Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 98, Issue 1, pp 29–47 | Cite as

Fires and storms—a Triassic–Jurassic transition section in the Sichuan Basin, China

  • Mike PoleEmail author
  • Yongdong WangEmail author
  • Chong Dong
  • Xiaoping Xie
  • Ning Tian
  • Liqin Li
  • Ning Zhou
  • Ning Lu
  • Aowei Xie
  • Xiaoqing Zhang
Original Paper

Abstract

The Upper Triassic Xujiahe and Lower Jurassic Zhenzhuchong formations of the Sichuan Basin, China, are important sources of plant fossils and windows into the intervening extinction event. However, there is an on-going debate as to whether the environment represented by the Xujiahe and Zhenzhuchong formations was continental or included an important marine component. We studied the Xujiahe–Zhenzhuchong section near Qili Town of Xuanhan County, in the east of the basin and report hummocky and swaley cross-stratification in the Xujiahe Formation. This, along with minor Skolithos and heterolithic bedding, provides strong evidence for shallow marine conditions and favours an interpretation as the deposits of a wave-dominated coast. It also suggests common and extreme storm activity, possibly hurricanes, at what was a mid-latitude (c. 34–40°N) location in the Late Triassic. Charcoal is found in most samples throughout the section. The predominant fossil wood morphology is consistent with Xenoxylon. Together, the sedimentological evidence of storms and fire suggests a highly disturbed environment.

Keywords

Triassic Jurassic Charcoal Swaley bedding Palaeoclimate 

Notes

Acknowledgements

Pole acknowledges support from a CAS President’s International Fellowship Initiative (PIFI) for Visiting Scientists (grant number 2015VEA038) for allowing him to spend time at the Nanjing Institute for Geology and Palaeontology, Chinese Academy of Sciences. Wang acknowledges financial support from the State Key Program of Basic Research of Ministry of Science and Technology, China (2012CB822003), the National Natural Sciences Foundation of China (NSFC 41272010, 41572014) and the Team Program of Scientific Innovation and Interdisciplinary Cooperation of CAS. This is a contribution to the UNESCO / IGCP project 632, Continental Crises of the Jurassic: Major Extinction events and Environmental Changes within Lacustrine Ecosystems. The comments of two anonymous reviewers and D. Uhl greatly improved the manuscript and were much appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abu Hamad, A. M. B., Hamad, A., Jasper, A., & Uhl, D. (2012). The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96–97, 60–71.CrossRefGoogle Scholar
  2. Abu Hamad, A. M. B., Jasper, A., & Uhl, D. (2014). Wood remains from the Late Triassic (Carnian) of Jordan and their paleoenvironmental implications. Journal of African Earth Sciences, 95, 168–174.CrossRefGoogle Scholar
  3. Aigner, T. (1979). Coquinal tempestites in the upper Muschelkalk, Triassic, southern West Germany. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 157, 326–343.Google Scholar
  4. Aigner, T. (1982). Calcareous tempestites: Storm–dominated stratification in upper Muschelkalk limestones (Middle Trias, SW-Germany). In G. Einsele & A. Seilacher (Eds.), Cyclic and event stratification (pp. 180–198). New York: Springer-Verlag.CrossRefGoogle Scholar
  5. Arnott, R. W. C. (1992). Ripple cross-stratification in swaley cross-stratified sandstones of the Chungo Member, Mount Yamnuska, Alberta. Canadian Journal of Earth Science, 29, 1802–1805.CrossRefGoogle Scholar
  6. Belcher, C. M., & McElwain, J. C. (2008). Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321, 1197–1200.CrossRefGoogle Scholar
  7. Belcher, C. M., Collinson, M. E., & Scott, A. C. (2005). Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. Journal of the Geological Society, 162, 591–602.CrossRefGoogle Scholar
  8. Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J., & McElwain, J. C. (2010a). Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate–driven floral change. Nature Geoscience, 3, 1–4.CrossRefGoogle Scholar
  9. Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C., & Rein, G. (2010b). Baseline intrinsic flammability of Earths’ ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences U.S.A., 107, 22448–22453.CrossRefGoogle Scholar
  10. Belcher, C. M., Collinson, M. E., & Scott, A. C. (2013). A 450-million-year history of fire. In C. M. Belcher (Ed.), Fire phenomena and the Earth system: an interdisciplinary guide to fire science (pp. 229–249). Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  11. Bergman, N. M., Lenton, T. M., & Watson, A. J. (2004). COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science, 304, 397–437.CrossRefGoogle Scholar
  12. Berner, R. A. (2006). A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica, 70, 5653–5664.CrossRefGoogle Scholar
  13. Berner, R. A. (2009). Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science, 309, 603–606.CrossRefGoogle Scholar
  14. Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–538.CrossRefGoogle Scholar
  15. Bose, M. N., & Sah, S. C. D. (1954). On Sahnioxylon rajmahalense, a new name for Homoxylon rajmahalense Sahni, and S. andrewsii, a new species of Sahnioxylon from Amrapara in the Rajmahal Hills, Bihar. Palaeobotanist, 3, 1–8.Google Scholar
  16. Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., & Pyne, S. J. (2009). Fire in the Earth system. Science, 324, 481–484.CrossRefGoogle Scholar
  17. Bowman, D. M. J. S., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane, M. A., & Smith, A. M. S. (2017). Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution.  https://doi.org/10.1038/s41559-016-0058.
  18. Bradshaw, M. A. (2013). The Taylor Group (Beacon Supergroup): the Devonian sediments of Antarctica. In M. J. Hambrey, P. F. Barker, P. J. Barrett, V. Bowman, B. Davies, J. L. Smellie, & M. Tranter (Eds.), Antarctic Palaeoenvironments and Earth-surface processes (pp. 67–97). London: Geological Society.Google Scholar
  19. Bradshaw, M. A., & Harmsen, F. J. (2007). The paleoenvironmental significance of trace fossils in Devonian sediments (Taylor Group), Darwin Mountains to the dry valleys, southern Victoria Land. In Cooper, A.K., Raymond, C.R., et al. (Eds.), Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISAES X. USGS Open–File Report 2007–1047, Extended Abstract 133, 5.Google Scholar
  20. Butler, K. (2008). Interpreting charcoal in New Zealand’s palaeoenvironment-What do those charcoal fragments really tell us? Quaternary International, 184, 122–128.CrossRefGoogle Scholar
  21. Carroll, A. R., Graham, S. A., & Smith, M. E. (2010). Walled sedimentary basins of China. Basin Research, 22, 17–32.CrossRefGoogle Scholar
  22. Chaloner, W. G. (1989). Fossil charcoal as an indicator of palaeoatmospheric oxygen level. Journal of the Geological Society, 146, 171–174.CrossRefGoogle Scholar
  23. Chen, L. Q., Huo, R., Duan, K. B., & Hu, S. Q. (2012). Continental sequence stratigraphic research of the Upper Triassic Xujiahe Formation, northern Sichuan Foreland Basin, China. Journal of Jilin University (Earth Science Edition), 42, 600–611 (in Chinese with English abstract).Google Scholar
  24. Clark, J. S. (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research, 30, 67–80.CrossRefGoogle Scholar
  25. Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., & Krebs, P. (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28, 555–576.CrossRefGoogle Scholar
  26. Dalrymple, R. W., & Choi, K. S. (2007). Morphologic and facies trends through the fluvial–marine transition in tide–dominated depositional systems: a systematic framework for environmental and sequence–stratigraphic interpretation. Earth Science Reviews, 81, 135–174.CrossRefGoogle Scholar
  27. Diessel, C. F. K. (2010). The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81, 251–268.CrossRefGoogle Scholar
  28. Dott, R. H., & Bourgeois, J. (1982). Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93, 663–680.CrossRefGoogle Scholar
  29. Duan, S., & Chen, Y. (1984). On plant megafossils from the Late Triassic sediments of the eastern part of Sichuan Basin, China. The Palaeobotanist, 32, 203–210.Google Scholar
  30. Duke, W. L. (1985a). The paleogeography of Paleozoic and Mesozoic storm depositional systems: a discussion. The Journal of Geology, 93, 88–90.CrossRefGoogle Scholar
  31. Duke, W. L. (1985b). Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32, 167–194.CrossRefGoogle Scholar
  32. Enos, P., Lehrmann, D. J., Jiayong, W., Youyi, Y., Jiafei, X., Chaikin, D. H., Minzoni, M., Berry, A. K., & Montgomery, P. (2006). Triassic evolution of the Yangtze Platform in Guizhou Province, People's Republic of China. Geological Society of America Special Paper, 417, 1–105.Google Scholar
  33. Falcon–Lang, H. J., & Cantrill, D. J. (2001). Gymnosperm woods from the cretaceous (mid–Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a high–latitude volcanic arc. Cretaceous Research, 22, 277–293.CrossRefGoogle Scholar
  34. Forbes, M. S., Raison, R. J., & Skjemstad, J. O. (2006). Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the Total Environment, 370, 190–296.CrossRefGoogle Scholar
  35. Foster, D. R. (1983). The history and pattern of fire in the boreal forest of southeastern Labrador. Canadian Journal of Botany, 61, 2459–2471.CrossRefGoogle Scholar
  36. Frederickson, A. F., & Reynolds, R. C. (1959). Geochemical method for determining paleosalinity. Clays and Clay Minerals, 8, 203–213.CrossRefGoogle Scholar
  37. Fu, G., Zhang, L. H., Yuan, Z. H., & Chen, B. (2010). Sedimentary environment research for Xujiahe Formation of the Upper Triassic series in Sichuan Basin. Chongqing University of Science and Technology Natural Science Edition, 12, 17–21 (in Chinese with English abstract).Google Scholar
  38. Gao, H. C., Zheng, R. C., Ke, G. M., & Wen, H. G. (2005). The Upper Triassic Xujiahe Formation in the northeastern Sichuan foreland basin: Sequence-based sedimentary facies and palaeogeography. Sedimentary Geology and Tethyan Geology, 25, 38–45 (in Chinese with English abstract).Google Scholar
  39. Gao, C., Shao, L., Li, C. L., Xu, X., & Xu, H. (2009). Sequence stratigraphy and coal accumulation of the Triassic Xujiahe Formation in eastern Sichuan Basin. Journal of Palaeogeography, 11, 689–696 (in Chinese with English abstract).Google Scholar
  40. Gerards, T., Damblon, F., Wauthoz, B., & Gerrienne, P. (2007). Comparison of cross-field pitting in fresh, dried and charcoalified softwoods. IAWA Journal, 28, 49–60.CrossRefGoogle Scholar
  41. Gilbert, G. K. (1899). Ripple–marks and cross-bedding. Bulletin of the Geological Society of America, 10, 135–140.CrossRefGoogle Scholar
  42. Glasspool, I. J., & Scott, A. C. (2010). Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3, 627–630.CrossRefGoogle Scholar
  43. Glasspool, I. J., Edwards, D., & Axe, L. (2004). Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 32, 381–383.CrossRefGoogle Scholar
  44. Hagdorn, H. (1982). The Bank der Kleinen Terebrateln (Upper Muschelkalk, Triassic) near Schwaibisch Hall (SW Germany)–a tempestite condensation horizon. In G. Einsele & A. Seilacher (Eds.), Cyclic and event stratification (pp. 263–285). New York: Springer-Verlag.CrossRefGoogle Scholar
  45. Harle, K. J. (1997). Late quaternary vegetation and climate change in southeastern Australia: Palynological evidence from marine core E55-6. Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 465–483.CrossRefGoogle Scholar
  46. Harms, J. C., Southard, J. B., Spearing, D. R., & Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary structures and stratification sequences. SEPM Short Course Notes, 2, 1–161.Google Scholar
  47. Harms, J. C., Southard, J. B., & Walker, R. G. (1982). Structures and sequences in clastic rocks. SEPM Short Course Notes, 9, 1–249.Google Scholar
  48. Harris, T. M. (1926). The Rhaetic flora of Scoresby Sound East Greenland. Saertryk af. Meddelelser om Grønland, 48, 45–147.Google Scholar
  49. Harris, T. M. (1958). Forest fire in the Mesozoic. Journal of Ecology, 46, 447–453.CrossRefGoogle Scholar
  50. Havlik, P., Aiglstorfer, M., El Atfy, H., & Uhl, D. (2013). A peculiar bone-bed from the Norian Stubensandstein (Löwenstein-Formation, Late Triassic) of southern Germany and its palaeoenvironmental interpretation. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 269, 321–337.CrossRefGoogle Scholar
  51. Hu, G., & Bao, Z. (2008). Sedimentary facies of fourth and fifth members of upper Triassic Xujiahe formation, Sichuan basin. Journal of Liaoning Technical University (Natural Science), 27, 508–511 (in Chinese with English abstract).Google Scholar
  52. Hu, F. S., Brubaker, L. B., Gavin, D. G., Higuera, P. E., Lynch, J. A., Rupp, T. S., & Tinner, W. (2006). How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change, 11, 829–846.CrossRefGoogle Scholar
  53. Huang Q. S.. (1988). Vertical diversities of the Early Jurassic plant fossils in the Middle–Lower Changjiang Valley. Geological Review, 1988–03, 193–202. (in Chinese, with English abstract).Google Scholar
  54. Huang, Q. S. (1995). Paleoclimate and coal–forming characteristics of the Late Triassic Xujiahe stage in northern Sichuan. Geological Review, 41, 92–99 (in Chinese, with English abstract).Google Scholar
  55. Huang, Q. S., & Lu, S. M. (1992). The primary studies on the paleoecology of the Late Triassic Xujiahe flora in eastern Sichuan. Earth Science – Journal of China University of Geosciences, 17, 329–335 (in Chinese with English abstract).Google Scholar
  56. Jackson, W. D. (1968). Fire, air, water and Earth—an elemental ecology of Tasmania. Proceedings of the Ecological Society of Australia, 3, 9–16.Google Scholar
  57. Jiang, Z. X., Tian, J. J., Chen, G. J., Li, X. Z., & Zhang, M. L. (2007). Sedimentary characteristics of the Upper Triassic in Western Sichuan Foreland Basin. Journal of Palaeogeography, 9, 143–154 (in Chinese with English abstract).Google Scholar
  58. Jiang, Y., Tao, Y., Shen, Y., Jiang, C., Wang, Z. K., Li, S., & Zhang, G. (2011). A new understanding of sedimentary facies of sandstones in the 2nd, 4th, and 6th members of the Upper Triassic Xujiahe Formation in the large-scale middle Sichuan Basin. Natural Gas Industry, 31, 39–50 (in Chinese with English abstract).Google Scholar
  59. Johnson, E. A., Miyanishi, K., & Weir, J. M. H. (1998). Wildfires in the western Canadian boreal forest: landscape patterns and ecosystem management. Journal of Vegetation Science, 9, 603–610.CrossRefGoogle Scholar
  60. Jones, T. P., Ash, S., & Figueiral, I. (2002). Triassic charcoal from the fossil Forest of Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 127–139.CrossRefGoogle Scholar
  61. Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., & Hu, F. S. (2013). Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS, 110, 13055–13060.CrossRefGoogle Scholar
  62. Krawchuk, M. A., Moritz, M. A., Parisien, M.–. A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: the current and future distribution of wildfire. PLoS One, 4, e5102.  https://doi.org/10.1371/journal.pone.0005102.CrossRefGoogle Scholar
  63. Kubik, R., Uhl, D., & Marynowski, L. (2015). Evidence of wildfires during deposition of the Upper Silesian Keuper succession. Annales Societatis Geologorum Poloniae, 85, 685–696.Google Scholar
  64. Kumar, M., Tewari, R., Chatterjee, S., & Mehrotra, N. C. (2011). Charcoalified plant remains from the Lashly Formation of Allan Hills, Antarctica: evidence of forest fire during the Triassic period. Episodes, 34, 109–118.Google Scholar
  65. Leckie, D. A., & Walker, R. G. (1982). Storm–and tide–dominated shorelines in the Cretaceous Moosebar—lower gates interval—outcrop equivalents of deep basin gas trap in western Canada. American Association of Petroleum Geologists Bulletin, 66, 138–157.Google Scholar
  66. Li, P. J. (1964). Fossil plants from the Hsuchiaho Kwangyuan Series of Kwangyuan, northern Sichuan. Memoirs of the Institute of Geology and Palaeontology, Academica Sinica, 3, 101–178 (in Chinese with English summary).Google Scholar
  67. Li, L., Wang, Y., Liu, Z., Zhou, N., & Wang, Y. (2016). Late Triassic palaeoclimate and palaeoecosystem variations inferred by palynological record in the northeastern Sichuan Basin, China. Paläontologische Zeitschrift, 90, 327.  https://doi.org/10.1007/s12542-016-0309-5.CrossRefGoogle Scholar
  68. Liu, X. H., & Zhou, P. Q. (1982). Upper Triassic Series. In Continental Mesozoic Stratigraphy and Palaeontology in Sichuan Basin of China. Part I. Stratigraphy. (pp. 5–56). Chengdu: Sichuan People’s Publishing House. (In Chinese).Google Scholar
  69. Liu, D., Yang, Z., Yang, Y. D., Bao, Y. Y., & Liu, B. (2009). Characteristic of the Flora in the Zhenzhuchong Formation and the Jurassic–Triassic boundary in the Sichuan Basin. Journal of Earth Sciences and Environment, 31, 254–259 (in Chinese with English abstract).Google Scholar
  70. Luo, Q. (2011). Understandings of Upper Triassic sedimentary facies in the Sichuan Basin. Journal Natural Gas Industry, 31, 1245 (in Chinese with English abstract).Google Scholar
  71. Mao, Q., Zheng, R. C., Zou, G. F., Yang, K., Wang, F., & Zhang, Z. Y. (2012). Upper Triassic sedimentary facies and sedimentary evolution in the north eastern Sichuan foreland basin. Sedimentary Geology and Tethyan Geology, 32, 1–11 (in Chinese with English abstract).Google Scholar
  72. Marsaglia, K. M., & Klein deV, G. (1983). The paleogeography of Paleozoic and Mesozoic storm depositional systems. Journal of Geology, 91, 117–142.Google Scholar
  73. Marynowski, L., & Simoneit, B. R. T. (2009). Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. PALAIOS, 24, 785–798.CrossRefGoogle Scholar
  74. Marynowski, L., Scott, A. C., Zaton, M., Parent, H., & Garrido, A. C. (2011). First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the middle Jurassic of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 129–136.CrossRefGoogle Scholar
  75. McElwain, J. C., Beerling, D. J., & Woodward, F. I. (1999). Fossil plants and global warming at the Triassic-Jurassic boundary. Science, 285, 1386–1390.CrossRefGoogle Scholar
  76. Meng, F. S., Chen, H. M., & Li, X. B. (2005a). Study of the non-marine Triassic-Jurassic boundary in the Sichuan Basin. Journal of Stratigraphy, 29, 565–572 (in Chinese).Google Scholar
  77. Meng, Q. R., Wang, E., & Hu, J. M. (2005b). Mesozoic sedimentary evolution of the northwest Sichuan Basin: implication for continued clockwise rotation of the South China block. GSA Bulletin, 117, 396–410.CrossRefGoogle Scholar
  78. Moss, P. T., & Kershaw, A. P. (2000). The last glacial cycle from the humid tropics of northeastern Australia: Comparison of a terrestrial and a marine record. Palaeogeography Palaeoclimatology Palaeoecology, 155, 155–176.CrossRefGoogle Scholar
  79. Patterson III, W. A., Edwards, K. J., & Maguire, D. J. (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6, 3–23.CrossRefGoogle Scholar
  80. Petersen, H. I., & Lindstrom, S. (2012). Synchronous wildfire activity rise and mire deforestation at the Triassic–Jurassic boundary. PLoS One, 7, 1–15.Google Scholar
  81. Pole, M. (2010). Ecology of Paleocene-Eocene vegetation at Kakahu, South Canterbury, New Zealand. Palaeontologia Electronica, 13(2), 14A 29p; http://palaeo-electronica.org/2010_2/227/index.html.Google Scholar
  82. Pole, M., & Philippe, M. (2010). Cretaceous plant fossils of Pitt Island, the Chatham group, New Zealand. Alcheringa, 34, 231–263.CrossRefGoogle Scholar
  83. Pole, M., Wang, Y., Bugdaeva, E. V., Dong, C., Tian, N., Li, L., & Zhou, N. (2016). The rise and demise of Podozamites in east Asia—An extinct conifer life style. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 97–109.CrossRefGoogle Scholar
  84. Punina, T. A. (2007). Classification and correlation of Triassic limestones in Sikhote-Alin on the basis of corals. In J. M. Dickins, Y. Zunyi, W. Hongfu, S. G. Lucas, & S. K. Acharyya (Eds.), Late Palaeozoic and early Mesozoic Circum-Pacific events and their global correlation (pp. 186–192). Cambridge: Cambridge University Press.Google Scholar
  85. Qian, Z. J., & Zhong, K. X. (2009). Sedimentary facies and reservoir features of the Xujiahe Formation in northeastern Sichuan basin. Natural Gas Industry, 29, 9–13 (in Chinese with English abstract).Google Scholar
  86. Reineck, H.–. E., & Singh, I. B. (1975). Depositional sedimentary environments–with reference to terrigenous clastics. Berlin: Springer-Verlag.Google Scholar
  87. Rief, W. E. (1982). Muschelkalk/Keuper bone-beds (Middle Triassic, SW Germany)—Storm condensation in a regressive cycle. In G. Einsele & A. Seilacher (Eds.), Cyclic and event stratification (pp. 299–235). New York: Springer-Verlag.CrossRefGoogle Scholar
  88. Sander, P. M., & Gee, C. T. (1990). Fossil charcoal: Techniques and applications. Review of Palaeobotany and Palynology, 63, 269–279.CrossRefGoogle Scholar
  89. Scasso, R. A., Dozo, M. T., Cuitiño, J. I., & Bouza, P. (2012). Meandering tidal–fluvial channels and lag concentration of terrestrial vertebrates in the fluvial-tidal transition of an ancient estuary in Patagonia. Latin American Journal of Sedimentology and Basin Analysis, 19, 27–45.Google Scholar
  90. Scotese, C. R. (2014). The PALEOMAP Project PaleoAtlas for ArcGIS, version 2, volume 3, Triassic and Jurassic Plate Tectonic, Paleogeographic, and Paleoclimatic reconstructions, Maps 33–48, PALEOMAP Project, Arlington.Google Scholar
  91. Scott, A. C. (2000). The pre-quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 281–329.CrossRefGoogle Scholar
  92. Scott, A. C. (2010). Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 11–39.CrossRefGoogle Scholar
  93. Scott, A. C., Bowman, D. M. J. S., Bond, W. J., Pyne, S. J., & Alexander, M. E. (2014). Fire on Earth: an introduction. Hoboken: Blackwell-Wiley.Google Scholar
  94. Shi, Z., Xie, W., Ma, S., & Li, G. (2012). Transgression sedimentary records of the Members 4–6 of Upper Triassic Xujiahe Formation in Sichuan Basin. Journal of Palaeogeography, 14, 583–595 (in Chinese with English abstract).Google Scholar
  95. Singh, G., & Geissler, E. A. (1985). Late Cainozoic history of vegetation, fire, lake levels, and climate at Lake George, New South Wales. Philosophical Transactions of the Royal Society of London, B311, 379–477.CrossRefGoogle Scholar
  96. Sriver, R.L. & Huber, M. (2007). Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580.Google Scholar
  97. Stewart, W. N., & Rothwell, G. W. (1993). Palaeobotany and the evolution of plants (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  98. Swain, A. M. (1973). A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Quaternary Research, 3, 383–396.CrossRefGoogle Scholar
  99. Sze, H. C., & Lee, H. H. (1952). Jurassic plants from Szechuan. Palaeontologica Sinica, 135, 16–38 (In Chinese and English).Google Scholar
  100. Tan, X. C., Xia, Q. S., Chen, J. S., Li, L., Liu, H., Luo, B., Xia, J., & Yang, J. J. (2013). Basin-scale sand deposition in the Upper Triassic Xujiahe Formation of the Sichuan Basin, Southwest China: sedimentary framework and conceptual model. Journal of Earth Science, 24, 89–103.CrossRefGoogle Scholar
  101. Tanner, L. H., Wang, X., & Morabito, A. C. (2012). Fossil charcoal from the Middle Jurassic of the Ordos Basin, China and its paleoatmospheric implications. Geoscience Frontiers, 3, 493–502.CrossRefGoogle Scholar
  102. Tian, N., Wang, Y., Yang, X., Ni, Q., & Jiang, Z. (2008). Preliminary study on Late Triassic to Early Jurassic strata and floral variation in Hechuan region of Chongqing, southern Sichuan Basin. Global Geology, 11, 125–129.Google Scholar
  103. Tian, N., Wang, Y., Philippe, M., & Jiang, Z. (2016). New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 65–75.CrossRefGoogle Scholar
  104. Traverse, A. (2007). Paleopalynology (2nd ed.). Dordrecht: Springer.Google Scholar
  105. Uhl, D., & Montenari, M. (2011). Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geological Journal, 46, 34–41.CrossRefGoogle Scholar
  106. Umbanhowar, C. E., & McGrath, M. J. (1998). Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. Holocene, 8, 341–346.CrossRefGoogle Scholar
  107. Upchurch Jr., G. R. (1995). Dispersed angiosperm cuticles: their history, preparation, and application to the rise of angiosperms in Cretaceous and Paleocene coals, southern western interior of North America. International Journal of Coal Geology, 28, 161–227.CrossRefGoogle Scholar
  108. Walker, R. G., & Plint, A. G. (1992). Wave and storm-dominated shallow marine systems. In R. G. Walker & N. P. James (Eds.), Facies models: response to sea level change (pp. 219–238). Newfoundland: Geological Association of Canada.Google Scholar
  109. Wang, Y. D., Fu, B. H., Xie, X. P., Huang, Q. S., Li, K., Li, G., Liu, Z. S., Yu, J. X., Pan, Y. H., Tian, N., & Jiang, Z. K. (2010). The terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China (pp. 1–216). Hefei: University of Science and Technology of China Press (in Chinese and English).Google Scholar
  110. Whitlock, C., & Larsen, C. (2001). Charcoal as a fire proxy. In J. P. Smol, H. J. B. Birks, & W. M. (Eds.), Last tracking environmental change using lake sediments (pp. 75–97). Dordrecht: Springer.Google Scholar
  111. Woolfe, K. J. (1993). Devonian depositional environments in the Darwin Mountains: marine or non-marine? Antarctic Science, 5, 211–220.CrossRefGoogle Scholar
  112. Woolfe, K. J., Long, J. A., Bradshaw, M. A., Harmsen, F. J., & Kirkbride, M. P. (1990). Fish-bearing Aztec siltstone (Devonian) in the Cook Mountains, Antarctica. New Zealand Journal of Geology & Geophysics, 33, 511–514.CrossRefGoogle Scholar
  113. Wu, S. Q. (1999). Upper Triassic plants from Sichuan. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica, 14, 1–69 (in Chinese, with English abstract).Google Scholar
  114. Wu, S. Q., Ye, M. N., & Li, B. X. (1980). Upper Triassic and Lower and Middle Jurassic plants from the Hsiangchi group, western Hubei. Memoirs Nanjing Institute of Geology and Paleontology, Academica Scientia, 14, 64–131 (in Chinese).Google Scholar
  115. Xia, Z., Yuan, C., & Li, R. (1982). Jurassic system. In Working Group of Continental Mesozoic Stratigraphy and Palaeontology in Sichuan Basin (Eds.), Continental Mesozoic stratigraphy and Palaeontology in Sichuan Basin, Vol 1. (pp. 57–150). Chengdu: People's Publishing House. (in Chinese).Google Scholar
  116. Ye, M. N., Liu, X. Y., Huang, G. Q., Chen, L. X., Peng, S. J., Xu, A. F., & Zhang, B. X. (1986). Late Triassic and Early–Middle Jurassic fossil plants from northeastern Sichuan (p. 141). Hefei: Anhui Science and Technology Publishing House (in Chinese with English summary).Google Scholar
  117. Yuzhen, L., Chao, N., Jianyong, Z., Mingfeng, G., Qiufen, S., Zhishang, L., & Yongguang, X. (2013). Favorable sedimentary facies zones and lithofacies palaeogeography of Middle Triassic Leikoupo Formation in Sichuan Basin. Marine Origin Petroleum Geology, 18, 26–32 (in Chinese with English summary).Google Scholar
  118. Zhao, X., Hu, D., Zhang, W., Zhang, Y., Tang, B., & Lin, H. (2013). Tide-dominated estuarine and deltaic deposition of the Upper Triassic Xujiahe Formation in the Yuanba area, Sichuan Basin. Acta Geologica Sinica, 87, 1748–1762 (in Chinese with English abstract).Google Scholar
  119. Zheng, R. C., Zhu, R., Dai, C., Gao, H. C., & Zhai, W. (2008). Depositional sequence features during coupling process between basin and mountain of the Xujiahe Formation of Upper Triassic in the Foreland Basin, NE Sichuan. Acta Geologica Sinica, 82, 1077–1087 (in Chinese).Google Scholar
  120. Zheng, R. C., Dai, C., Zhu, R., Zhai, W., Gao, H. C., & Gen, G. W. (2009). Sequence-based lithofacies and paleogeographic characteristics of Upper Triassic Xujiahe Formation in Sichuan Basin. Geological Review, 55, 484–495 (in Chinese).Google Scholar
  121. Zheng, R. C., Dai, Z. C., Luo, Q. L., Wang, X. P., Lei, G. M., Jiang, H., & Chen, H. (2011). Sedimentary system of the upper Triassic Xujiahe formation in the Sichuan Forelandoid Basin. Natural Gas Industry, 31, 16–24 (in Chinese with English abstract).Google Scholar
  122. Zhou, Z. Y. (1995). Jurassic floras. In X. X. Li (Ed.), Fossil floras in China through geological ages (pp. 260–308). Guangzhou: Guangdong Science and Technology Press.Google Scholar
  123. Zhu, R., Bai, B., Liu, L., Su, L., Gao, Z., & Luo, Z. (2011). Research on standardization of continental sequence stratigraphy and palaeogeography: a case study from the Upper Triassic Xujiahe Formation in Sichuan Basin. Earth Science Frontiers, 18, 131–143 (in Chinese with English abstract).Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mike Pole
    • 1
    Email author
  • Yongdong Wang
    • 1
    Email author
  • Chong Dong
    • 2
  • Xiaoping Xie
    • 3
  • Ning Tian
    • 4
  • Liqin Li
    • 1
  • Ning Zhou
    • 1
    • 5
  • Ning Lu
    • 1
    • 6
  • Aowei Xie
    • 1
    • 5
  • Xiaoqing Zhang
    • 1
    • 5
  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  2. 2.Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  3. 3.School of Geography and TourismQufu Normal UniversityRizhaoChina
  4. 4.College of Paleontology|Shenyang Normal UniversityShenyangChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.University of Science and Technology of ChinaHefeiChina

Personalised recommendations