Palaeobiodiversity and Palaeoenvironments

, Volume 98, Issue 2, pp 177–204 | Cite as

Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, south India)

  • Shreya Mishra
  • Neha Aggarwal
  • Neerja Jha
Original Paper


In the present study, palynological and palaeoenvironmental investigations have been carried out on a 601 m-thick sedimentary sequence intersected by borehole MCP-8 (Sattupalli-Chintalapudi coal belt, Chinatalapudi sub-basin, Godavari Graben). These studies have been carried out for the dating and correlation of sediments to understand the biostratigraphy and climatic change documented by terrestrial plant ecosystem across the Permian-Triassic boundary interval. The palynological investigation revealed the presence of five distinct floral assemblages (Assemblages I–V). Assemblages I–III (Guadalupian-Lopingian) represent Raniganj palynoflora (591.27–157.20 m), whereas Assemblages IV–V (Induan) represent Panchet palynoflora (137.79–136.08 m). The Gondwanan flora underwent a considerable change after the end-Permian mass extinction event. The late Permian glossopterids, conifer and cordaites dominated palynoflora was replaced by the lycopsids and few forms of peltasperms and conifers during Early Triassic. The decline in the glossopterid diversity and abundance along with concomitant rise in the lycopsids suggest a gradual but obvious palynofloral and environmental change across the Permian-Triassic boundary. Palynofacies studies have been carried with regards to reconstruct palaeoenvironment and palaeovegetation. These studies predict a thick closed forest cover during the deposition of the Raniganj palynoflora (late Permian), dominated by striate glossopterid and non-striate conifer and peltasperm pollen grains, which were the main peat-forming elements and the vegetation of the hinterland. The Panchet (Early Triassic) palynoflora was dominated by cingulate cavate spore bearing lycopsids and arborescent to sub-arborescent plants of conifers bearing taeniate bisaccates forming an open forest. On the basis of recovered palynoflora and palynofacies studies, the upper Permian (Guadalupian and lower Lopingian) deposits have been inferred as fluvio lacustrine while extensive peat-forming swamp dominating conditions prevailed during Changhsingian times. The Lower Triassic deposits represent hot-arid conditions along the braided river systems.


Permian-Triassic floral turnover Gondwana Chintalapudi sub-basin Palaeobiodiversity Palynofacies analysis 



The authors are thankful to Prof. Sunil Bajpai, Director, Birbal Sahni Institute of Palaeobotany, Lucknow for permitting to publish the work and for extended facilities. Thanks are also due to Sri R. L. Khwaja, Former Chairman, Singareni Collieries Company Ltd. (SCCL), Kothagudem for providing the financial and personnel assistance during the field work. The editor and two anonymous reviewers are also gratefully acknowledged for their valuable suggestion that significantly improved the article.

Compliance with ethical standards

Conflict of interest:

The authors declare that they have no conflict of interest.


  1. Aitken, G. A. (1998). A palynological and palaeoenvironmental analysis of Permian and early Triassic sediments of the Ecca and the Beaufort groups, Northern Karoo Basin, South Africa. Unpublished Ph.D. Thesis, University of the Witwatersrand, Johannesburg, pp. 1–249.Google Scholar
  2. Abu Hamad, A. M. B., Kerp, H., Vörding, B., & Bandel, K. (2008). A late Permian flora with Dicroidium from the Dead Sea region, Jordan. Review of Palaeobotany and Palynology, 268, 85–130.Google Scholar
  3. Backhouse, J. (1991). Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology, 67, 237–314.Google Scholar
  4. Backhouse, J. (1993). Palynology and correlation of Permian sediments in the Perth, Collie and Officer basins, Western Australia. Geological Survey of Western Australia Report, 34, 111–128.Google Scholar
  5. Balme, B. E. (1970). Palynology of Permian and Triassic strata in the Salt Range and Surghar Range, western Pakistan. Department of Geology, University Press of Kansas Special Publication, 4, 305–453.Google Scholar
  6. Balme, B. E. (1995). Fossil in situ spores and pollen grains: An annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323.Google Scholar
  7. Bamford, M. K. (2004). Diversity of the Woody vegetation of Gondwanan Southern Africa. Gondwana Research, 7, 53–164.Google Scholar
  8. Baranyi, V., Pálfy, J., Görög, Á., Riding, J. B., & Raucsik, B. (2016). Multiphase response of palynomorphs to the Toarcian oceanic anoxic event (Early Jurassic) in the Réka Valley section, Hungary. Review of Palaeobotany and Palynology, 235, 51–70.Google Scholar
  9. Batten, D. J. (1996). Palynofacies and paleoenvironmental interpretation. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications (Vol. 3, pp. 1011–1064). Dallas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
  10. Benton, M. J., & Newell, A. J. (2014). Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 25, 1308–1337.Google Scholar
  11. Berner, R. A. (2006). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664.Google Scholar
  12. Berner, R. A. (2009). Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. American Journal of Science, 309, 603–606.Google Scholar
  13. Bharadwaj, D. C. (1975). Palynology in biostratigraphy and palaeoecology of Indian Lower Gondwana Formations. Palaeobotanist, 22, 150–157.Google Scholar
  14. Bharadwaj, D. C., Tiwari, R. S., & Anand-Prakash. (1978). Palynology of Bijori Formation (Upper Permian) in Satpura Gondwana Basin, India. Palaeobotanist, 25, 70–78.Google Scholar
  15. Bharadwaj, D. C., Tiwari, R. S., & Anand-Prakash. (1979). Permo-Triassic palynostratigraphy and lithostratigraphical characteristic in Damodar Basin, India. Biological Memoirs, 4, 49–82.Google Scholar
  16. Bharadwaj, D. C., Srivastava, S. C., Ramanamurty, B. V., & Jha, N. (1987). Palynology of Kamthi Formation from Ramagundam-Mantheni area, Godavari Graben, India. Palaeobotanist, 35, 318–330.Google Scholar
  17. Biswas, S. K. (1999). A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects, In A. Sahni, R.S. Loyal (Eds.), Gondwana assembly: New issues and perspectives. Proceedings of Indian National Science Academy Special Issue, pp. 261–283.Google Scholar
  18. Biswas, S. K., Bhasin, A. L., & Ram, J. (1993). Classification of Indian sedimentary basins in the framework of plate tectonics. Proceedings Second Seminar on Petroliferous Basins of India, Indian Petroleum Publication, Dehradun, 1, 1–46.Google Scholar
  19. Blandford, W. T. (1872). Description of the sandstone in the neighbourhood of the first barrier on the Godavari and in the country between the Godavari and Ellore. Records of Geological Survey of India, 6, 23–69.Google Scholar
  20. Carvalho, M. D. A., Ramos, R. R. C., Crud, M. B., Witovisk, L., Kellner, A. W., Silva, H. D. P., Grillo, O. N., Riff, D., & Romano, P. S. (2013). Palynofacies as indicators of paleoenvironmental changes in a Cretaceous succession from the Larsen Basin, James Ross Island, Antarctica. Sedimentary Geology, 295, 53–66.Google Scholar
  21. Cascales-Miñana, B., Cleal, C. J., & Diez, J. B. (2013). What is the best way to measure extinction? A reflection from the palaeobotanical record. Earth-Science Reviews, 124, 126–147.Google Scholar
  22. Chakraborty, C., Mandal, N., & Ghosh, S. K. (2003). Kinematics of the Gondwana basins of peninsular India. Tectonophysics, 377, 299–324.Google Scholar
  23. Chakraborty, S. (2003). Miofloral assemblage of the subsurface Lower Gondwana rocks of Permian in parts of Mahanadi Basin, India. Acta Palaeontologica Sinica, 42, 13–21.Google Scholar
  24. Chatterjee, R., Ghosh, A. K., Ratan, K., & Rao, G. M. N. (2014). Dwarfism and Lilliput effect: a study on the Glossopteris from the late Permian and early Triassic of India. Current Science, 107, 1735–1744.Google Scholar
  25. Cirilli, S., Radrizzani, C. P., Ponton, M., & Radrizzani, S. (1998). Stratigraphical and palaeoenvironmental analysis of the Permian-Triassic transition in the Badia Valley (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 85–113.Google Scholar
  26. Dawit, L. E. (2010). Adigrat sandstone in northern and central Ethiopia: Stratigraphy, facies, depositional environments and palynology. Ph.D. Thesis, Technische Universität Berlin, pp. 1–166.Google Scholar
  27. Dawit, L. E. (2014). Permian and Triassic microflora assemblages from the Blue Nile Basin, central Ethiopia. Journal of African Earth Sciences, 99, 408–426.Google Scholar
  28. Dawit, E., & Bussert, R. (2009). Stratigraphy and facies architecture of adigrat sandstone, Blue Nile Basin, Central Ethiopia, Zentralblatt Geol. Paläonttol., I(3/4), 217–232.Google Scholar
  29. Eshet, Y., Rampino, M. R., & Visscher, H. (1995). Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology, 23, 967–970.Google Scholar
  30. Farabee, M. J., Taylor, E. L., & Taylor, T. N. (1990). Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology, 65, 257–265.Google Scholar
  31. Flügel, E. (2002). Triassic reef patterns. Society for Sedimentary Geology, Special Publication.Google Scholar
  32. Foster, C. B. (1982a). Spore-pollen assemblages of the Bowen Basin, Queensland (Australia): Their relationship to the Permian/Triassic boundary. Review of Palaeobotany and Palynology, 36, 165–183.Google Scholar
  33. Foster, C. B. (1982b). Biostratigraphic potential of Permian spore-pollen flotras from GSQ Mundubbera 5 and 6, Taroom trough. Queensland Government Mining Journal, 83, 82–96.Google Scholar
  34. Foster, C. B., & Afonin, S. A. (2005). Abnormal pollen grains: An outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. Journal of the Geological Society, 162, 653–659.Google Scholar
  35. Gastaldo, R. A., Ferguson, D. K., Walther, H., & Rabold, J. M. (1996). Criteria to distinguish parautochthonous leaves in Tertiary alluvial channel-fills. Review of Palaeobotany and Palynology, 91, 1–21.Google Scholar
  36. Gastaldo, R. A., Adendorff, R., Bamford, M., Lavanderia, C. C., Neveling, J., & Sims, H. (2005). Taphonomic trends of macrofloral assemblages across the Permian-Triassic boundary, Karoo Basin, South Africa. PALAIOS, 20, 479–497.Google Scholar
  37. Glasspool, I. J., & Scott, A. C. (2010). Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3, 627–630.Google Scholar
  38. Golonka, J., & Ford, D. (2000). Pangean (Late Carboniferous-Middle Jurassic) palaeoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 1–34.Google Scholar
  39. Grauvogel-Stamm, L. (1999). Pleuromeia sternbergii (Münster) Corda, ein characteristische Pflanze des deutschen Buntsandsteins. In N. Hauschke & V. W. Verlag (Eds.), Trias - Eine ganz andere Welt. Europa im frühen Erdmittelalter (pp. 271–281). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  40. Gutiérrez, P. R., Zavattieri, A. M., Ezpeleta, M., & Astini, R. A. (2011). Palynology of the La Veteada Formation (Permian) in the Sierra De Narva´ ez, Catamarca province, Argentina. Ameghiniana, Torno, 48, 154–176.Google Scholar
  41. Haig, D. W., Martin, S. K., Mory, A. J., McLoughlin, S., Backhouse, J., Berrell, R. W., Kear, B. P., Hall, R., Foster, C. B., Shi, G. R., & Bevan, J. C. (2015). Early Triassic (early Olenekian) life in the interior of east Gondwana: Mixed marine-terrestrial biota from the Kockatea shale, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 511–533.Google Scholar
  42. Hankel, O. (1992). Late Permian to Early Triassic microfloral assemblages from the Maji ya Chumvi Formation, Kenya. Review of Palaeobotany and Palynology, 72, 129–147.Google Scholar
  43. Hermann, E., Hochuli, P. A., Méhay, S., Bucher, H., Brühwiler, T., Ware, D., Hautmann, M., Roohi, G., Rehman, K., & Yaseen, A. (2011). Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records. Sedimentary Geology, 234, 19–41.Google Scholar
  44. Hermann, E., Hochuli, P. A., Bucher, H., & Roohi, G. (2012). Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology, 169, 61–95.Google Scholar
  45. Hermann, E., Kürschner, W. M., Kerp, H., Benjamin bomfleur, B., Hochuli, P. A., Bucher, H., Ware, D., & Roohi, G. (2015). Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Research, 27(3), 911–924.Google Scholar
  46. Hochuli, P. A., Hermann, E., Vigran, J. O., Bucher, H., & Weissert, H. (2010). Rapid demise and recovery of plant ecosystem across the end-Permian extinction event. Global and Planetary Change, 74, 144–155.Google Scholar
  47. Hübers, M., Kerp, H., Schneider, J. W., & Gaitzsch, B. (2013). Dispersed plant mesofossils from the Middle Missisipian of eastern Germany: Bryophytes, pteridophytes and gymnosperms. Review of Palaeobotany and Palynology, 193, 38–56.Google Scholar
  48. Jan, I. U., Stephenson, M. H., & Khan, F. R. (2009). Palynostratigraphic correlation of the Sardhai Formation (Permian) of Pakistan. Review of Palaeobotany and Palynology, 158, 72–82.Google Scholar
  49. Jasper, A., Uhl, D., Agnihotri, D., Tewari, R., Pandita, S. K., Wanderley Benicio, J. R., Fabbrin Pires, E., Stock Da Rosa, Á. A., Bhat, G. D., & Pillai, S. S. K. (2016). Evidence of wildfires in the Late Permian (Changsinghian) Zewan Formation of Kashmir, India. Current Science, 110(3), 419–423.Google Scholar
  50. Jha, N. (2002). Palynologial dating of sediments from Gattugudem area, Chintalapudi sub-basin, Andhra Pradesh. Geophytology, 30, 85–89.Google Scholar
  51. Jha, N. (2004). Palynological dating of coal-bearing sediments from the Bottapagudem area, Chintalapudi sub-basin, Andhra Pradesh. Palaeobotanist, 53, 61–67.Google Scholar
  52. Jha, N. (2006). Permian palynology from India and Africa: A phytogeographical paradigm. Journal of the Palaeontological Society of India, 51, 43–55.Google Scholar
  53. Jha, N. (2008). Permian-Triassic palynofloral transition in the Sattupalli area, Chintalapudi sub-basin, Godavari Graben, Andhra Pradesh, India. Journal of the Palaeontological Society of India, 52, 159–168.Google Scholar
  54. Jha, N., & Aggarwal, N. (2012). Permian–Triassic palynostratigraphy in Mailaram area, Godavari Graben, Andhra Pradesh, India. Journal of Earth System Science, 121, 1257–1285.Google Scholar
  55. Jha, N., & Aggarwal, N. (2015). Peat-forming environment of coal-bearing Permian sediments in Kachinapalli area of Godavari Graben, India. Revista Brasileira de Paleontologia, 18, 239–250.Google Scholar
  56. Jha, N., & Srivastava, S. C. (1996). Kamthi Formation—Palynofloral diversity. In P. K. S. Guha, S. Sengupta, K. Ayyasami, & R. N. Ghosh (Eds.), Ninth international Gondwana symposium (pp. 355–368). Hyderabad: Geological Survey of India. Oxford and IBH Publishing Co. New Delhi-Calcutta.Google Scholar
  57. Jha, N., Chary, M. B., & Aggarwal, N. (2012). Permian Triassic palynofloral transition in Chintalapudi area, Godavari Graben, Andhra Pradesh, India. Journal of Earth System Science, 121, 1287–1303.Google Scholar
  58. Jha, N., Sabina, P. K., Aggarwal, N., & Mahesh, S. (2014). Late Permian palynology and depositional environment of Chintalapudi sub basin, Pranhita–Godavari basin, Andhra Pradesh, India. Journal of Asian Earth Sciences, 79, 382–399.Google Scholar
  59. Jha, N., Saleem, M., & Aggarwal, N. (2011). Palynostratigraphy of Kachinapalli block, Lingala-Koyagudem Coalbelt, Godavari Graben, Andhra Pradesh, India. Minetech, 32, 51–64.Google Scholar
  60. Jin, Y. G., Wang, Y., Wang, W., Shang, Q. H., Cao, C. Q., & Erwin, D. H. (2000). Pattern of marine mass extinction near the Permian-Triassic boundary in south China. Science, 289, 432–436.Google Scholar
  61. Korte, C., Kozur, H. W., Joachimski, M. M., Strauss, H., Veizer, J., & Schwark, L. (2004). Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Sciences, 93, 565–581.Google Scholar
  62. Krassilov, V., & Karasev, E. (2009). Palaeofloristic evidence of climate change near and beyond the Permian-Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 326–336.Google Scholar
  63. Krings, M., Klavins, S. D., DiMichele, W. A., Kerp, H., & Taylor, T. N. (2005). Epidermal anatomy of Glenopteris splendens Sellards nov. emend., an enigmatic seed plant from the Lower Permian of Kansas (U.S.A.) Review of Palaeobotany and Palynology, 136(3–4), 159–180.Google Scholar
  64. Kustatscher, E., Wachtler, M., & Cittert, K.-v. (2010). Lycophytes from the Middle Triassic (Anisian) locality Kühwiesenkopf (Monte Prà Della Vacca) in the Dolomites. Palaeontology, 53(3), 595–626.Google Scholar
  65. Kyle, R. A. (1977). Palynostratigraphy of the Victoria Group, south Victoria Land, Antarctica. Newzealand Journal of Geolagy and Geophysics, 20, 1081–1102.Google Scholar
  66. Lakshminarayana, G. (1996). Stratigraphy and structural framework of the Gondwana sediments in the Pranhita–Godavari Valley, Andhra Pradesh. In P. K. S. Guha, S. Sengupta, K. Ayyasami, & R. N. Ghosh (Eds.), Ninth international Gondwana symposium (pp. 311–330). Hyderabad: Geological Survey of India. Oxford and IBH Publishing Co. New Delhi-Calcutta.Google Scholar
  67. Lele, K. M., & Srivastava, A. K. (1980). Lower Gondwana (Karharbari to Raniganj Stage) mioflora assemblage from the Auranga coalfield and the stratigraphic significance. Proceedings IV International Palynological Conference, Lucknow, pp. 152–164.Google Scholar
  68. Leziné, A. M., Zheng, W., Braconnot, P., & Krinner, G. (2009). Late Holocene plant and climate evolution at Lake Yoa, northern Chad: Pollen data and climate simulations. Climate Past, 7, 1351–1362.Google Scholar
  69. Lindström, S., & McLoughlin, S. (2007). Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains. Antarctica: Implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology, 145, 89–122.Google Scholar
  70. Lindström, S., McLoughlin, S., & Drinnan, A. N. (1997). Intraspecific variation of Taeniate bisaccate pollen within Permian Glossopterid Sporangia, from the Prince Charles Mountains, Antarctica. International Journal of Plant Sciences, 158(5), 673–684.Google Scholar
  71. Looy, C. V., Brugman, W. A., Dilcher, D. L., & Visscher, H. (1999). The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proceedings of the National Academy of Sciences, 96, 13857–13862.Google Scholar
  72. Mahesh, S. K., Kavali, P. S., & Bilwa, M. (2007). Permian Palynomorphs from the sub surface sediments of Lower Gondwana of Wardha Valley Coalfield, Maharashtra, India. Gondwana Geological Magazine, 23, 63–67.Google Scholar
  73. Marques-Toigo, M. (1991). Palynobiostratigraphy of the southern Brazilian Neopalaeozoic Gondwana sequence. São Paulo: Institute of Geoscience, USP.Google Scholar
  74. McElwain, J. C., & Punyasena, S. (2007). Mass extinction events and the plant fossil record. Trends in Ecology & Evolution, 22, 548–557.Google Scholar
  75. McLoughlin, S. (1993). Plant fossil distributions in some Australian Permian non-marine sediments. Sedimentary Geology, 85, 601–619.Google Scholar
  76. McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271–300.Google Scholar
  77. McLoughlin, S., Lindström, S., & Drinnan, A. N. (1997). Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: New evidence from the Amery group, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 9, 281–298.Google Scholar
  78. McManus, H. A., Taylor, E. L., Taylor, T. N., & Collinson, J. W. (2002). A petrified (Glossopteris) flora from Collinson Ridge, Central Transantarctic Mountains: Late Permian or Early Triassic? Review of Palaeobotany and Palynology, 120, 233–246.Google Scholar
  79. Metcalfe, I., Nicoll, R. S., Willink, R., Ladjavadi, M., & Grice, K. (2013). Early Triassic (Induan-Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excurssions and environmental per-tubrations: New data from western Australian Gondwana. Gondwana Research, 23, 1136–1150.Google Scholar
  80. Metcalfe, I., Crowley, J. L., Nicoll, R. S., & Schmitz, M. (2015). High precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research., 28(3), 905–932.Google Scholar
  81. Michaelsen, P. (2002). Mass extinction of peat-forming plants and the effect on fluvial styles across the Permian-Triassic boundary, northern Bowen Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 173–188.Google Scholar
  82. Mishra, S., Jha, N., Joshi, H., & Gahalain, S. S. (2016). Palynological dating of sub-surface Gondwana sediments in Sattupalli area, Godavari Graben, Telangana. Geophytology, 46(1), 1–8.Google Scholar
  83. Mishra, S., Jha, N., & Gahalain, S. S. (2017). Taphonomic and palaeovegetational studies in lower Permian (Asselian-Sakmarian) deposits of Chintalapudi area, Godavari Graben, south India. Revue de Micropaléontologie, 60, 193–211.Google Scholar
  84. Modie, B. N., & Le Hérissé, A. (2009). Late Palaeozoic palynomorph assemblages from the Karoo Supergroup and their potential for biostratigraphic correlation, Kalahari Karoo Basin, Botswana. Bulletin of Geosciences, 84, 337–358.Google Scholar
  85. Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M., & Parui, P. K. (2010). Stratigraphic correlation between different Gondwana basins of India. Journal of Geological Society of India, 76(3), 251–266.Google Scholar
  86. Murthy, S., Kavali, P. S., & Bernardes-de-Oliveira, M. E. C. (2015). Latest Permian palynomorphs from Jharia Coalfield, Damodar Basin, India and their potential for biostratigraphic correlation. Revue de Micropaléontologie, 58, 167–184.Google Scholar
  87. Nyambe, I., & Utting, J. (1997). Stratigraphay and palynostratigraphy Karoo super group (Permian and Triassic) Mid Zambesi Velly southern Zambia. Journal of African Earth Sciences, 24, 563–583.Google Scholar
  88. Pereira, Z., Fernandes, P., Lopes, G., Marques, J., & Vasconselos, L. (2016). The Permian-Triassic transition in the Moatize Minjova Basin, Karoo Supergroup, Mozambique: A palynological perspective. Review of Palaeobotany and Palynology, 226, 1–19.Google Scholar
  89. Pott, C., & McLoughlin, S. (2009). Bennettitalean foliage in the Rhaetian-Bajocian (latest Triassic-Middle Jurassic) floras of Scania, southern Sweden. Review of Palaeobotany and Palynology, 158, 117–166.Google Scholar
  90. Prevec, R., Gastaldo, R. A., Neveling, J., Reid, S. B., & Looy, C. V. (2010). An autochthonous glossopterid flora with latest Permian palynomorphs and its depositional setting in the Dicynodon assemblage zone of the southern Karoo Basin, South Africa. Palaeo-geography, Palaeoclimatology, Palaeoecology, 292, 391–408.Google Scholar
  91. Qureshy, M. N., Brahmam, N. K., Gadse, S. C., & Mathur, B. K. (1968). Gravity analysis and the Godavari rift, India. Bulletins of Geophysical Society of America, 79, 1221–1230.Google Scholar
  92. Raiverman, V., Rao, M. R., & Pal, D. (1985). Stratigraphy and structure of the Pranhita-Godavari Graben. Petroleum Asia Journal, 8, 174–189.Google Scholar
  93. RajaRao, C. S. (1982). Coalfields of India–2. Coal resources of Tamil Nadu, Andhra Pradesh, Orissa and Maharashtra. Geological Survey of India, Bulletin Series A, 45, 9–40.Google Scholar
  94. Ram-Awatar, Kumar, M., & Prakash, N. (2005). Palynological analysis of Lower Gondwana sediments exposed along the Umrer River South Rewa Basin, Madhya Pradesh, India. Palaeobotanist, 54, 87–97.Google Scholar
  95. Ram Awatar, T., Tewari, R., Agnihotri, D., Chatterjee, S., Pillai, S. S. K., & Meena, K. L. (2014). Late Permian and Triassic palynomorphs from the Allan Hills, central Transantarctic Mountains, South Victoria Land, Antarctica. Current Science, 106, 988–996.Google Scholar
  96. Ramanamurty, B. V., & Madhusudan, R. C. (1996). A new stratigraphic classification of Permian (Lower Gondwana) succession of Pranhita- Godavari basin with special reference to Ramagundem Coalbelt, Andhra Pradesh, India. In P. K. S. Guha, S. Sengupta, K. Ayyasami, & R. N. Ghosh (Eds.), Ninth international Gondwana symposium (pp. 67–78). Hyderabad: Geological Survey of India. Oxford and IBH Publishing Co. New Delhi-Calcutta.Google Scholar
  97. Retallack, G. J. (1995). Permian-Triassic life crisis on land. Science, 267, 77–80.Google Scholar
  98. Retallack, G. J. (1997). A Colour Guide to Paleosols (pp. 1–175). Chichester: John Wiley and Sons.Google Scholar
  99. Retallack, G. J. (2002). Lepidopteris callipteroides, an earliest Triassic seed fern from the Sydney Basin, southeastern Australia. Alcheringa, 26, 475–500.Google Scholar
  100. Retallack, G. J. (2013). Permian and Triassic greenhouse crises. Gondwana Research, 24, 90–103.Google Scholar
  101. Retallack, G. J., & Krull, E. S. (1999). Landscape ecological shift at the Permian-Triassic boundary in Antarctica. Australian Journal of Earth Sciences, 46, 785–812.Google Scholar
  102. Retallack, G. J., Smith, R. M. H., & Ward, P. D. (2003). Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. Geological Society of America Bulletin, 115, 1133–1152.Google Scholar
  103. Retallack, G. J., Jahren, A. H., Sheldon, N. D., Charkrabarti, R., Metzger, C. A., & Smith, R. M. H. (2005). The Permian-Triassic boundary in Antarctica. Antarctic Science, 17, 241–258.Google Scholar
  104. Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. H., & Sheldon, N. D. (2006). Middle-Late Permian mass extinction on land. Geological Society of American Bullettin, 118, 1398–1411.Google Scholar
  105. Santos, R. V., Souza, P. A., Alvarenga, C. J. S., Dantas, E. L., Pimentel, M. M., Oliveira, C. G., & Araújo, L. M. (2006). SHRIMP U-Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil. Gondwana Research, 9, 456–463.Google Scholar
  106. Scotese, C. (2016). A new global temperature curve for the Phanerozoic. GSA Annual Meeting Denver, Colorado, Abstracts with Programs 48(7): Paper No. 7431. doi:
  107. Shi, G. R., Waterhouse, J. B., & McLoughlin, S. (2010). The Lopingian of Australasia: A review o biostratigraphy, correlations, palaeo-geography and palaeobiogeography. Geological Journal, 45, 230–263.Google Scholar
  108. Singh, T., Tiwari, R. S., Vijaya, & Ram-Awatar. (1995). Stratigraphy and palynology of Carboniferous-Permian-Triassic succession in Spiti valley, Tethys Himalaya, India. Journal of the Palaeonotological Society of India, 40, 439–454.Google Scholar
  109. Smith, A., Smith, D. G., & Furnell, B. M. (1994). Atlas of Mesozoic and Cenozoic coastlines (pp. 1–112). Cambridge: Cambridge University Press.Google Scholar
  110. Smith, R., Rubidge, B. S., & van der Walt, M. (2012). Therapsid biodiversity patterns and Paleoenvironments of the Karoo Basin, South Africa. In A. Chinsamy-Turan (Ed.), Forerunners of mammals: Radiation history biology (pp. 31–62). Bloomington: Indiana University Press.Google Scholar
  111. Smith, R. M. H., & Ward, P. D. (2001). Pattern of vertebrate extinctions across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa. Geology, 28, 227–230.Google Scholar
  112. Souza, P. A. (2006). Late Carboniferous palynostratigraphy of the Itararé subgroup, northeastern Paraná Basin, Brazil. Review of Palaeobotany and Palynology, 138, 9–29.Google Scholar
  113. Souza, P. A., & Marques-Toigo, M. (2003). An overview on the Palynostratigraphy of the Upper Paleozoic strata of the Brazilian Paraná Basin. Revista del Museo Argentino de Ciencias Naturales, 5, 205–214.Google Scholar
  114. Souza, P. A., & Marques-Toigo, M. M. (2005). Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências, 77, 353–365.Google Scholar
  115. Srivastava, S. C., & Bhattacharyya, A. P. (1996). Permian-Triassic palynofloral succession in subsurface from Bazargaon. Nagpur District, Maharashtra. Palaeobotanist, 43, 10–15.Google Scholar
  116. Srivastava, S. C., & Jha, N. (1986). A new monosaccate genus from Kamthi Formation of Godavari Graben, Andhra Pradesh, India. Geophytology, 16, 258–260.Google Scholar
  117. Srivastava, S. C., & Jha, N. (1987). Palynology of Kamthi Formation from Chelpur area, Godavari Graben, Andhra Pradesh, India. Palaeobotanist, 35, 342–346.Google Scholar
  118. Srivastava, S. C., & Jha, N. (1988). A Lower Triassic palynoassemblages from Budharam area, Godavari Graben, Andhra Pradesh, India. Geophytology, 18, 124–125.Google Scholar
  119. Srivastava, S. C., & Jha, N. (1990). Permian-Triassic palynofloral transition in Godavari Graben, Andhra Pradesh. Palaeobotanist, 38, 92–97.Google Scholar
  120. Srivastava, S. C., & Jha, N. (1992a). Palynostartigraphy of Permian sedi-ments in Manuguru area, Godavari Graben, Andhra Pradesh. In V. S. Vankatachala, K. P. Jain, & N. Awasti (Eds.), Proceedings of Birbal Sanhi birth centenary Palaeobotanical conference (pp. 103–110). Lucknow: Geophytology Special Publication.Google Scholar
  121. Srivastava, S. C., & Jha, N. (1992b). Permian palynostratigraphy in Ramakrishnanpuram area, Godavari Graben, Andhra Pradesh, India. Geophytology, 20, 83–95.Google Scholar
  122. Srivastava, S. C., & Jha, N. (1995). Palynostratigraphy and correlations of Permian-Triassic sediments in Budharam area, Godavari Graben, India. Journal of the Geological Society of India, 46, 647–653.Google Scholar
  123. Srivastava, S. C., & Jha, N. (1997). Stratigraphic correlation of coal bearing sediments in Godavari Graben: Palynological parameter, Proceedings of National Symposium on Recent Researches in Sedimentary Basins, pp. 320–328.Google Scholar
  124. Srivastava, A. K., Krasilov, V. A., & Agnihotri, D. (2011). Peltasperms in the Permian of Indian and their bearing on Gondwanaland reconstructions and climatic interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 393–399.Google Scholar
  125. Steiner, M. B., Eshet, Y., Rampino, M. R., & Schwindt, D. M. (2003). Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 405–414.Google Scholar
  126. Stolle, E. (2010). Recognition of southern Gondwanan palynomorphs at Gondwana’s northern margin and biostratigraphic correlation of Permain strata from SE Turkey and Australia. Geological Journal, 45, 336–349.Google Scholar
  127. Tavener-Smith, R., Mason, T. R., Christie, A. D. M., Roberts, D. L., Smith, A. M., & Van Des Spuy, A. (1988). Sedimentary models for coal formation in the Vryheid Formation, Northern Natal, Bulletin. Department of Mineral and Energy Affairs, Geological Survey, South Africa, 94, 1–13.Google Scholar
  128. Tewari, R., Ram-Awatar, Pandita, S. K., Kumar, K., & Bhat, G. D. (2015). The Permian-Triassic palynnological transition in the Guryul ravine section, Kashmir, India: Implication for Tethyan-Gondwanan correlations. Earth-Science Reviews, 149, 53–66.Google Scholar
  129. Tiwari, R. S., & Ram-Awatar. (1989). Sporae dispersae and correlation of Gondwana sediments in Johilla Coalfield, Son Valley Graben, Madhya Pradesh. Palaeobotanist, 37, 94–114.Google Scholar
  130. Tiwari, R. S., & Singh, V. (1983). Miofloral transition at Raniganj-Panchet boundary in eastern Raniganj Coalfield and its implication on Permo-Triassic time boundary. Geophytology, 13, 227–234.Google Scholar
  131. Tiwari, R. S., & Tripathi, A. (1992). Marker assemblage zones of spore and pollen species through Gondwana Palaeozoic-Mesozoic sequence in India. Palaeobotanist, 40, 194–236.Google Scholar
  132. Tiwari, R. S., Tripathi, A., & Jana, B. N. (1991). Palynological evidence for Upper Permian Raniganj coals in western part of Talcher Coalfield, Orissa, India. Current Science, 61, 407–420.Google Scholar
  133. Tiwari, R. S., Tripathi, A., & Viajaya. (1995). Organic walled microfossils of doubtful origin in Permian and Triassic sequence on peninsular India. Palaeobotanist, 43, 1–38.Google Scholar
  134. Tiwari, R. S., Vijaya, Mamgain, V. D., & Misra, R. S. (1996). Palynological studies on a Late Palaeozoic-Mesozoic Tethyan sequence in the Niti area of the central Himalaya, Uttar Pradesh, India. Review of Palaeobotany and Palynology, 94, 169–196.Google Scholar
  135. Traverse, A. (1988). Palaeopalynology (pp. 1–600). Unwin Hyman, London: First Eddition.Google Scholar
  136. Traverse, A. (2007). Paleopalynology (Second ed.pp. 1–813). Dordrecht: Springer.Google Scholar
  137. Tripathi, A., Murthy, S., & Singh, R. (2010). Playnodating of coal bearing strata near Kunda Pahari, Pachwara coalfield, Rajmahal Basin, Jharkhand, India. Palaeontological Society of India, 55, 29–35.Google Scholar
  138. Tripathi, A. (1993). Palynosequence in subsurface Permian sediments in Talcher coalfield, Orissa. Geophytology, 23, 99–106.Google Scholar
  139. Tyson, R. V. (1993). Palynofacies analysis (pp. 153–191). Amsterdam: Kluwer Academic Publishers.Google Scholar
  140. Tyson, R. V. (1995). Sedimentary organic matter (pp. 1–615). Londons: Chapman and Hall.Google Scholar
  141. Utting, J. (1978). Lower Karroo pollen and spore assemblages from the coal measures and underlying sediments of the Siankondobo Coalfield, Mid-Zambezi valley, Zambia. Palynology, 2, 53–68.Google Scholar
  142. Visscher, H., Brinkhuis, H., Dilcher, D. L., Elsik, W. C., Eshet, Y., Looy, C. V., Rampino, M. R., & Traverse, A. (1996). The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93, 2155–2158.Google Scholar
  143. Visscher, H., Looy, C. V., Collinson, M. E., Brinkhuis, H., van Konijnenburg-van Cittert, J. H. A., Kürschner, W. M., & Sephton, M. A. (2004). Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12952–12956.Google Scholar
  144. Wheeler, A., & Götz, A. E. (2016). Palynofacies patterns of the Highveld coal deposits (Karoo Basin, South Africa): Clues to reconstruction of palaeoenvironment and palaeoclimate. Acta Palaeobotanica, 56, 3–15.Google Scholar
  145. Wheeler, A., & Götz, A. E. (2017). Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwanan postglacial coal deposits: No. 2 coal seam, Witbank coalfield (South Africa). Palaeobiodiversity and Palaeoenvironments, 97, 259–271.Google Scholar
  146. Wright, R. P., & Askin, R. A. (1987). The Permian-Triassic boundary in the southern Morondava Basin of Madagascar as defined by plant microfossils. American Geophysical Union, Geophysical Monograph, 41, 157–166.Google Scholar
  147. Zavada, M. S. (1991). The ultrastructure of pollen found in the dispersed sporangia of Arberiella (Glossopteridaceae). Botanical Gazette, 152, 248–255.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations