Late Miocene rails (Aves: Rallidae) from southwestern Russia

  • Nikita V. Zelenkov
  • Andrey V. Panteleyev
  • Vanesa L. De Pietri
Original Paper

Abstract

The Miocene was an important period for the assembly of present-day avian faunas of the North Temperate Zone. Details of this process, however, remain largely unexplored due to the scarcity of diverse late Miocene avian localities throughout the Eurasian continent. Here, we present a survey of the osteological diversity of extant rails and, based on these results, assess the diversity of rails from the late Miocene (7.5–7.1 Ma) locality Morskaya-2 in the south of European Russia. We document three taxa, two of which are described as Crexica crexica gen. et sp. nov. and Miohypotaenidia tanaisensis gen. et sp. nov. These taxa show affinities with the modern species Crex crex and Hypotaenidia (Gallirallus) philippensis respectively and thus may represent the oldest records of the Crex and Hypotaenidia-Gallirallus lineages in the fossil record. The taxonomic composition of rails from Morskaya-2 locality considerably differs from that observed at the roughly coeval locality Polgárdi in Hungary, which likely reflects palaeogeographic differences during the late Miocene in Europe. Although Central Europe was already inhabited by modern-type rails in the late Miocene, more ancestral groups were present in the East. Some other aspects of the evolution of the modern fauna of Rallidae are discussed.

Keywords

Rallidae Late Miocene Eastern Europe Northern Black Sea Region Palaeobiogeography 

References

  1. Baumel, J. J., & Witmer, L. M. (1993). Osteologia. In J. J. Baumel, A. S. King, J. E. Breazile, H. E. Evans, & J. C. Vanden Berge (Eds.), Handbook of avian anatomy: Nomina Anatomica Avium (2nd ed., pp. 45–132). Cambridge: Nuttall Ornithological Club.Google Scholar
  2. Bernor, R. L., Fahlbusch, V., Andrews, P., & De Bruijn, H. (1996). The evolution of western Eurasian Neogene faunas: a chronologic, systematic, biogeographic, and paleoenvironmental synthesis. In R. L. Bernor, V. Fahlbusch, & H. W. Mittmann (Eds.), The evolution of western Eurasian Miocene mammal faunas (pp. 449–469). New York: Columbia University Press.Google Scholar
  3. Blondel, J., & Mourer-Chauviré, C. (1998). Evolution and history of the western Palaearctic avifauna. Trends in Ecology and Evolution, 13, 488–492.CrossRefGoogle Scholar
  4. Boev, Z. N., & Kovachev, D. (2007). Euroceros bulgaricus gen. nov., sp. nov. from Hadzhidimovo (SW Bulgaria) (Late Miocene)—the first European record of Hornbills (Aves: Coraciiformes). Geobios, 40, 39–49.CrossRefGoogle Scholar
  5. Boev, Z. N., & Spassov, N. (2009). First record of ostriches (Aves, Struthioniformes, Struthionidae) from the Late Miocene of Bulgaria with taxonomic and zoogeographic discussion. Geodiversitas, 31, 493–507.CrossRefGoogle Scholar
  6. Burchak-Abramovich, N. I. (1953). Iskopaemye strausy Kavkaza iyuga Ukrainy [Fossil ostriches of Caucasus and southern Ukraine]. Baku: Akademiya Nauk Azerbaidzhanskoi SSR (in Russian).Google Scholar
  7. Burleigh, J. G., Kimball, R. T., & Braun, E. L. (2015). Building the avian tree of life using a large-scale, sparse supermatrix. Molecular Phylogenetics and Evolution, 84, 53–63.CrossRefGoogle Scholar
  8. Cheneval, J. (2000). L'avifaune de Sansan. In Ginsburg L (ed) La faune miocène de Sansan et son environnement. Memories du Museum National d’Histoire Naturelle, 183, 321–388.Google Scholar
  9. Cracraft, J. (1973). Systematics and evolution of the Gruiformes (class Aves). 3. Phylogeny of the suborder Grues. Bulletin of the American Museum of Natural History, 151, 1–128.Google Scholar
  10. De Pietri, V. L. (2013). Interrelationships of the Threskiornithidae and the phylogenetic position of the Miocene ibis ‘Plegadispaganus from the Saint-Gérand-le-Puy area in central France. Ibis, 155, 544–560.CrossRefGoogle Scholar
  11. De Pietri, V. L., & Mayr, G. (2012). An assessment of the diversity of Early Miocene Scolopaci (Aves, Charadriiformes) from Saint-Gérand-le-Puy (Allier, France). Palaeontology, 55, 1177–1197.CrossRefGoogle Scholar
  12. De Pietri, V. L., & Mayr, G. (2014a). The phylogenetic relationships of the Early Miocene stork Grallavis edwardsi, with comments on the interrelationships of living Ciconiidae (Aves). Zoologica Scripta, 43, 576–585.CrossRefGoogle Scholar
  13. De Pietri, V. L., & Mayr, G. (2014b). Reappraisal of Early Miocene rails (Aves, Rallidae) from central France: diversity and character evolution. Journal of Zoological Systematics and Evolutionary Research, 52, 312–322.CrossRefGoogle Scholar
  14. De Pietri, V. L., Costeur, L., Güntert, M., & Mayr, G. (2011). A revision of Lari (Aves, Charadriiformes) from the Early Miocene of Saint-Gérand-le-Puy. Journal of Vertebrate Paleontology, 31, 812–828.Google Scholar
  15. Dickinson, E. C., & Remsen, J. V. (Eds.). (2013). The Howard and Moore complete checklist of the birds of the world, volume 1: non-passerines. Eastbourne, U.K.: Aves Press.Google Scholar
  16. Elzanowski, A., Bieńkowska-Wasiluk, M., Chodyń, R., & Bogdanowicz, W. (2012). Anatomy of the coracoid and diversity of the Procellariiformes (Aves) in the Oligocene of Europe. Palaeontology, 55, 1199–1221.CrossRefGoogle Scholar
  17. Fain, M. G., Krajewski, C., & Houde, P. (2007). Phylogeny of “core Gruiformes” (Aves: Grues) and resolution of the Limpkin–Sungrebe problem. Molecular Phylogenetics and Evolution, 43, 515–529.CrossRefGoogle Scholar
  18. Garcia-R, J. C., Gibb, G. C., & Trewick, S. A. (2014). Deep global evolutionary radiation in birds: diversification and trait evolution in the cosmopolitan bird family Rallidae. Molecular Phylogenetics and Evolution, 81, 96–108.CrossRefGoogle Scholar
  19. Göhlich, U. B. (2002). The avifauna of the Miocene Fossil-Lagerstatte Sandelzhausen (Bavaria, southern Germania). Zitteliana, 22, 169–190.Google Scholar
  20. Hably, L. (2013). The Late Miocene flora of Hungary. Geologica Hungarica. Series Palaeontologica, 59, 1–175.Google Scholar
  21. Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763–1768.CrossRefGoogle Scholar
  22. Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F., Cooper, R. A., et al. (2012). The Neogene period. In F. M. Gradstein, M. D. Ogg, J. G. Schmitz, & G. M. Ogg (Eds.), The Geologic Time Scale (pp. 923–978). Boston: Elsevier.CrossRefGoogle Scholar
  23. Jánossy, D. (1991). Late Miocene bird remains from Polgárdi (W-Hungary). Aquila, 98, 13–35.Google Scholar
  24. Kessler, J. (2013). A Kárpát-medence madárvilágának őslénytani kézikönyv. Miskolc: Könyvmühel.Google Scholar
  25. Kirchman, J. J. (2012). Speciation of flightless rails on islands: a DNA-based phylogeny of the typical rails of the Pacific. The Auk, 129, 56–69.CrossRefGoogle Scholar
  26. Kurochkin, E. N. (1980). Middle Pliocene rails from Western Mongolia. Contributions in Science. Natural History Museum of Los Angeles County, 330, 69–73.Google Scholar
  27. Kurochkin, E. N. (1985). Birds of the Central Asia in Pliocene. Transactions of the Joint Soviet-Mongolian Paleontological Expedition, 26, 1–120.Google Scholar
  28. Kurochkin, E. N., & Ganea, I. M. (1972). Birds from the Late Sarmatian of Moldavia. In Vertebrates of the Neogene and Pleistocene of Moldavia (pp. 45–70). Chisinau: Shtiintsa (in Russian).Google Scholar
  29. Kurochkin, Y. N., & Lungu, A. N. (1970). A new ostrich from the middle Sarmatian of Moldavia. Paleontological Journal, 4, 103–111.Google Scholar
  30. Lambrecht, K. (1933). Handbuch der Palaeornithologie. Berlin: Gebrüder Borntraeger.Google Scholar
  31. Livezey, B. C. (1998). A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philosophical Transactions of the Royal Society London B, 353, 2077–2151.CrossRefGoogle Scholar
  32. Livezey, B. C. (2003). Evolution of flightlessness in rails (Gruiformes: Rallidae): phylogenetic, ecomorphological, and ontogenetic perspectives. Ornithological Monographs no. 53. Washington, DC: American Ornithologists’ Union.Google Scholar
  33. Mayr, G. (2009). Paleogene fossil birds. Heidelberg: Springer 262 pp.CrossRefGoogle Scholar
  34. Mayr, G. (2010). Mousebirds (Coliiformes), parrots (Psittaciformes), and other small birds from the late Oligocene/early Miocene of the Mainz Basin, Germany. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 258, 129–144.CrossRefGoogle Scholar
  35. Mayr, G. (2011). Metaves, Mirandornithes, Strisores and other novelties—a critical review of the higher-level phylogeny of neornithine birds. Journal of Zoological Systematics and Evolutionary Research, 49, 58–76.CrossRefGoogle Scholar
  36. Mayr, G. (2015). Cranial and vertebral morphology of the straight-billed Miocene phoenicopteriform bird Palaelodus and its evolutionary significance. Zoologischer Anzeiger, 254, 18–26.CrossRefGoogle Scholar
  37. Mayr, G., & Bochenski, Z. (2016). A skeleton of a small rail from the Rupelian of Poland adds to the diversity of early Oligocene Ralloidea. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 282, 125–134.CrossRefGoogle Scholar
  38. Mayr, G., & Smith, R. I. (2001). Ducks, rails, and limicoline waders (Aves: Anseriformes, Gruiformes, Charadriiformes) from the lowermost Oligocene of Belgium. Geobios, 34, 547–561.CrossRefGoogle Scholar
  39. Mirzaie Ataabadi, M., Liu, L., Eronen, J., Bernor, R. L., & Fortelius, M. (2013). Continental-scale patterns in Neogene mammal community evolution and biogeography: a Europe-Asia perspective. In X. Wang, J. J. Flynn, & M. Fortelius (Eds.), Fossil mammals of Asia. Neogene biostratigraphy and chronology (pp. 629–655). New-York: Columbia University Press.CrossRefGoogle Scholar
  40. Mlíkovský, J. (2002). Cenozoic birds of the world. Part 1: Europe. Praha: Ninox press.Google Scholar
  41. Mourer-Chauviré, C. (1995). Dynamics of the avifauna during the Paleogene and the Early Neogene of France. Settling of the recent fauna. Acta Zoologica Cracoviensia, 38, 325–342.Google Scholar
  42. Mourer-Chauviré, C., Peyrouse, J. B., & Hugueney, M. (2013). A new roller (Aves: Coraciiformes s. s.: Coraciidae) from the Early Miocene of the Saint-Gérand-le-Puy area, Allier, France. In Göhlich, U. B., & Kroh, A. (Eds.), Paleornithological Research 2013. Proceed. 8th International Meeting Society of Avian Paleontology and Evolution (pp. 81–92). Wien: Verlag Naturhistorisches Museum Wien.Google Scholar
  43. Olson, S. L. (1973). A classification of the Rallidae. Wilson Bulletin, 85, 381–416.Google Scholar
  44. Olson, S. L. (1977). A synopsis of the fossil Rallidae. In S. D. Ripley (Ed.), Rails of the world. A monograph of the family Rallidae (pp. 339–373). Boston. Massachusetts: David R. Godine.Google Scholar
  45. Pound, M. J., Haywood, A. M., Salzmann, U., & Riding, J. B. (2012). Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Science Reviews, 112, 1–22.CrossRefGoogle Scholar
  46. Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526, 569–573.CrossRefGoogle Scholar
  47. Ruan, L., Wang, Y., Hu, J., & Ouyang, Y. (2012). Polyphyletic origin of the genus Amaurornis inferred from molecular phylogenetic analysis of rails. Biochemical Geneticss, 1, 1–8.Google Scholar
  48. Sánchez Marco, A. (2004). Avian zoogeographical patterns during the quaternary in the Mediterranean region and paleoclimatic interpretation. Ardeola, 51, 91–132.Google Scholar
  49. Steadman, D. W. (2006). Extinction and biogeography of tropical Pacific birds (pp. 1–480). Chicago: University Of Chicago Press.Google Scholar
  50. Taylor, B. (1998). Rails. A guide to the rails, crakes, gallinules and coots of the world (pp. 1–600). New Heaven and London: Yale University Press.Google Scholar
  51. Titov, V. V., & Tesakov, A. S. (2013). Late Miocene (Turolian) vertebrate faunas from Southern European Russia. In X. Wang, J. J. Flynn, & M. Fortelius (Eds.), Fossil mammals of Asia. Neogene biostratigraphy and chronology (pp. 538–545). New York: Columbia University Press.CrossRefGoogle Scholar
  52. Titov, V. V., Tesakov, A. S., Danilov, I. G., Danukalova, G. A., Mashchenko, E. N., Panteleev, A. V., Sotnikova, M. V., & Sychevskaya, E. K. (2006). The first representative vertebrate fauna from the Late Miocene of southern European Russia. Doklady Biological Sciences, 411, 508–509.CrossRefGoogle Scholar
  53. Vangengeim, E. A., Lungu, A. N., & Tesakov, A. S. (2006). Age of the Vallesian lower boundary (Continental Miocene of Europe). Stratigraphy. Geological Correlation, 14, 655–667.CrossRefGoogle Scholar
  54. Worthy, T. H., & Lee, M. S. Y. (2008). Affinities of Miocene waterfowl (Anatidae: Manuherikia, Dunstanetta and Miotadorna) from the St Bathans Fauna, New Zealand. Palaeontology, 51, 677–708.CrossRefGoogle Scholar
  55. Zelenkov, N. V. (2011). Ardea sytchevskayae sp. nov., a new heron species (Aves: Ardeidae) from the middle Miocene of Mongolia. Paleontological Journal, 45, 572–579.CrossRefGoogle Scholar
  56. Zelenkov, N. V. (2012). A new duck from the middle Miocene of Mongolia, with comments on Miocene evolution of ducks. Paleontological Journal, 46, 520–530.CrossRefGoogle Scholar
  57. Zelenkov, N. V. (2013a). Cenozoic phoenicopteriform birds from Central Asia. Paleontological Journal, 47, 1323–1330.CrossRefGoogle Scholar
  58. Zelenkov, N. V. (2013b). New finds and revised taxa of Early Pliocene birds from Western Mongolia. In Göhlich, U. B. & Kroh, A.(Eds.), Paleornithological Research 2013. Proceed. 8th International Meeting Society of Avian Paleontology and Evolution (pp. 153–170). Wien: Verlag Naturhistorisches Museum Wien.Google Scholar
  59. Zelenkov, N. V. (2016). Evolution of bird communities in the Neogene of Central Asia, with a review of the Neogene fossil record of Asian birds. Paleontological Journal, 50, 1421–1433.CrossRefGoogle Scholar
  60. Zelenkov, N. V. (2017). Revision of non-passeriform birds from Polgárdi (Hungary, Upper Miocene). 3. Neoaves. Paleontological Journal, 51, in press.Google Scholar
  61. Zelenkov, N. V., & Kurochkin, E. N. (2012). Dabbling ducks (Aves: Anatidae) from the middle Miocene of Mongolia. Paleontological Journal, 46, 421–429.CrossRefGoogle Scholar
  62. Zelenkov, N. V., & Kurochkin, E. N. (2015). Class Aves. In E. N. Kurochkin, A. V. Lopatin, & N. V. Zelenkov (Eds.), Fossil vertebrates of Russia and adjacent countries. Fossil reptiles and birds. Part 3 (pp. 86–290). GEOS: Moscow (in Russian).Google Scholar
  63. Zelenkov, N. V., & Panteleyev, A. V. (2015). Three bird taxa (Aves: Anatidae, Phasianidae, Scolopacidae) from the Late Miocene of the Sea of Azov (Southwestern Russia). Paläontologische Zeitschrift, 89, 515–527.CrossRefGoogle Scholar
  64. Zelenkov, N.V., Boev, Z., & Lazaridis, G. (2016a). A large ergilornithine (Aves, Gruiformes) from the Late Miocene of the Balkan peninsula. Paläontologische Zeitschrift, 90, 145--151.Google Scholar
  65. Zelenkov, N. V., Volkova, N. V., & Gorobets, L. V. (2016b). Late Miocene buttonquails (Charadriiformes, Turnicidae) from the temperate zone of Eurasia. Journal of Ornithology, 157, 85–92.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nikita V. Zelenkov
    • 1
  • Andrey V. Panteleyev
    • 2
  • Vanesa L. De Pietri
    • 3
  1. 1.Borissiak Paleontological Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Zoological Institute of Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Canterbury MuseumChristchurchNew Zealand

Personalised recommendations