Advertisement

A Late Jurassic (Kimmeridgian–early Tithonian) fish fauna of the Eperkés-hegy (Olaszfalu, Bakony Mts., Hungary): the oldest record of Notidanodon Cappetta, 1975 and a short revision of Mesozoic Hexanchidae

  • Márton SzabóEmail author
Original Paper

Abstract

The first results of the investigation of the Late Jurassic (Kimmeridgian–early Tithonian) fish fauna from the fossil-rich Pálihálás Limestone Formation (“Long trench”, Eperkés-hegy, Olaszfalu, Hungary) are detailed here. The present study provides the first systematic faunal data of a Jurassic marine fish community from the Transdanubian Mountains. The low-diversity neoselachian fauna includes Notidanodon sp., Sphenodus sp., and indeterminate synechodontiform, possible indeterminate scyliorhinids, and further, yet indeterminate forms. Actinopterygians are represented by Caturus sp. and indeterminate actinopterygian teeth and scales. The Olaszfalu hexanchid is the most similar to Notidanodon lanceolatus; however, specific determination is not possible. The Olaszfalu record is the second Jurassic (and also the earliest) report of the genus Notidanodon, which re-dates the earliest occurrence of Hexanchidae back into the boundary of the Kimmeridgian–early Tithonian.

Keywords

Hungary Kimmeridgian Tithonian Notidanodon Hexanchidae Caturus 

Notes

Acknowledgements

I am grateful to both reviewers Jürgen Kriwet and Gilles Cuny, for their helpful and constructive comments. A very special thanks goes to James V. Andrews for linguistic improvements of the manuscript. I am especially grateful to Bálint Szappanos, who collected and donated the best preserved Olaszfalu Notidanodon tooth. Charles J. Underwood and Jürgen Pollerspöck are acknowledged for their useful comments and also for providing literature. István Főzy is thanked for the constructive discussions about the geology of the depositional area. I also thank Krisztina Buczkó for her help in scanning electron microscopic photography, and Réka Kalmár for her technical assitance. Krisztina Sebe (University of Pécs) is acknowledged for allowing me to study earlier collected Olaszfalu shark teeth, deposited in the collection of the University of Pécs.

Funding information

This study was largely funded by the National Research, Development and Innovation Office (OTKA – K116665, K123762 and PD 104937), the Hungarian Natural History Museum, the Eötvös Loránd University and the ELTE Dinosaur Research Group.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Adnet, S. (2006). Biometric analysis of the teeth of fossil and Recent hexanchid sharks and its taxonomic implications. Acta Palaeontologica Polonica, 51(3), 477–488.Google Scholar
  2. Adnet, S., & Martin, R. A. (2007). Increase of body size in sixgill sharks with change in diet as a possible background of their evolution. Historical Biology, 19(4), 279–289.Google Scholar
  3. Adolffsen, J. S., & Ward, D. J. (2015). Neoselachians from the Danian (early Paleocene) of Denmark. Acta Palaeontologica Polonica, 60(2), 313–338.Google Scholar
  4. Adolfssen, J. S., & Ward, D. J. (2013). Crossing the boundary: an elasmobranch fauna from Stevns Klint, Denmark. Palaeontology, 57, 591–629.Google Scholar
  5. Agassiz, L. J. R. (1833–1844). Recherches sur les poissons fossiles, 3. Imprimerie de Petitpierre, Neuchâtel, 390 + 32 pp.Google Scholar
  6. Applegate, S. P. (1965). A confirmation of the validity of Notorhynchus pectinatus; the second record of this Upper Cretaceous shark. Bulletin of the Southern California Academy of Sciences, 64(3), 122–126.Google Scholar
  7. Arambourg, C. (1952). Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie). Notes et Mémoires du Service géologique du Maroc, 92, 1–372.Google Scholar
  8. Arratia, G., & Cione, A. L. (1996). The record of fossil fishes of southern South America. Münchner Geowissenschaftliche Abhandlungen, 30(A), 9–72.Google Scholar
  9. Beltan, L. (1972). La faune ichthyologique du Muschelkalk de la Catalogne. Memorias de la Real Academia de Ciencias y Artes de Barcelona, 41(10), 281–325.Google Scholar
  10. Beltan, L. (1984). Quelques poissons du Muschelkalk supérieur d’Espagne. Acta Geologica Hispanica, 19(2), 117–127.Google Scholar
  11. Bogan, S., Agnolin, F. L., & Novas, F. E. (2016). New selachian records from the Upper Cretaceous of southern Patagonia: paleobiogeographical implications and the description of a new taxon. Journal of Vertebrate Paleontology, 36, e1105235.  https://doi.org/10.1080/02724634.2016.1105235.Google Scholar
  12. Bonaparte, C. L. (1838). Selachorum tabula analytica. Nuovi Annali della Science Naturali Bologna, 1(2), 195–214.Google Scholar
  13. Böttcher, R., & Duffin, C. J. (2000). The neoselachian shark Sphenodus from the Late Kimmeridgian (Late Jurassic) of Nusplingen and Egesheim (Baden-Württemberg, Germany). Stuttgarter Beiträge zur Naturkunde, serie B, 283, 1–31.Google Scholar
  14. Budai, T., & Fodor, L. (2008). In G. Császár, G. Csillag, L. Fodor, N. Gál, Z. Kercsmár, L. Kordos, S. Pálfalvi, & I. Selmeczi (Eds.), Geology of the Vértes Hills. Explanatory book to the geological map of the Vértes Hills (1: 50.000). Budapest: Regional map series of Hungary. Geological Institute of Hungary.Google Scholar
  15. Buen, F. (1926). Catalogo ictiologico del Mediterraneo Español y de Marruecos, recopilando lo publicado sobrepeces de las costas mediterraneas y proximas del Atlantico (Mar de España). Resultados de las ampafias Realizadas por Acuerdos Internacionales. Instituto Español de Oceanografia, 2, 1–211.Google Scholar
  16. Cappetta, H. (1975). Sélaciens et Holocéphale du Gargasien de la région de Gargas (Vaucluse). Géologie Méditerranéenne, 2(3), 115–134.Google Scholar
  17. Cappetta, H. (1976). Sélaciens nouveaux du London Clay de l’Essex (Yprésien du Bassin de Londres). Geobios, 9(5), 551–575.  https://doi.org/10.1016/S0016-6995(76)80024-1.Google Scholar
  18. Cappetta, H. (2012). Handbook of Paleoichthyology, Vol. 3E: Chondrichthyes. Mesozoic and Cenozoic Elasmobranchii: teeth. Munich: Verlag Dr. Friedrich Pfeil 512 p.Google Scholar
  19. Cappetta, H., & Grant-Mackie, J. (2018). Discovery of the most ancient Notidanodon tooth (Neoselachii: Hexanchiformes) in the Late Jurassic of New Zealand. New considerations on the systematics and range of the genus. Palaeovertebrata, 42(1), 1–8.Google Scholar
  20. Carlsen, A. W., & Cuny, G. (2014). A study of the sharks and rays from the Lillebælt Clay (Early–Middle Eocene) of Denmark, and their palaeoecology. Bulletin of the Geological Society of Denmark, 62, 39–88.Google Scholar
  21. Chabakov, A. W., & Zonov, N. (1935). Sharks of the Jurassic of the Moscow Basin. Transactions of the Central Geological and Prospecting Institute, 34, 1–16.Google Scholar
  22. Ciobanu, R. (2008). Habitat and biology of Romanian Paleogene sharks. Brukenthal Acta Musei, III(3), 53–66.Google Scholar
  23. Cione, A. L. (1996). The extinct genus Notidanodon (Neoselachii, Hexanchiformes). In G. Arratia & G. Viohl (Eds.), Mesozoic Fishes—Systematics and Paleoecology (pp. 63–72). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  24. Cione, A. L., & Medina, F. A. (1987). A record of Notidanodon pectinatus (Chondrichthyes, Hexanchiformes) in the Upper Cretaceous of the Antarctic Peninsula. Mesozoic Research, 1(2), 79–88.Google Scholar
  25. Compagno, L. J. V. (1977). Phyletic relationships of living sharks and rays. American Zoologist, 17, 303–322.Google Scholar
  26. Császár, G. (1986). Dunántúli-középhegységi középső-kréta képződmények rétegtana és kapcsolata a bauxitképződéssel. (Middle Cretaceous formations of the Transdanubian Central Range: stratigraphy and connection with bauxite genesis). Both Hungarian and English. Geologica Hungarica series Geologica, 23, 295 p. [in Hungarian].Google Scholar
  27. Császár, G. (1988). Bakony, Olaszfalu, Eperkés-hegy (Hosszú-árok) EH-1 szelvény - Magyarország geológiai alapszelvényei. 14. Google Scholar
  28. Császár, G. (2008). Jurassic–Cretaceous. In T. Budai, L. Fodor, G. Császár, G. Csillag, L. Fodor, N. Gál, Z. Kercsmár, L. Kordos, S. Pálfalvi, & I. Selmeczi (Eds.), Geology of the Vértes Hills. Explanatory book to the geological map of the Vértes Hills (1: 50.000). Budapest: Regional map series of Hungary. Geological Institute of Hungary.Google Scholar
  29. Császár, G., & Haas, J. (Eds.) (1984). Mesozoic formations in Hungary. Excursion 104. International Geological Congress XXVIIth Session Moscow, USSR.Google Scholar
  30. Császár, G., & Haas, J. (1989). Shallow marine Cretaceous carbonates in the Transdanubian Midmountains. In G. Császár  (Ed.), Excursion guidebook. IAS Tenth Regional Meeting Budapest 24–26 April 1989, 189–226.Google Scholar
  31. Császár, G., Nagy, I., & Tardiné Filácz, E. (1988). Jelentés az olaszfalui Eperkés-hegy jura szelvényeinek vizsgálatáról. Manuscript, Országos Földtani bányászati és Geofizikai Adattár (T/14664), Budapest, 26 p.Google Scholar
  32. Császár, G., Főzy, I., & Mizák, J. (2008). Az olaszfalui Eperjes földtani felépítése és fejlődéstörténete. (Geological settings and the history of the Eperjes Hill, Olaszfalu, Bakony Mountains). Földtani Közlöny, 138(1), 21–48. [in Hungarian].Google Scholar
  33. Cuny, G., Cobbett, A. M., Meunier, F. J., & Benton, M. J. (2010). Vertebrate microremains from the Early Cretaceous of southern Tunisia. (in English: Microrestes de vertébrés du Crétacé inférieur du Sud tunisien). Geobios, 43, 615–628.Google Scholar
  34. Cusumano, A., & Di Patti, C. (2006). Gli squali del Cenozoico di Sicilia nelle collezioni del Museo “G. G. Gemmellaro”. (in Italian: Sicilian Cenozoic sharks from the collections of the G. G. Gemmellaro Museum). Quaderni del Museo Geologico Gemmellaro, 9, 110–120.Google Scholar
  35. Daly-Engel, T. S., Baremore, I. E., Brubbs, R. D., Gulak, S. J. B., Graham, R. T., & Enzenauer, M. P. (2018). Resurrection of the sixgill shark Hexanchus vitulus Springer & Waller, 1969 (Hexanchiformes, Hexanchidae), with comments on its distribution in the northwest Atlantic Ocean. Marine Biodiversity, 2018.  https://doi.org/10.1007/s12526-018-0849-x.
  36. De Beaumont, G. (1960). Contribution à l’étude des genres Orthacodus Woodward et Notidanus Cuv. (Selachii). Schweizerische Palaeontologische Abhandlungen, 77, 4–36.Google Scholar
  37. De Buen, F. (1926). Catálogo ictiológico del Mediterráneo español y de Marruecos. Resultados Campanas Internaccionale Institute Español Oceanografiá, 2, 153–161.Google Scholar
  38. Duffin, C. J., & Ward, D. J. (1993). The Early Jurassic palaeospinacid sharks of Lyme Regis, southern England. Elasmobranches et stratigraphie. Professional Paper of the Belgian Geological Survey, 264, 53–102.Google Scholar
  39. Dulai, A., Suba, Z., & Szarka, A. (1994). Toarci (alsójura) szervesanyagdús fekete pala a mecseki Réka-völgyben. (Toarcian (Lower Jurassic) organic-rich black shale in the Réka Valley (Mecsek Hills, Hungary)). Földtani Közlöny, 122(1), 67–87. [in Hungarian].Google Scholar
  40. Dutheil, D. B., Moreau, F., & Plöeg, G. D. (2006). Les ichthyofaunes du gisement à ambre de Le Quesnoy (Paléocène et Éocène du bassin de Paris, France). Cossmanniana, 11(1–4), 1–13.Google Scholar
  41. Főzy, I. (1991). Bakonyi és gerecsei felső-jura szelvények ammoniteszfaunájának rétegtani és ökológiai értékelése. (Stratigraphical and ecological evaluation of the ammonite-faunas of the Upper Jurassic sections of the Bakony and Gerecse Mts.). Manuscript, Természettudományi Múzeum, Föld és Őslénytár/ Országos Földtani bányászati és Geofizikai Adattár, Budapest, 31 p. [in Hungarian].Google Scholar
  42. Főzy, I. (2015). A Dunántúli-középhegység oxfordi–barremi (felső-jura–alsó-kréta) rétegsora: cephalopoda-fauna, biosztratigráfia, őskörnyezet és medencefejlődés. (The Oxfordian-Barremian (Upper Jurassic–Lower Cretaceous) strata of the Transdanubian Range: cephalopod-fauna, biostratigraphy, paleoecology and basin evolution). Doctoral Thesis, 149 pp., with 72 plates. [in Hungarian].Google Scholar
  43. Főzy, I. (2017). A Dunántúli-középhegység oxfordi–barremi (felső-jura–alsó-kréta) rétegsora: cephalopoda-fauna, biosztratigráfia, őskörnyezet és medencefejlődés. (The Oxfordian-Barremian (Upper Jurassic–Lower Cretaceous) strata of the Transdanubian Range: cephalopod-fauna, biostratigraphy, paleoecology and basin evolution). GeoLitera Press., 2017, Szeged, 205 p. [in Hungarian].Google Scholar
  44. Főzy, I., & Szente, I. (2014). Fossils of the Carpathian Region. Bloomington: Indiana University Press 508 p.Google Scholar
  45. Fraas, O. (1855). Beiträge zum obersten weissen Jura in Schwaben. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 11, 76–107.Google Scholar
  46. Fülöp, J. (1964). A Bakonyhegység alsó-kréta (berriázi-apti) képződményei. (Lower Cretaceous (Berriasian-Aptian) formations in the Bakony Mountains). Geologica Hungarica. Series Geologica, 13, 193. [in Hungarian].Google Scholar
  47. Galácz, A. (1988). Tectonically controlled sedimentation in the Jurassic of the Bakony Mountains (Transdanubian Central Range, Hungary). Acta Geologica Hungarica, 31(3–4), 313–328.Google Scholar
  48. Galácz, A., & Vörös, A. (1972). A Bakony hegységi jura fejlődéstörténeti vázlata a főbb üledékföldtani jelenségek kiértékelése alapján. (Jurassic history of the Bakony Mountains and interpretation of principal lithological phenomena). Földtani Közlöny, 102(2), 122–135. [in Hungarian].Google Scholar
  49. Galácz, A., & Vörös, A. (1989). Jurassic sedimentary formations in Transdanubia. 10. IAS Regional Meeting, Excursion Guidebook, 125–188.Google Scholar
  50. Gayet, M., & Meunier, F. J. (1986). Apport de l’étude de l’ornementation microscopique de la ganoïne dans la détermination de l’appartenance générique et/ou spécifique des écailles isolées. Comptes Rendus de l’Académie des Sciences, Paris, 303, 1259–1262.Google Scholar
  51. Gayet, M., & Meunier, F. J. (2001). Á propos du genre Paralepidosteus (Ginglymodi, Lepisosteidae) de Crétacé Gondwanien. Cybium, 25(2), 153–159.Google Scholar
  52. Gill, T. (1862). Analytical synopsis of the Order of Squali and revision of the nomenclature of the genera. Annals of the Lyceum of Natural History of New York, 7(32), 367–408.Google Scholar
  53. Glikman, L. S. (1957). Genetic relations of the Lamnidae and Odontaspididae and new genera of lamnids from the Upper Cretaceous. Trudy Geologicheskogo Muzeia Akademiia Nauk SSSR, 1, 110–117 [In Russian].Google Scholar
  54. Glikman, L. S. (1964). Shark of Paleogene and their stratigraphic significance. (in Russian). Moscow: Nauka Press, 229 p., 76 fig., 31 pl..Google Scholar
  55. Grande, L., & Bemis, W. E. (1998). A comprehensive phylogenetic study of Amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Society of Vertebrate Paleontology, Memoir 4, 690 p.Google Scholar
  56. Gray, J. E. (1851). List of the specimens of fish in the collection of the British Museum. Part I. Chondropterygii. British Museum (p. 160). London: Natural History.Google Scholar
  57. Guinot, G., Cappetta, H., & Adnet, S. (2014). A rare elasmobranch assemblage from the Valanginian (Lower Cretaceous) of sourthern France. Cretaceous Research, 48, 54–84.Google Scholar
  58. Gurr, P. R. (1962). A new fish fauna from the Woolwich Bottom Beds (Sparnacian) of Herne Bay, Kent. Proceedings of the Geologists’ Association, 73(4), 419–447.Google Scholar
  59. Haas, J. (1985). Jurassic. Geologica Hungarica Series Geologica, 20, 35–74.Google Scholar
  60. Hay, O. P. (1902). Bibliography and catalogue of fossil vertebrata of North America. Bulletin of the United States Geological Survey, 179, 1–868.Google Scholar
  61. Hennig, E. (1914). Die Fischreste unter den Funden der Tengaguru-Expedition. Archiv für Biontologie, 3, 293–312.Google Scholar
  62. Hovestadt, M., Hovestadt, D., & Smith, R. (1983). A contribution to the fish fauna of the Belgian Palaeocene: a review of Notidanodon loozi (Vincent 1876). Tertiary Research, 5(2), 71–79.Google Scholar
  63. Huxley, T. H. (1880). On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the Zoological Society, 43, 649–662.Google Scholar
  64. Jordan, D. S., & Hannibal, H. (1923). Fossil sharks and rays of the Pacific slope of North America. Bulletin of the Southern California Academy of Sciences, 22, 27–63.Google Scholar
  65. Juhász, T. J. (2009). Porcoshal maradványok az Eszterházy Károly Főiskola Földrajz Tanszékének gyűjteményében. (Chondrichthyan remains in the collection of the Deparment of Geology of the Eszterházy Károly University). Poster, 12th Hungarian Paleontological Conference (12. Magyar Őslénytani Vándorgyűlés), Sopron, 2009. [in Hungarian].Google Scholar
  66. Kanno, S., Nakajima, Y., Hikida, Y., & Sato, T. (2017). Sphenodus (Chondrichthyes, Neoselachii) from the Upper Cretaceous in Nakagawa Town, Hokkaido, Japan. Paleontological Research, 21(2), 122–130.Google Scholar
  67. Kemp, D. J., Kemp, L., & Ward, D. J. (1990). An illustrated guide to the British Middle Eocene vertebrates. London: Privately published 59 p.Google Scholar
  68. Klein, E. F. (1885). Beiträge zur Bildung des Schädels der Knochenfische. 2 Jahreshefte Vereins Vaterländisher Naturkunde in Würtemberg, 42, 205–300.Google Scholar
  69. Klug, S. (2010). Monophyly, phylogeny and systematic position of the Synechodontiformes (Chondrichthyes, Neoselachii). Zoologica Scripta, 39, 37–49.Google Scholar
  70. Klug, S., & Kriwet, J. (2010). A new Late Jurassic species of the rare synechodontiform shark, Welcommia (Chondrichthyes, Neoselachii). Paläontologische Zeitschrift, 84(3), 413–419.  https://doi.org/10.1007/s12542-010-0058-9.Google Scholar
  71. Klug, S., & Kriwet, J. (2013). An offshore fish assemblage (Elasmobranchii, Actinopterygii) from the Late Jurassic of NE Spain. Paläontologische Zeitschrift, 87(2), 235–257.  https://doi.org/10.1007/s12542-012-0156-y.Google Scholar
  72. Knoll, F., & López-Antoñanzas, R. (2014). The vertebrate fauna from the “stipite” layers of the Grands Causses (Middle Jurassic, France). Frontiers in Ecology and Evolution, 2(48), 1–6.Google Scholar
  73. Knoll, F., Cuny, G., Mojon, P.-O., & López-Antoñanzas, R. (2014). New palaeontological data from the organic-rich layers of the Bathonian of the Grands Causses (France). Proceedings of the Geologists’ Association, 125, 312–316.  https://doi.org/10.1016/j.pgeola.2014.04.003.Google Scholar
  74. Konda, J. (1970). A Bakony hegységi jura időszaki képződmények üledékföldtani vizsgálata. A Magyar Állami Földtani Intézet Évkönyve, 50(2), 161–260.Google Scholar
  75. Kriwet, J., & Klug, S. (2004). Late Jurassic selachians (Chondrichthyes, Elasmobranchii) from southern Germany: re-evaluation on taxonomy and diversity. Zitteliana, A44, 67–95.Google Scholar
  76. Kriwet, J., & Klug, S. (2011). A new Jurassic cow shark (Chondrichthyes, Hexanchiformes) with comments on Jurassic hexanchiform systematics. Swiss Journal of Geosciences, 104(1), 107–114.Google Scholar
  77. Kriwet, J., & Klug, S. (2014). Dental patterns of the stem-group hexanchid shark, Notidanoides muensteri (Elasmobranchii, Hexanchiformes). Journal of Vertebrate Paleontology, 34(6), 1292–1306.Google Scholar
  78. Kriwet, J., & Klug, S. (2016). Crassodontidanidae, a replacement name for Crassonotidae Kriwet and Klug, 2011 (Chondrichthyes, Hexanchiformes). Journal of Vertebrate Paleontology, 3(4), e1119698.  https://doi.org/10.1080/02724634.2016.1119698.Google Scholar
  79. Kriwet, J., Rauhut, O. W. M., & Gloy, U. (1997). Microvertebrate remains (Pisces, Archosauria) from the Middle Jurassic (Bathonian) of southern France. Neues Jahrbuch für Geologie und Paläontologie, 206(1), 1–28.Google Scholar
  80. Kriwet, J., Lirio, J. M., Nuñez, H. J., Puceat, E., & Lécuyer, C. (2006). Late Cretaceous Antarctic fish diversity. In D. Pirrie, J. E. Francis, & J. A. Crame (Eds.), Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica, special publication (Vol. 258, pp. 83–100). London: Geological Society.Google Scholar
  81. Landini, W. (1977). Revisione degli “Ittiodontoliti pliocenice” della Collezione Lawley. Palaeontographica Italica, LXX, 94–134.Google Scholar
  82. Leriche, M. (1927). Les Poissons de la Molasse suisse. Mémoires de la Société Paléontologique Suisse, 46, 1–55.Google Scholar
  83. Leuzinger, L., Cuny, G., Popov, E., & Billon-Bruyat, J.-P. (2017). A new chondrichthyan fauna from the Late Jurassic of the Swiss Jura (Kimmeridgian) dominated by hybodonts, chimaeroids and guitarfishes. Papers in Palaeontology, 3(4), 471–511.  https://doi.org/10.1001/spp2.1085.Google Scholar
  84. Long, D. J., Murphy, M. A., & Rodda, P. U. (1993). A new world occurrence of Notidanodon lanceolatus (Chondrichthyes, Hexanchidae) and comments on hexanchid shark evolution. Journal of Paleontology, 67(4), 655–659.Google Scholar
  85. Malyshkina, T. P., & Ward, D. J. (2016). The Turanian Basin in the Eocene: the new data on the fossil sharks and rays from the Kyzylkum Desert (Uzbekistan). Proceedings of the Zoological Institute RAS, 320(1), 50–65.Google Scholar
  86. Mané, R., Magrans, J., & Ferrer, E. (1996). Ictiologia fossil del Pliocè del Baix Llobregat. II. Selacis pleurotremats. Batalleria, 6, 19–33.Google Scholar
  87. Mannering, A. A., & Hiller, N. (2008). An early Cenozoic shark fauna from the Southwest Pacific. Palaeontology, 51(6), 1341–1365.Google Scholar
  88. Manni, R., Nicosia, U., & Szabó, J. (1992). Late Jurassic crinoids from the Eperkés-hegy (Bakony Mts., Hungary). Fragmenta Mineralogica et Palaeontologica, 15, 115–137.Google Scholar
  89. Marsili, S. (2008). Systematic, paleoecologic and paleobiogeographic analysis of the Plio-Pleistocene Maditerranean elasmobranch fauna. Atti Societa Toscana Scienze Naturali, 113(A), 81–88.Google Scholar
  90. Martín-Abad, H., & Poyato-Arita, F. J. (2013). Amiiforms from the Iberian Peninsula: historic review and research prospects. In G. Arratia, H.-P. Schultze, & M. V. H. Wilson (Eds.), Mesozoic Fishes 5 – Global Diversity and Evolution (pp. 73–86). Germany, München: Verlag Dr. Friedrich Pfeil.Google Scholar
  91. Mendiola, C. (2002). Notorynchus lawleyi Cigala Fulgosi 1983 (Chondrichthyes, Hexanchiformes) en el Plioceno inferior de Guardamar y Plioceno medio de Rojales (Sureste de España, Cuenca del Bajo Segura, Cordillera Bética Oriental). Revista de la Societat Paleontológica d’Elx, 8, 1–15.Google Scholar
  92. Mollen, F. H. (2010). A partial rostrum of the porbeagle shark Lamna nasus (Lamniformes, Lamnidae) from the Miocene of the North Sea Basin and the taxonomic importance of rostral morphology in extinct sharks. Geologica Belgica, 13(1–2), 61–76.Google Scholar
  93. Müller, A. (1999). Ichthyofaunen aus dem atlantischen Tertiär der USA. Leipziger Geowissenschaften, 9(10), 1–360.Google Scholar
  94. Müller, A., & Schöllmann, H. (1989). Neue Selachier (Neoselachii, Squalomorphii) aus dem Campanium Westfalens (NW-Deutschland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 178, 1–35.Google Scholar
  95. Münster, G. (1843). Beitrag zur Kenntnis einiger neuer seltener Versteinerungen aus den lithographischen Schiefern in Bayern. Beiträge zur Petrefactenkunde, 6, 1–54.Google Scholar
  96. Mutterlose, J. (1984). Die Unterkreide-Aufschlüsse (Valangin-Alb) im Raum Hannover-Braunschweig. Mitteilungen aus dem Geologischen Institut der Universität. Hannover, 24, 1–61.Google Scholar
  97. Nelson, J. S. (1984). Fishes of the world (2nd ed.). New York: John Wiley & Sons, Inc. 523 p.Google Scholar
  98. Owen, R. (1860). Paleontology, or a systematic summary of extinct animals and their geological relations. Edinburgh: Adam and Charles Black.Google Scholar
  99. Palotai, M., Csontos, L., Dövényi, P., & Galácz, A. (2006). Az eperkés-hegyi felsőjura képződmények áthalmozott tömbjei. (Redeposited blocks in Upper Jurassic sediments on Eperkés Hill). Földtani Közlöny, 136(3), 325–346. [in Hungarian].Google Scholar
  100. Pászti, A. (2004). Halmaradványok az Úrkúti Mangánérc Formáció képződményeiből. (Fish remains from the Úrkút Manganese Ore Formation). Bányászati és Kohászati Lapok – Bányászat, 137(6), 46–47. [in Hungarian].Google Scholar
  101. Patterson, C. (1973). Interrelationships of holosteans. In P. H. Greenwood, R. S. Miles, and C. Patterson (Eds.), Interrelationships of fishes. (pp. 233–305.). Zoological Journal of the Linnean Society of London 53, Supplement 1.Google Scholar
  102. Pollerspöck, J., & Straube, N. (2018). Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali). www.shark-references.com, World Wide Web electronic publication, Version 2018 [accessed 00-00-2018].
  103. Pouech, J., Mazin, J.-M., Cavin, L., & Poyato-Ariza, F. J. (2015). A Berriasian actinopterygian fauna from Cherves-de-Cognac, France: biodiversity and palaeoenvironmental implications. Cretaceous Research, 55, 32–43.Google Scholar
  104. Purdy, R. W., Schneider, V. P., Applegate, S. P., McLellan, J. H., Meyer, R. L., & Slaughter, R. (2001). The Neogene sharks, rays, and bony fishes from Lee Creek Mine, Aurora, North Carolina. In C. E. Ray & D. J. Bohaska (Eds.), Geology and paleontology of the Lee Creek Mine, North Carolina, III (pp. 71–202). Smithsonian Contributions to Paleobiology, 90). Washington, D. C.: Smithsonian Intitution Press.Google Scholar
  105. Rawson, P. F., Curry, D., Dilley, F. C., Hancock, J. M., Kennedy, W. J., Neale, J. W., et al. (1978). Correlation of Cretaceous rocks in the British Isles. Geological Society of London. Special Report, 9, 1–70.Google Scholar
  106. Rayner, D., Mitchell, T., Rayner, M., & Clouter, F. (2009). London clay fossils of Kent and Essex. Sevenoaks: Medway Lapidary and Mineral Society 228 p.Google Scholar
  107. Rees, J. (2000). A new Pliensbachian (Early Jurassic) neoselachian shark fauna from southern Sweden. Acta Palaeontologica Polonica, 45, 407–424.  https://doi.org/10.2478/v10263-012-0022-y.Google Scholar
  108. Rees, J. (2012). Palaeoecological implications of neoselachian shark teeth from the Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62(3), 397–402.Google Scholar
  109. Regan, C. T. (1923). The skeleton of Lepidosteus, with remarks on the origin and evolution of the lower Neopterygian fishes. Journal of Zoology (Proceedings of the Zoological Society of London), 93(2), 445–461.Google Scholar
  110. Reinecke, T., Moths, H., Grant, A., & Breitkreutz, H. (2005). Die Elasmobranchier des norddeutschen Chattiums, insbesondere des Sternberger Gesteins (Eochattium, oberes Oligozän). Palaeontos, 8, 1–135.Google Scholar
  111. Reinecke, T., Balsberger, M., Beaury, B., & Pollerspöck, J. (2014). The elasmobranch fauna of the Thalberg Beds, early Egerian (Chattian, Oligocene), in the Subalpine Molasse Basin near Siegsdorf, Bavaria, Germany. Palaeontos, 26, 3–129.Google Scholar
  112. Richter, M., & Ward, D. J. (1990). Fish remains from the Santa Marta Formation (Late Cretaceous) of James Ross Island, Antarctica. Antarctic Science, 2, 67–76.Google Scholar
  113. Siverson, M. (1995). Revision of the Danian cow sharks, sand tiger sharks, and goblin sharks (Hexanchidae, Odontaspididae, and Mitsukurinidae) from southern Sweden. Journal of Vertebrate Paleontology, 15(1), 1–12.Google Scholar
  114. Smart, P. J. (1995). Hexanchid shark teeth (Chondrichthyes, Vertebrata) from the Lower Cretaceous Albian sediments of Leighton Buzzard, South-central England. Proceedings of the Geologists’ Association, 106, 241–246.Google Scholar
  115. Smart, P. J. (2001). An undescribed Late Cretaceous Notorynchus tooth (Chondrichthyes, Vertebrata) from the English Chalk. Proceedings of the Geologists’ Association, 112, 59–62.Google Scholar
  116. Sweetman, S. C., & Underwood, C. J. (2006). A neoselachian shark from the non-marine Wessex Formation (Wealden Group: Early Cretaceous, Barremian) of the Isle of Wight, Southern England. Palaeontology, 49(2), 457–465.Google Scholar
  117. Sweetman, S. C., Goedert, J., & Martill, D. M. (2014). A preliminary account of the fishes of the Lower Cretaceous Wessex Formation (Wealden Group, Barremian) of the Isle of Wight, southern England. Biological Journal of the Linnean Society, 113, 872–896.Google Scholar
  118. Szabó, M. (2017). Fish remains from the Lower Cretaceous (Valanginian-Hauterivian) of Hárskút (Hungary, Bakony Mts.). Fragmenta Palaeontologica Hungarica, 34, 49–61.  https://doi.org/10.17111/FragmPalHung.2017.34.49.Google Scholar
  119. Szabó, M., & Kocsis, L. (2016a). A preliminary report on the early Oligocene (Rupelian, Kiscellian) selachians from the Kiscell Formation (Buda Mts, Hungary), with the re-discovery of Wilhelm Weiler’s shark teeth. Fragmenta Palaeontologica Hungarica, 33, 1–34.Google Scholar
  120. Szabó, M., & Kocsis, L. (2016b). A new Middle Miocene selachian assemblage (Chondrichthyes, Elasmobranchii) from the Central Paratethys (Nyirád, Hungary): implications for temporal turnover and biogeography. Geologica Carpathica, 67(6), 573–594.Google Scholar
  121. Thies, D. (1983). Jurazeitliche Neoselachier aus Deutschland und S-England (Jurassic Neoselachians from Germany and S-England). Courier Forschungsinstitut Senckenberg, 58, 1–116. [in German].Google Scholar
  122. Thies, D. (1987). Palaeoecology of Lower Cretaceous cow sharks (Neoselachii, Hexanchiformes). Paläontologische Zeitschrift, 61(1/2), 133–140.Google Scholar
  123. Thies, D., & Leidner, A. (2011). Sharks and guitarfishes (Elasmo-branchii) from the Late Jurassic of Europe. Palaeodiversity, 4, 63–184.Google Scholar
  124. Thies, D., & Reif, W.-E. (1985). Phylogeny and evolutionary ecology of Mesozoic Neoselachii. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 169, 333–361.Google Scholar
  125. Thies, D., Mudroch, A., & Turner, S. (2007). The potential of vertebrate microfossils for marine to non-marine correlation in the Late Jurassic. Papers in Natural Science, 17(6), 79–87.Google Scholar
  126. Thies, D., Vespermann, J., & Solcher, J. (2014). Two new neoselachian sharks (Elasmobranchii, Neoselachii, Synechodontiformes) from the Rhaetian (Late Triassic) of Europe. Palaeontographica Abt. A: Palaezoology – Stratigraphy, 303(4–6), 137–167.Google Scholar
  127. Trikolidi, F. A. (2014). Cow sharks (Hexanchiformes) from the Cretaceous deposits of the Crimea. (in Russian). Proceedings of the Zoological Institute, Russian. Academy of Sciences, 318(1), 76–97.Google Scholar
  128. Underwood, C. J. (2002). Sharks, rays and chimaeroid from the Kimmeridgian (Late Jurassic) of Ringstead, southern England. Palaeontology, 45(2), 297–325.Google Scholar
  129. Underwood, C. J., & Mitchell, S. F. (1999). Albian and Cenomanian selachian assemblages from north-east England. Special Papers in Palaeontology, 60, 9–56.Google Scholar
  130. Underwood, C. J., & Ward, D. J. (2004). Neoselachian sharks and rays from the British Bathonian (Middle Jurassic). Palaeontology, 47, 447–501.  https://doi.org/10.1111/j.0031-0239.2004.00386.x.Google Scholar
  131. Underwood, C. J., & Ward, D. J. (2008). A review of the Mesozoic Record of the Carcharhiniformes. In Arratia, G., Schultze, H.-P., & Wilson, M. V. H. (Eds.) Mesozoic Fishes 4 – Systematics, Homology and Nomenclature. Verlag Dr. Friedrich Pfeil, pp. 433–442.Google Scholar
  132. Underwood, C. J., Goswami, A., Prasad, G. V. R., Verma, O., & Flyinn, J. J. (2011). Marine vertebrates from the ‘middle’ Cretaceous (early Cenomanian) of South India. Journal of Vertebrate Paleontology, 31(3), 539–552.  https://doi.org/10.1080/02724634.2011.574518.Google Scholar
  133. Verma, O. (2015). Cretaceous vertebrate fauna of the Cauvery Basin, southern India: palaeodiversity and palaeobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 431, 53–67.  https://doi.org/10.1016/j.palaeo.2015.04.021.Google Scholar
  134. Vía-Boada, L., Villalta, J. F., & Esteban-Cerdá, M. (1977). Paleontología y paleoecología de los yacimientos fosilíferos del Muschelkalk superior entre Alcover y Montral (Montańas de Prades, provincia de Tarragona). Cuadernos de Geología Ibérica, 4, 247–256.Google Scholar
  135. Vincent, G. (1876). Description de la faune de l’étage Landenien Inférieur de Belgique. Annales de la Société Malacologique de Belgique, 11, 111–160.Google Scholar
  136. Vörös, A., & Galácz, A. (1992). Eperkés-hegy. In A. Vörös & J. Pálfy (Eds.), Regional Field Symposium on Mesozoic Brachiopods (pp. 68–71). Budapest: Hungarian Natural History Museum.Google Scholar
  137. Vörös, A., & Galácz, A. (1998). Jurassic paleogeography of the Transdanubian Central Range (Hungary). Rivista Italiana di Paleontologia e Stratigrafia, 104(1), 69–84.Google Scholar
  138. Wagner, J. A. (1861–1863). Monographie der fossilen Fische aus den Lithographischen Schiefern Bayerns. I. Plakoieden und Pyknotdonten. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften (Vol. 9, pp. 277–352).Google Scholar
  139. Ward, D. J. (1979). Additions to the fish fauna of the English Palaeogene. 3. A review of the Hexanchid sharks with a description of four new species. Tertiary Research, 2(3), 111–129.Google Scholar
  140. Ward, D. J., & Bonavia, C. G. (2001). Additions to, and a review of, the Miocene shark and ray fauna of Malta. The Central Mediterranean Naturalist, 3(3), 131–146.Google Scholar
  141. Ward, D. J., & Thies, D. (1987). Hexanchid shark teeth (Neoselachii, Vertebrata) from the Lower Cretaceous of Germany and England. Mesozoic Research, 1(2), 89–106.Google Scholar
  142. Wein, G. (1934). Zirc környékének titon rétegei. (Tithonian layers of the Zirc region). Földtani Közlöny, 64, 81–98. [in Hungarian].Google Scholar
  143. Welton, B. J. (1979). Late Cretaceous and Cenozoic squalomorphii of the Northwest Pacific Ocean, PhD Thesis, University of Califonia Berkeley, 553 p.Google Scholar
  144. Wijnker, E., Bor, T. J., Wesselingh, F. P., Munsterman, D. K., Brinkhuis, H., Burger, A. W., Vonhof, H. B., Post, K., Hoedemakers, K., Janse, A. C., & Taverne, N. (2008). Neogene stratigraphy of the Langenboom locality (Noord-Brabant, the Netherlands). Netherlands Journal of Geosciences, 87(2), 165–180.Google Scholar
  145. Woodward, A. S. (1886). On the palaeontology of the selachian genus Notidanus Cuvier. Geological Magazine, decade 3, 3, 205–217., 253–259., pl. 61.Google Scholar
  146. Yabumoto, Y., & Uyeno, T. (1994). Late Mesozoic and Cenozoic fish faunas of Japan. The Island Arc, 3(4), 255–269.  https://doi.org/10.1111/j.1440-1738.1994.tb00115.x.Google Scholar
  147. Zhelezko, V., & Kozlov, V. A. (1999). Elasmobranchii and paleogene biostratigraphy of Trans Urals and Central Asia. In E. O. Amon (Ed.), Materialy postratigrafii i paleontologii Urala (Vol. 3, pp. 1–324) Ekaterinburg. [in Russian with English Abstract].Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of PalaeontologyEötvös UniversityBudapestHungary
  2. 2.Department of Paleontology and GeologyHungarian Natural History MuseumBudapestHungary

Personalised recommendations