Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 98, Issue 4, pp 615–638 | Cite as

Tetrapod diversity and palaeoecology in the German Middle Triassic (Lower Keuper) documented by tooth morphotypes

  • Rainer R. SchochEmail author
  • Frank Ullmann
  • Brigitte Rozynek
  • Reinhard Ziegler
  • Dieter Seegis
  • Hans-Dieter Sues
Original Paper

Abstract

Continued excavations during the last decade have yielded large quantities of tetrapod remains from the Middle Triassic (Ladinian) Erfurt Formation (Lower Keuper) in Germany. The temnospondyl dental morphotypes are highly variable but represent low taxonomic diversity. This is in contrast to the reptilian tooth morphotypes, which comprise a minimum of 26 distinct types, only some of which can be referred to taxa based on diagnostic skeletal material. The assemblage includes a taxonomically diverse range of semi-aquatic or aquatic faunivores, in addition to large terrestrial carnivores and many smaller-sized forms that may have subsisted on invertebrates and small vertebrates. With only two taxa known to date, tetrapods with dentitions suitable for oral processing of plant material form the least common faunal element. The Lower Keuper assemblages are dominated by diapsid reptiles, especially archosauriforms. Unlike in the more or less coeval tetrapod communities from Gondwana, gomphodont cynodonts are represented only by a single molariform tooth to date, whereas avemetatarsalian archosaurs are entirely absent. Most remarkable is the virtually total absence of medium- to large-sized herbivores (rhynchosaurs, dicynodont synapsids).

Keywords

Faunivory Herbivory Reptilia Diapsida Temnospondyli Triassic 

Notes

Acknowledgements

The senior author thanks Werner Kugler, Traugott and Ute Haubold, Alfred Bartholomä, Michael Salomon, Christoph Straub, Fabian Mohl and Tobias Mann for donating numerous specimens to the SMNS and providing invaluable help during field work and the Schumann family for granting access to their property and their continued support. Norbert Adorf, Isabell Rosin, Achim Lehmkuhl, Marit Kamenz, Martina Battenstein and Kim Krämer are thanked for their skillful fossil preparation and Ronald Böttcher, Julia Desojo, Susan Evans, Randall Irmis, Sterling Nesbitt, Erin Maxwell, Johannes Müller and Marc Jones for fruitful discussions. We thank the two reviewers, Sterling Nesbitt and Ralf Werneburg, for their helpful suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abler, W. L. (1992). The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology, 18, 161–183.Google Scholar
  2. Alberti, F. V. (1834). Beitrag zu einer Monographie des Bunten Sandsteins, Muschelkalks und Keupers, und die Verbindung dieser Gebilde zu einer Formation (p. 366). Stuttgart: Verlag der J.G. Cotta’schen Buchhandlung.Google Scholar
  3. Andrade, M. B. de, Young, M. T., Desojo, J. A., & Brusatte, S. L. (2010). The evolution of extreme hypercarnivory in Metriorhynchidae (Mesoeucrocodylia: Thalattosuchia) based on evidence from microscopic denticle morphology. Journal of Vertebrate Paleontology, 30, 1451–1465.Google Scholar
  4. Andrews, S. M., & Carroll, R. L. (1991). The Order Adelospondyli: carboniferous lepospondyl amphibians. Transactions of the Royal Society of Edinburgh Earth Sciences, 82, 239–275.Google Scholar
  5. Auffenberg, W. (1981). The behavioral ecology of the Komodo monitor (p. 406). Gainesville: University Presses of Florida.Google Scholar
  6. Barrett, P. M. (2000). Prosauropods and iguanas: speculations on the diets in extinct reptiles. In H.-D. Sues (Ed.), Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record (pp. 42–78). Cambridge: Cambridge University Press.Google Scholar
  7. Berkovitz, B., & Shellis, P. (2017). The teeth of non-mammalian vertebrates (p. 342). London: Academic Press.Google Scholar
  8. Beutler, G., Hauschke, N., & Nitsch, E. (1999). Faziesentwicklung des Keupers im Germanischen Becken. In N. Hauschke & V. Wilde (Eds.), Trias. Eine ganz andere Welt (pp. 129–174). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  9. Bonaparte, J. F. (1978). El Mesozoico de América del Sur y sus tetrapodos. Opera Lilloana, 26, 1–596.Google Scholar
  10. Böttcher, R. (2015). Fische. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity Sonderband, 141–202.Google Scholar
  11. Borsuk-Białynicka, M. (1996). The Late Cretaceous lizard Pleurodontagama and the origin of tooth permanency in Lepidosauria. Acta Palaeontologica Polonica, 41, 231–252.Google Scholar
  12. Bystrow, A. P. (1938). Zahnstruktur der Labyrinthodonten. Acta Zoologica (Stockholm), 19, 387–425.Google Scholar
  13. Cree, A. (2014). Tuatara: biology and conservation of a venerable survivor (p. 564). Canterbury: Canterbury University Press.Google Scholar
  14. Damiani, R., Schoch, R. R., Hellrung, H., Werneburg, R., & Gastou, S. (2009). The plagiosaurid temnospondyl Plagiosuchus pustuliferus from the Middle Triassic of Germany: anatomy and functional morphology of the skull. Zoological Journal of the Linnean Society, 155, 348–373.Google Scholar
  15. D’Amore, D. C., & Blumenschine, R. J. (2009). Komodo monitor (Varanus komodoensis) feeding behavior and dental function reflected through tooth marks on bone surfaces, and the application to ziphodont paleobiology. Paleobiology, 35, 525–552.Google Scholar
  16. D’Amore, D. C., & Blumenschine, R. J. (2012). Using striated tooth marks on bone to predict body size in theropod dinosaurs: a model based on feeding observations of Varanus komodoensis, the Komodo monitor. Paleobiology, 38, 79–100.Google Scholar
  17. Dorka, M. (2002). Tetrapod teeth from an Upper Ladinian bone bed, Schöningen (Lower Saxony, Germany). Paläontologische Zeitschrift, 76, 283–296.Google Scholar
  18. Edmund, A. G. (1969). Dentition. In C. Gans (Ed.), Biology of the Reptilia, Vol. 1: morphology A (pp. 117–200). New York: Academic Press.Google Scholar
  19. Estes, R., & Williams, E. E. (1984). Ontogenetic variation in the molariform teeth of lizards. Journal of Vertebrate Paleontology, 4, 96–107.Google Scholar
  20. Etzold, A. & Schweizer, V. (2005). Der Keuper in Baden-Württemberg. In Deutsche Stratigraphische Kommission (Eds.), Stratigraphie von Deutschland IV. Keuper. Bearbeitet von der Arbeitsgruppe Keuper der Subkommission Perm-Trias der DSK. Courier Forschungsinstitut Senckenberg, 253, 215–258.Google Scholar
  21. Farlow, J. O., Brinkman, D. L., Abler, W. L., & Currie, P. J. (1991). Size, shape, and serration density of theropod dinosaur lateral teeth. Historical Biology, 16, 161–198.Google Scholar
  22. Fraas, E. (1900). Zanclodon schützii n. sp. aus dem Trigonodusdolomit von Hall. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 56, 510–513.Google Scholar
  23. Gower, D. J. (1999). The cranial and mandibular osteology of a new rauisuchian archosaur from the Middle Triassic of southern Germany. Stuttgarter Beiträge zur Naturkunde, B, 280, 1–49.Google Scholar
  24. Gower, D. J., & Schoch, R. R. (2009). The postcranial skeleton of the rauisuchian Batrachotomus kupferzellensis. Journal of Vertebrate Paleontology, 29, 103–122.Google Scholar
  25. Hagdorn, H., & Simon, T. (1985). Geologie und Landschaft des Hohenloher Landes (p. 186). Sigmaringen: Thorbecke.Google Scholar
  26. Hagdorn, H., & Mutter, R. (2011). The vertebrate fauna of the Lower Keuper Albertibank (Erfurt Formation, Middle Triassic) in the vicinity of Schwäbisch Hall (Baden-Württemberg, Germany). Palaeodiversity, 4, 223–243.Google Scholar
  27. Hagdorn, H., Schoch, R.R., Seegis, D. & Werneburg, R. (2015). Wirbeltierlagerstätten im Lettenkeuper. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity Sonderband, 325–358.Google Scholar
  28. Heckert, A. B. (2004). Late Triassic microvertebrates from the lower Chinle Group (Otischalkian-Adamanian: Carnian), southwestern U.S.A. New Mexico Museum of Natural History and Science Bulletin, 27, 1–170.Google Scholar
  29. Heckert, A. B., Mitchell, J. S., Schneider, V. P., & Olsen, P. E. (2012). Diverse new microvertebrate assemblage from the Upper Triassic Cumnock Formation, Sanford subbasin, North Carolina, USA. Journal of Paleontology, 86, 368–390.Google Scholar
  30. Hellrung, H. (2003). Gerrothorax pustuloglomeratus, ein Temnospondyle (Amphibia) mit knöcherner Branchialkammer aus dem Unteren Keuper von Kupferzell (Süddeutschland). Stuttgarter Beiträge zur Naturkunde, B, 330, 1–130.Google Scholar
  31. Heunisch, C. (1999). Die Bedeutung der Palynologie für Biostratigraphie und Fazies in der Germanischen Trias. In N. Hauschke & V. Wilde (Eds.), Trias – eine ganz andere Welt (pp. 207–220). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  32. Heunisch, C. (2015). Die Palynoflora des Lettenkeupers. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern (pp. 101–106). Palaeodiversity Sonderband.Google Scholar
  33. Holmes, R. (1989). The skull and axial skeleton of the Lower Permian anthracosauroid amphibian Archeria crassidisca Cope. Palaeontographica A, 207, 161–206.Google Scholar
  34. Hopson, J. A., & Sues, H.-D. (2006). A traversodontid cynodont from the Middle Triassic (Ladinian) of Baden-Württemberg. Paläontologische Zeitschrift, 80, 124–129.Google Scholar
  35. Hotton III, N. (1955). A survey of adaptive relationships of dentition to diet in the North American Iguanidae. American Midland Naturalist, 53, 88–114.Google Scholar
  36. Huene, F. (1905). Über die Nomenklatur von Zanclodon. Centralblatt für Mineralogie, Geologie und Paläontologie, 1905, 10–12.Google Scholar
  37. Huene, F. (1907–1908). Die Dinosaurier der europäischen Triasformation mit Berücksichtigung der aussereuropäischen Vorkommnisse. Geologische und Paläontologische Abhandlungen Supplement, 1, 1–419.Google Scholar
  38. Huene, F. (1922). Beiträge zur Kenntnis der Organisation einiger Stegocephalen der schwäbischen Trias. Acta Zoologica (Stockholm), 3, 395–460.Google Scholar
  39. Iverson, J. B. (1982). Adaptations to herbivory in iguanine lizards. In G. M. Burghardt & A. S. Rand (Eds.), Iguanas of the world: their behavior, ecology and conservation (pp. 60–76). Park Ridge: Noyes Publications.Google Scholar
  40. Jaeger, G. F. (1824). De Ichthyosauri sive Proteosauri fossilis speciminibus in agro Bollensi in Wirtembergia repertis (p. 14). Stuttgart: Verlag der J.G. Cotta’schen Buchhandlung.Google Scholar
  41. Jaeger, G. F. (1828). Über die fossile [sic] Reptilien, welche in Württemberg aufgefunden worden sind (p. 48). Stuttgart: Verlag der J.B. Metzler’schen Buchhandlung.Google Scholar
  42. Jones, M. E. (2008). Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). Journal of Morphology, 269, 945–966.Google Scholar
  43. Jones, M. E., Anderson, C. L., Hipsley, C. A., Müller, J., Evans, S. E., & Schoch, R. R. (2013). Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, 13, 208.Google Scholar
  44. Kelber, K.P. (2015). Die Makroflora des Lettenkeupers. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity Sonderband, (pp. 51–100).Google Scholar
  45. Langston Jr., W. (1975). Ziphodont crocodiles: Pristichampsus vorax (Troxell), new combination, from the Eocene of North America. Fieldiana Geology, 33, 291–314.Google Scholar
  46. Löffler, T., Thies, D., Vespermann, J., & Zellmer, H. (2007). Fauna, Sedimentologie und Geochemie des Unteren Keupers (Erfurt Formation) von Schöningen. Berichte der Naturhistorischen Gesellschaft Hannover, 149, 3–39.Google Scholar
  47. Lucas, P. W. (2004). Dental functional morphology: how teeth work (p. 355). Cambridge: Cambridge University Press.Google Scholar
  48. Mahler, L. D., & Kearney, M. (2006). The palatal dentition in squamate reptiles: morphology, development, attachment, and replacement. Fieldiana Zoology, New Series, 182, 1–61.Google Scholar
  49. Maisch, M. W., Vega, C. S., & Schoch, R. R. (2009). No dicynodont in the Keuper – A reconsideration of the occurrence of aff. Dinodontosaurus in the Middle Triassic of southern Germany. Palaeodiversity, 2, 271–278.Google Scholar
  50. Martill, D. M. (1986). The diet of Metriorhynchus, a Mesozoic marine crocodile. Neues Jahrbuch für Geologie and Paläontologie Monatshefte, 1986, 621–625.Google Scholar
  51. Martínez, R. N., Apaldetti, C., Alcober, O. A., Colombi, C. E., Sereno, P. C., Fernandez, E., Malnis, P. S., Ciorrea, G. A., & Abelin, D. (2013). Vertebrate succession in the Ischigualasto Formation. Society of Vertebrate Paleontology Memoir, 12, 10–39.Google Scholar
  52. Massare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7, 121–137.Google Scholar
  53. Mateer, N. J. (1974). Three Mesozoic crocodiles in the collections of the Palaeontological Museum, Uppsala. Bulletin of the Geological Institute University of Uppsala, New Series, 4, 53–72.Google Scholar
  54. Maxwell, E. E., Caldwell, M. W., & Lamoureux, D. O. (2011a). The structure and phylogenetic distribution of amniote plicidentine. Journal of Vertebrate Paleontology, 31, 553–561.Google Scholar
  55. Maxwell, E. E., Caldwell, M. W., Lamoureux, D. O., & Budney, L. A. (2011b). Histology of tooth attachment tissues and plicidentine in Varanus (Reptilia: Squamata), and a discussion of the evolution of amniote tooth attachment. Journal of Morphology, 31, 553–561.Google Scholar
  56. Meyer, H. V., & Plieninger, T. (1844). Beiträge zur Paläontologie Württemberg’s enthaltend die fossilen Wirbelthierreste aus den Triasgebilden mit besonderer Rücksicht auf die Labyrinthodonten des Keupers (p. 132). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  57. Modesto, S. P., & Sues, H.-D. (2004). The skull of the Early Triassic archosauromorph reptile Prolacerta broomi and its phylogenetic significance. Zoological Journal of the Linnean Society, 140, 335–351.Google Scholar
  58. Montanucci, R. R. (1968). Comparative dentition in four iguanid lizards. Herpetologica, 24, 305–315.Google Scholar
  59. Moser, M., & Schoch, R. (2007). Revision of the type material and nomenclature of Mastodonsaurus giganteus (Jaeger) (Temnospondyli) from the Middle Triassic of Germany. Palaeontology, 50, 1245–1266.Google Scholar
  60. Munk, W., & Sues, H.-D. (1993). Gut contents of Parasaurus (Pareiasauria) and Protorosaurus (Archosauromorpha) from the Kupferschiefer (Upper Permian) of Hessen, Germany. Paläontologische Zeitschrift, 67, 169–176.Google Scholar
  61. Nesbitt, S. J. (2011). The early evolution of archosaurs: relationships and the origin of major clades. Bulletin of the American Museum of Natural History, 352, 1–292.Google Scholar
  62. Nitsch, E. (2015). Fazies und Ablagerungsräume. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity Sonderband, 285–324.Google Scholar
  63. Nosotti, S. (2007). Tanystropheus longobardicus (Reptilia, Protorosauria): re-interpretations of the anatomy based on new specimens from the Middle Triassic of Besano (Lombardy, northern Italy). Memorie della Società Italiana d Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 35(3), 1–88.Google Scholar
  64. Owen, R. (1841). On the teeth of species of the genus Labyrinthodon (Mastodonsaurus salamandroides and Phytosaurus) of Jaeger, from the German Keuper and the sandstone of Warwick and Leamington. Proceedings of the Geological Society London, 3, 357–360.Google Scholar
  65. Peyer, B. (1931). Die Triasfauna der Tessiner Kalkalpen II. Tanystropheus longobardicus Bass. sp. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 50, 5–110.Google Scholar
  66. Plieninger, T. (1847). Über ein neues Sauriergenus und die Einreihung der Saurier mit flachen, schneidenden Zähnen in eine Familie. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 2, 148–154.Google Scholar
  67. Preuschoft, H., Reif, W. E., Loitsch, C., & Tepe, E. (1991). The function of labyrinthodont teeth: big teeth in small jaws. In N. Schmitt-Kittler & K. Vogel (Eds.), Constructional morphology and evolution (pp. 151–171). Heidelberg: Springer.Google Scholar
  68. Quenstedt, F. A. (1885). Handbuch der Petrefaktenkunde (p. 982). Tübingen: Laupp.Google Scholar
  69. Rieppel, O. (2000). Sauropterygia I: Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie, Teil 12A (p. 134). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  70. Rieppel, O. (2002). Feeding mechanics in Triassic stem group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zoological Journal of the Linnean Society, 135, 33–63.Google Scholar
  71. Sanchez, S., & Schoch, R. R. (2013). Bone histology reveals a high environmental and metabolic plasticity as a successful evolutionary strategy in a long-lived homeostatic Triassic temnospondyl. Evolutionary Biology, 40, 627–647.Google Scholar
  72. Schoch, R. R. (1997). A new capitosaur amphibian from the Lower Lettenkeuper (Triassic: Ladinian) of Kupferzell (southern Germany). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 203, 239–272.Google Scholar
  73. Schoch, R. R. (1999). Comparative osteology of Mastodonsaurus giganteus (Jaeger, 1928) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen). Stuttgarter Beiträge zur Naturkunde, B, 178, 1–173.Google Scholar
  74. Schoch, R. R. (2002). Stratigraphie und Taphonomie wirbeltierreicher Schichten im Unterkeuper (Mitteltrias) von Vellberg (SW-Deutschland). Stuttgarter Beiträge zur Naturkunde, B, 318, 1–30.Google Scholar
  75. Schoch, R. R. (2006). A complete trematosaurid amphibian from the Middle Triassic of Germany. Journal of Vertebrate Paleontology, 26, 29–43.Google Scholar
  76. Schoch, R. R. (2008). A new stereospondyl from the Middle Triassic of Germany, and the origin of the Metoposauridae. Zoological Journal of the Linnean Society, 152, 79–113.Google Scholar
  77. Schoch, R. R. (2009). The evolution of life cycles in early amphibians. Annual Review of Earth and Planetary Sciences, 37, 135–162.Google Scholar
  78. Schoch, R. R. (2011a). A procolophonid-like tetrapod from the Middle Triassic of Germany. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 259, 251–255.Google Scholar
  79. Schoch, R. R. (2011b). New archosauriform remains from the German Lower Keuper. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 260, 87–100.Google Scholar
  80. Schoch, R. R. (2012). A dicynodont mandible from the Triassic of Germany forms the first evidence of large herbivores in the Central European Basin. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 263, 119–123.Google Scholar
  81. Schoch, R. R. (2014). Amphibian evolution: the life of early land vertebrates (p. 288). Chichester: Wiley.Google Scholar
  82. Schoch, R.R. (2015a). Amphibien und Chroniosuchier. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity Sonderband, 203–230.Google Scholar
  83. Schoch, R.R. (2015b). Reptilien. In H. Hagdorn, R.R. Schoch & G. Schweigert (Eds.), Der Lettenkeuper – Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity Sonderband, (pp. 231–264).Google Scholar
  84. Schoch, R. R., & Milner, A. R. (2000). Stereospondyli. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie (Vol. 3B, p. 203). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  85. Schoch, R. R., & Milner, A. R. (2014). Temnospondyli I. In H. D. Sues (Ed.), Handbuch der Paläoherpetologie, Vol. 3A2 (p. 150). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  86. Schoch, R. R., & Seegis, D. (2016). A Middle Triassic palaeontological gold mine: the vertebrate deposits of Vellberg (Germany). Palaeogeography Palaeoclimatology Palaeoecology, 459, 249–267.Google Scholar
  87. Schoch, R. R., & Sues, H.-D. (2014). A new archosauriform reptile from the Middle Triassic (Ladinian) of Germany. Journal of Systematic Palaeontology, 12, 113–131.Google Scholar
  88. Schoch, R. R., & Sues, H.-D. (2015). A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature, 523, 584–587.Google Scholar
  89. Schoch, R.R. & Sues, H.-D. (2017). Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the evolution of the turtle skeleton. Journal of Systematic Palaeontology.  https://doi.org/10.1080/14772019.2017.1354936.
  90. Schoch, R. R., & Wild, R. (1999). Die Saurier von Kupferzell – der gegenwärtige Forschungsstand. In N. Hauschke & V. Wilde (Eds.), Die Trias – eine ganz andere Welt (pp. 409–418). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  91. Schoch, R. R., & Witzmann, F. (2012). Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia, 45, 371–385.Google Scholar
  92. Schoch, R. R., Milner, A. R., & Witzmann, F. (2014). Skull morphology and phylogenetic relationships of a new Middle Triassic plagiosaurid temnospondyl from Germany, and the evolution of plagiosaurid eyes. Palaeontology, 57, 1045–1058.Google Scholar
  93. Schubert, B. W., & Ungar, P. S. (2005). Wear facets and enamel spalling in tyrannosaurid teeth. Acta Palaeontologica Polonica, 50, 93–99.Google Scholar
  94. Schultze, H.-P. (1969). Die Faltenzähne der rhipidistiiden Crossopterygier, der Tetrapoden und der Actinopterygier-Gattung Lepisosteus, nebst einer Beschreibung der Zahnstruktur von Onychodus (struniiformer Crossopterygier). Palaeontologia Italiana, 65, 63–137.Google Scholar
  95. Shishkin, M. A., Ochev, V. G., Lozovskii, V. R., & Novikov, I. V. (2000). Tetrapod biostratigraphy of the Triassic of Eastern Europe. In M. J. Benton, M. A. Shishkin, D. M. Unwin, & E. N. Kurochkin (Eds.), The age of dinosaurs in Russia and Mongolia (pp. 120–139). Cambridge: Cambridge University Press.Google Scholar
  96. Smith, J. B., & Dodson, P. (2003). A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology, 23, 1–12.Google Scholar
  97. Sues, H.-D., & Baird, D. (1998). Procolophonidae (Reptilia: Parareptilia) from the Upper Triassic Wolfville Formation of Nova Scotia, Canada. Journal of Vertebrate Paleontology, 18, 525–532.Google Scholar
  98. Sues, H.-D., & Fraser, N. C. (2010). Triassic life on land: the great transition (p. 236). New York: Columbia University Press.Google Scholar
  99. Sues, H.-D., & Schoch, R. R. (2013). First record of Colognathus (?Amniota) from the Middle Triassic of Europe. Journal of Vertebrate Paleontology, 33, 998–1002.Google Scholar
  100. Welman, J. (1998). The taxonomy of the South African proterosuchids (Reptilia, Archosauromorpha). Journal of Vertebrate Paleontology, 18, 340–347.Google Scholar
  101. Wild, R. (1973). Die Triasfauna der Tessiner Kalkalpen. XXIII. Tanystropheus longobardicus (Bassani) (Neue Ergebnisse). Schweizerische Paläontologische Abhandlungen, 95, 1–162.Google Scholar
  102. Wild, R. (1980). The fossil deposits of Kupferzell, southwest Germany. Mesozoic Vertebrate Life, 1, 15–18.Google Scholar
  103. Witzmann, F. & Schoch, R.R. (2018). Skull and postcranium of the bystrowianid Bystrowiella schumanni from the Middle Triassic of Germany, and the position of chroniosuchians within Tetrapoda. Journal of Systematic Palaeontology16, 711-739.  https://doi.org/10.1080/14772019.2017.1336579.Google Scholar
  104. Witzmann, F., Schoch, R. R., & Maisch, M. W. (2008). A relict basal tetrapod from the Middle Triassic of Germany. Naturwissenschaften, 95, 67–72.Google Scholar
  105. Zweifel, R. G., & Lowe, C. H. (1966). The ecology of a population of Xantusia vigilis, the desert night lizard. American Museum Novitates, 2247, 1–57.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Staatliches Museum für NaturkundeStuttgartGermany
  2. 2.Department of Paleobiology, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations