. Sayão, J. M., Saraiva, A. A. F., & Uejima, A. M. K. (2011). New evidence of feathers in the Crato Formation supporting a reappraisal on the presence of aves. Anais da Academia Brasileira de Ciências, 83(1), 197–210.  https://doi.org/10.1590/s0001-37652011000100010.CrossRefGoogle Scholar
  93. Sayão, J. M., Vila Nova, B. C., França, M. A., Oliveira, G. R., Lima, F. J., & Saraiva, A. A. F. (2015). Fósseis do Araripe - Um exemplo de diversidade ao longo do tempo profundo. In U. P. Albuquerque, & M. V. Meiado (Eds.), Sociobiodiversidade na Chapada do Araripe (pp. 273–292). Recife: NUPEEA.Google Scholar
  94. Sayão, J. M., Bantim, R. A. M., Andrade, R. C. L. P., Lima, F. J., Saraiva, A. A. F., Figueiredo, R. G., & Kellner, A. W. A. (2016). Paleohistology of Susisuchus natoceps (Crocodylomorpha, Neosuchia): comments on Growth Strategies and Lifestyle. PLoS One, 11(5), e0155297.  https://doi.org/10.1371/journal.pone.0155297.CrossRefGoogle Scholar
  95. Scott, A. C. (1989). Observations on the nature and origin of fusain. International Journal of Coal Geology, 12, 443–475.  https://doi.org/10.1016/0166-5162(89)90061-x.CrossRefGoogle Scholar
  96. Scott, A. C. (2000). The pre-quaternary history of fire. Palaeogeography, Palaeo-climatology, Palaeoecology, 164, 281–329 https://doi.org/S0031-0182(14)00570-7/rf0350.Google Scholar
  97. Scott, A. C. (2009). Forest fire in the fossil record. In A. Cerdà & P. Robichaud (Eds.), Fire effects on soils and restoration strategies (pp. 1–37). New Hampshire: Science Publishers Inc..Google Scholar
  98. Scott, A. C. (2010). Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 11–39.  https://doi.org/10.1016/j.palaeo.2009.12.012.CrossRefGoogle Scholar
  99. Scott, A. C., & Stea, R. (2002). Fires sweep across the Mid-Cretaceous landscape of Nova Scotia. Geoscientist, 12(1), 4–6.Google Scholar
  100. Scott, A. C., Bowman, D. M. J. S., Bond, W. J., Pyne, S. J., & Alexander, M. E. (2014). Fire on earth: and introduction. Wiley Blackwell, 413 pp.Google Scholar
  101. Silva, J. H., Freire, P. T., Abarago, B. T., Silva, J. A. F., Saraiva, G. D., Lima, F. J., Barros, O. A., Bantim, R. A. M., Saraiva, A. A. F., & Viana, B. C. (2013a). Spectroscopic studies of wood fossils from the Crato Formation, Cretaceous Period. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 115, 324–329.  https://doi.org/10.1016/j.saa.2013.06.042.CrossRefGoogle Scholar
  102. Silva, J.H., Sousa Filho, F.E., Saraiva, A.A.F., Viana, B.C., Freire, P.T.C., Andrade, N.A.M., Sayão, J.M., Abagaro, B.T.O., & Saraiva, G.D. (2013b). Spectroscopic Analysis of Theropod Dinosaur (reptilia, Archosauria) from the Ipubi Formation, Araripe Basin, Northeastern Brazil. Journal of Spectroscopy, 1–7.  https://doi.org/10.1155/2013/437439.
  103. Silva, M. A. M. (1988). Evaporitos do Cretáceo da Bacia do Araripe: ambientes de deposição e história diagenética. Boletim de Geociências da PETROBRÁS, 2, 53–63.Google Scholar
  104. Uhl, D. (2006). Fossil plants as palaeoenvironmental proxies e some remarks on selected approaches. Acta Palaeobotanica, 46(2), 87–100.Google Scholar
  105. Uhl, D., & Kerp, H. (2003). Wildfires in the late Palaeozoic of Central Europe - The Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 199(1–2), 1–15.  https://doi.org/10.1016/S0031-0182(03)00482-6.
  106. Uhl, D., Abu Hamad, A., Kerp, H., & Bandel, K. (2007). Evidence for palaeo-wildfire in the Late Permian palaeotropics - charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology, 144, 221–230.  https://doi.org/10.1016/j.revpalbo.2006.08.003.CrossRefGoogle Scholar
  107. Uhl, D., Jasper, A., & Schweigert, G. (2012). Palaeo-wildfires in the Late Jurassic (Kimmeridgian) of Western and Central Europe – Palaeoclimatic and palaeoenvironmental significance. Palaeobiodiversity and Palaeoenvironments, 92, 329–341.  https://doi.org/10.1007/s12549-012-0072-x.
  108. Valença, L. M. M., Neumann, V. H., & Mabesoone, J. M. (2003). An overview on Calloviane Cenomanian intracratonic basins of Northeast Brazil: onshore stratigraphic record of the opening of the southern Atlantic. Geologica Acta, 1, 261–275.Google Scholar
  109. Vila Nova, B. C., Saraiva, A. A. F., Moreira, J. K. R., & Sayão, J. M. (2011). Controlled excavations in the Romualdo Formation Lagerstätte (Araripe Basin, Brazil) and pterosaur diversity: remarks based on new findings. Palaios, 26, 173–179.  https://doi.org/10.2110/palo.2010.p10-072r.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Geociências, Centro de Tecnologia e GeociênciasUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Laboratório de Paleontologia, Departamento de Ciências BiológicasUniversidade Regional do CaririCratoBrazil
  3. 3.Laboratório de Paleobiologia, Campus de Porto Nacional, Programa de Pós-Graduação em Biodiversidade, Ecologia e ConservaçãoUniversidade Federal do TocantinsPorto NacionalBrazil
  4. 4.Programa de Pós-Graduação em Ambiente e Desenvolvimento, PPGADUniversidade do Vale do Taquari – UnivatesLajeadoBrazil
  5. 5.Senckenberg Forschungsinstitut und Naturmuseum FrankfurtFrankfurt am MainGermany
  6. 6.Senckenberg Centre for Human Evolution and PalaeoenvironmentEberhard Karls Universität TübingenTübingenGermany
  7. 7.Laboratório de Biodiversidade do Nordeste, Centro Acadêmico de VitóriaUniversidade Federal de PernambucoVitória de Santo AntãoBrazil

Personalised recommendations