Palaeobiodiversity and Palaeoenvironments

, Volume 95, Issue 3, pp 387–404 | Cite as

Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities

  • Manuel Hernández Fernández
  • Juan L. Cantalapiedra
  • Ana R. Gómez Cano
Original Paper


Comprehension of changes in community composition through multiple spatio-temporal scales is a prime challenge in ecology and palaeobiology. However, assembly, structuring and disassembly of biotic metacommunities in deep-time is insufficiently known. To address this, we used the extensively sampled Iberian Plio-Pleistocene fossil record of rodent faunas as our model system to explore how global climatic events may alter metacommunity structure. Through factor analysis, we found five sets of genera, called faunal components, which co-vary in proportional diversity over time. These faunal components had different spatio-temporal distributions throughout the Plio-Pleistocene, resulting in non-random changes in species assemblages, particularly in response to the development of the Pleistocene glaciations. Three successive metacommunities with distinctive taxonomic structures were identified as a consequence of the differential responses of their members to global climatic change: (1) Ruscinian subtropical faunas (5.3–3.4 Ma) dominated by a faunal component that can be considered as a Miocene legacy; (2) transition faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with a mixture of different faunal components; and (3) final dominance of the temperate Toringian faunas (0.8–0.01 Ma) that would lead to the modern Iberian assemblage. The influence of the cooling global temperature drove the reorganisation of these rodent metacommunities. Selective extinction processes due to this large-scale environmental disturbance progressively eliminated the subtropical specialist species from the early Pliocene metacommunity. This disassembly process was accompanied by the organisation of a diversified metacommunity with an increased importance of biome generalist species, and finally followed by the assembly during the middle–late Pleistocene of a new set of species specialised in the novel environments developed as a consequence of the glaciations.


Community ecology Global climatic change Macroevolution Mammalia Metacommunity structure Palaeoecology 



This paper is dedicated to Albert J. van der Meulen, leader in the field of mammalian palaeoecology and friend. Albert’s works on Neogene rodent communities have been an inspiring force for anyone interested in community ecology and the influence of climatic changes on the evolution of mammal faunas. We want to thank the editors of this issue in his honour for their initiative and for inviting us to participate. We also acknowledge the insightful suggestions and comments on the manuscript made by Catherine Badgley (University of Michigan), Belén Luna (University of Castilla-La Mancha) and an anonymous reviewer, which greatly helped to improve this paper. This is a contribution by the Palaeoclimatology, Macroecology and Macroevolution of Vertebrates research team ( of the Complutense University of Madrid as a part of the Research Group UCM 910607 on Evolution of Cenozoic Mammals and Continental Palaeoenvironments.


  1. Abu Baker, M., & Patterson, B. D. (2010). Patterns in the local assembly of Egyptian rodent faunas: areography and species combinations Mammalian. Mammalian Biology-Zeitschrift für Säugetierkunde, 75, 510–522.Google Scholar
  2. Agadjanian, A. K. (1976). Voles (Microtinae, Rodentia) of Pliocene location Uryv I, the Middle Don. Proceedings of the Zoological Institute, Academy of Sciences of the USSR, 66, 58–97.Google Scholar
  3. Allen, C. R., & Holling, C. S. (2002). Cross-scale structure and scale breaks in ecosystems and other complex systems. Ecosystems, 5, 315–318.CrossRefGoogle Scholar
  4. Alroy, J., Koch, P. L., & Zachos, J. C. (2000). Global climate change and North American mammalian evolution. Paleobiology, 26, 259–288.CrossRefGoogle Scholar
  5. Andrews, P., Lord, J. M., & Evans, E. M. N. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11, 177–205.CrossRefGoogle Scholar
  6. Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382.CrossRefGoogle Scholar
  7. Badgley, C., Barry, J. C., Morgan, M. E., Nelson, S. V., Behrensmeyer, A. K., Cerling, T. E., et al. (2008). Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences of the USA, 105, 12145–12149.CrossRefGoogle Scholar
  8. Badiola, A., Checa, L., Cuesta, M. A., Quer, R., Hooker, J. I., & Astibia, H. (2009). The role of new Iberian finds in understanding European Eocene mammalian palaeobiogeography. Geologica Acta, 7, 243–258.CrossRefGoogle Scholar
  9. Barnosky, A. D. (2001). Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology, 21, 172–185.CrossRefGoogle Scholar
  10. Barnosky, A. D. (2005). Effects of quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution, 12, 247–264.CrossRefGoogle Scholar
  11. Beaudrot, L., Struebig, M. J., Meijaard, E., Van Balen, S., Husson, S., Young, C. F., et al. (2013). Interspecific interactions between primates, birds, bats, and squirrels may affect community composition on Borneo. American Journal of Primatology, 75, 170–185.CrossRefGoogle Scholar
  12. Belmaker, J., & Jetz, W. (2012). Regional pools and environmental controls of vertebrate richness. The American Naturalist, 179, 512–523.CrossRefGoogle Scholar
  13. Benton, M. J. (2009). The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science, 323, 728–732.CrossRefGoogle Scholar
  14. Blois, J. L., & Hadly, E. A. (2009). Mammalian response to cenozoic climatic change. Annual Review of Earth and Planetary Sciences, 37, 181–208.CrossRefGoogle Scholar
  15. Blondel, J. (2009). The nature and origin of the vertebrate fauna. In J. Woodward (Ed.), The physical geography of the Mediterranean (pp. 139–163). Oxford: Oxford University Press.Google Scholar
  16. Bonhomme, F., Orth, A., Cucchi, T., Rajabi-Maham, H., Catalan, J., Boursot, P., et al. (2010). Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proceedings of the Royal Society of London B, 278, rspb20101228.Google Scholar
  17. Bonis, L. de, Bouvrain, G., Geeraads, D., & Koufos, G. (1992). Multivariate study of late Cenozoic mammalian faunal compositions and paleoecology. Paleontologia i Evolució, 24, 25–93.Google Scholar
  18. Brandler, O. V., & Lyapunova, E. A. (2009). Molecular phylogenies of the genus Marmota (Rodentia Sciuridae): comparative analysis. Ethology Ecology and Evolution, 21, 289–298.CrossRefGoogle Scholar
  19. Brown, J. H., Fox, B. J., & Kelt, D. A. (2000). Assembly rules: desert rodent communities are structured at scales from local to continental. The American Naturalist, 156, 314–321.CrossRefGoogle Scholar
  20. Brown, J. H., & Maurer, B. A. (1989). Macroecology: the division of food and space among species on continents. Science, 243, 1145–1150.CrossRefGoogle Scholar
  21. Cantalapiedra, J. L., Hernández Fernández, M., & Morales, J. (2014). Biogeographic history of ruminant faunas determines the phylogenetic structure of their assemblages at different scales. Ecography, 37, 1–9.CrossRefGoogle Scholar
  22. Casanovas-Vilar, I., García-Paredes, I., Alba, D. M., Hoek Ostende, L. W. van den, & Moyà-Solà, S. (2010). The European Far West: Miocene mammal isolation, diversity and turnover in the Iberian Peninsula. Journal of Biogeography, 37, 1079–1093.Google Scholar
  23. Casanovas-Vilar, I., Hoek Ostende, L. W. van den, Furió, M., & Madern, P. A. (2014). The range and extent of the Vallesian Crisis (Late Miocene): new prospects based on the micromammal record from the Vallès-Penedès basin (Catalonia, Spain). Journal of Iberian Geology, 40, 29–48.Google Scholar
  24. Chaline, J. (1987). Arvicolid data (Arvicolidae, Rodentia) and evolutionary concepts. In M. K. Hecht (Ed.), Evolutionary Biology (pp. 237–310). Berlin: Springer.CrossRefGoogle Scholar
  25. Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., & Courant, F. (1999). Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Annales Zoologici Fennici, 36, 239–267.Google Scholar
  26. Chaline, J., & Marquet, J. C. (1976). Les conséquences stratigraphiques de la persistance en France dans le Würm ancien del rongeurs reliques Pliomys lenki et Allocricetus bursae (Rodentia). Comptes Rendus de l’Académie des Sciences de Paris D, 282, 1941–1942.Google Scholar
  27. Costeur, L., Legendre, S., & Escarguel, G. (2004). European large mammals palaeobiogeography and biodiversity during the Neogene. Palaeogeographic and climatic impacts. Revue de Paléobiologie, 9, 99–109.Google Scholar
  28. Costeur, L., Maridet, O., Montuire, S., & Legendre, S. (2013). Evidence of northern Turolian savannah-woodland from the Dorn-Dürkheim 1 fauna (Germany). In J. L. Franzen, & M. Pickford (eds) Dorn-Dürkheim 1, Germany: A highly diverse Turolian fauna from mid-latitude Europe. Palaeobiodiversity and Palaeoenvironments, 93(2), 259–275.Google Scholar
  29. Cuenca-Bescós, G., Rofes, J., López-García, J. M., Blain, H.-A., De Marfá, R. J., Galindo-Pellicena, M. A., et al. (2010a). Biochronology of Spanish Quaternary small vertebrate faunas. Quaternary International, 212, 109–119.CrossRefGoogle Scholar
  30. Cuenca-Bescós, G., Straus, L. G., García-Pimienta, J. C., Morales, M. R., & López-García, J. M. (2010b). Late Quaternary small mammal turnover in the Cantabrian Region: The extinction of Pliomys lenki (Rodentia, Mammalia). Quaternary International, 212, 129–136.CrossRefGoogle Scholar
  31. Daams, R., & Meulen, A. J. van der (1984). Paleoenvironmental and paleoclimatic interpretation of micromammal faunal successions in the Upper Oligocene and Miocene of north central Spain. Paléobiologie Continentale, 14, 241–257.Google Scholar
  32. Daams, R., Meulen, A. J. van der, Peláez-Campomanes, P., & Álvarez-Sierra, M. A. (1999). Trends in rodent assemblages from the Aragonian (early-middle Miocene) of the Calatayud-Daroca Basin, Aragon, Spain. In J. Agustí, L. Rook, & P. Andrews (Eds.), Hominoid evolution and climatic change in Europe (pp. 127–139). Cambridge: Cambridge University Press.Google Scholar
  33. Dam, J. A. van, Abdul Aziz, H., Álvarez-Sierra, M. A., Hilgen, F. J., Hoek Ostende, L. W. van den, Lourens, L. J., et al. (2006). Long-period astronomical forcing of mammal turnover. Nature, 443, 687–691.Google Scholar
  34. Dam, J. A. van, & Weltje, G. J. (1999). Reconstruction of the Late Miocene climate of Spain using rodent palaeocommunity successions: an application of end-member modelling. Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 267–305.Google Scholar
  35. Davis, E. B. (2005). Mammalian beta diversity in the Great Basin, western USA: palaeontological data suggest deep origin of modern macroecological structure. Global Ecology and Biogeography, 14, 479–490.CrossRefGoogle Scholar
  36. Daxner-Höck, G., & Höck, E. (2009). New data on Eomyidae and Gliridae (Rodentia, Mammalia) from the Late Miocene of Austria. Annalen des Naturhistorischen Museums in Wien, 111, 375–444.Google Scholar
  37. de la Sancha, N. U. (2014). Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia, 78, 437–449.Google Scholar
  38. Delcourt, H. R., & Delcourt, P. A. (1988). Quaternary landscape ecology: relevant scales in space and time. Landscape Ecology, 2, 23–44.CrossRefGoogle Scholar
  39. Diamond, J. M. (1975). The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129–146.CrossRefGoogle Scholar
  40. Dobson, M. (1998). Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Review, 28, 77–88.CrossRefGoogle Scholar
  41. Dodd, J. R., & Stanton, R. J. (1990). Paleoecology: concepts and applications. New York: Wiley.Google Scholar
  42. Domingo, L., Koch, P. L., Hernández Fernández, M., Fox, D. L., Domingo, M. S., & Alberdi, M. T. (2013). Late Neogene and early Quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: isotopic analyses on mammalian taxa. PloS ONE, 8, e63739.CrossRefGoogle Scholar
  43. Domingo, M. S., Badgley, C., Azanza, B., DeMiguel, D., & Alberdi, M. T. (2014). Diversification of mammals from the Miocene of Spain. Paleobiology, 40, 197–221.CrossRefGoogle Scholar
  44. Emerson, B. C., & Gillespie, R. G. (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 23, 619–630.CrossRefGoogle Scholar
  45. Ernest, S. K. M., Brown, J. H., Thibault, K. M., White, E. P., & Goheen, J. R. (2008). Zero sum, the niche, and metacommunities: long-term dynamics of community assembly. The American Naturalist, 172, E257–E269.CrossRefGoogle Scholar
  46. Eronen, J. T. (2007). Locality coverage, metacommunities and chronofauna: concepts that connect paleobiology to modern population biology. Vertebrata Palasiatica, 45, 137–144.Google Scholar
  47. Ervynck, A. (2002). Sedentism or urbanism? On the origin of the commensal black rat (Rattus rattus). In K. Dobney & T. P. O’Conner (Eds.), Bones and the man: studies in honour of Don Brothwell (pp. 95–109). Oxford: Oxbow.Google Scholar
  48. Escarguel, G., Fara, E., Brayard, A., & Legendre, S. (2011). Biodiversity is not (and never has been) a bed of roses! Comptes Rendus Biologies, 334, 351–359.CrossRefGoogle Scholar
  49. Escarguel, G., Legendre, S., & Sigé, B. (2008). Unearthing deep-time biodiversity changes: the Palaeogene mammalian metacommunity of the Quercy and Limagne area (Massif Central, France). Comptes Rendus Geoscience, 340, 602–614.CrossRefGoogle Scholar
  50. Feeley, K. (2003). Analysis of avian communities in Lake Guri. Venezuela, using multiple assembly rule models. Oecologia, 137, 104–113.CrossRefGoogle Scholar
  51. Fejfar, O., & Storch, G. (1990). Eine pliozäne (ober-ruscinische) Kleinsäugerfauna aus Gundersheim, Rheinhessen. 1. Nagetiere: Mammalia, Rodentia. Senckenbergiana lethaea, 71, 139–184.Google Scholar
  52. Figueirido, B., Janis, C. M., Pérez-Claros, J. A., De Renzi, M., & Palmqvist, P. (2012). Cenozoic climate change influences mammalian evolutionary dynamics. Proceedings of the National Academy of Sciences of the USA, 109, 722–727.CrossRefGoogle Scholar
  53. Frick, W. F., Hayes, J. P., & Heady, P. A. (2009). Nestedness of desert bat assemblages: species composition patterns in insular and terrestrial landscapes. Oecologia, 158, 687–697.CrossRefGoogle Scholar
  54. Furió, M., Casanovas-Vilar, I., & Hoek Ostende, L. W. van den (2011). Predictable structure of Miocene insectivore (Lipotyphla) faunas in Western Europe along a latitudinal gradient. Palaeogeography Palaeoclimatology Palaeoecology, 304, 219–229.Google Scholar
  55. García-Alix, A., Minwer-Barakat, R., Martín-Suárez, E., Freudenthal, M., & Martín, J. M. (2008). Late Miocene-Early Pliocene climatic evolution of the Granada Basin (southern Spain) deduced from the paleoecology of the micromammal associations. Palaeogeography Palaeoclimatology Palaeoecology, 265, 214–225.CrossRefGoogle Scholar
  56. García-Alix, A., Minwer-Barakat, R., Martín-Suárez, E., & Freudenthal, M. (2009). Small mammal from the early Pleistocene of the Granada Basin, southern Spain). Quaternary Research, 72, 265–274.CrossRefGoogle Scholar
  57. García Yelo, B. A., Gómez Cano, A. R., Cantalapiedra, J. L., Alcalde, G. M., Sanisidro, O., Oliver, A., et al. (2014). Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. Journal of Iberian Geology, 40, 129–140.CrossRefGoogle Scholar
  58. Gómez Cano, A. R., Hernández Fernández, M., & Álvarez-Sierra, M. A. (2011). Biogeographic provincialism in rodent faunas from the Iberoccitanian Region (southwestern Europe) generates severe diachrony within the Mammalian Neogene (MN) biochronologic scale during the Late Miocene. Palaeogeography Palaeoclimatology Palaeoecology, 307, 193–204.Google Scholar
  59. Gómez Cano, A. R., Cantalapiedra, J., Mesa, A., Moreno Bofarull, A., & Hernandez Fernandez, M. (2013). Global climate changes drive ecological specialization of mammal faunas: trends in rodent assemblages from the Iberian Plio-Pleistocene. BMC Evolutionary Biology, 13, 94. doi: 10.1186/1471-2148-13-94.CrossRefGoogle Scholar
  60. Gómez Cano, A. R., Cantalapiedra, J. L., Álvarez-Sierra, M. A., & Hernández Fernández, M. (2014). A macroecological glance at the structure of late Miocene rodent assemblages from Southwest Europe. Scientific Reports, 4, 6557.CrossRefGoogle Scholar
  61. Goodwin, H. T. (2008). Sciuridae. In C. Janis, G. Gunnell, & M. Uhen (Eds.), Evolution of Tertiary mammals of North America (Vol. 2, pp. 355–376). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Gotelli, N. J., & McCabe, D. J. (2002). Species co-occurrence: a meta-analysis of JM Diamond's assembly rules model. Ecology, 83, 2091–2096.CrossRefGoogle Scholar
  63. Greenacre, M. J., & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–997.CrossRefGoogle Scholar
  64. Heikinheimo, H., Fortelius, M., Eronen, J. T., & Mannila, H. (2007). Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. Journal of Biogeography, 34, 1053–1064.CrossRefGoogle Scholar
  65. Hernández Fernández, M. (2001). Análisis paleoclimático y paleoecológico de las sucesiones de mamíferos del Plio-Pleistoceno de la Península Ibérica. PhD Thesis, Universidad Complutense de Madrid, Madrid.Google Scholar
  66. Hernández Fernández, M., & Peláez-Campomanes, P. (2003). Ecomorphological characterization of Murinae and hypsodont “Cricetidae” (rodentia) from the Iberian Plio-Pleistocene. Coloquios de Paleontología, 1, 237–251.Google Scholar
  67. Hernández Fernández, M., & Vrba, E. S. (2005). Macroevolutionary processes and biomic specialization: testing the resource-use hypothesis. Evolutionary Ecology, 19, 199–219.CrossRefGoogle Scholar
  68. Hernández Fernández, M., & Vrba, E. S. (2006). Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. Journal of Human Evolution, 50, 595–626.CrossRefGoogle Scholar
  69. Hernández Fernández, M., Azanza, B., & Álvarez-Sierra, M. A. (2004). Iberian Plio-Pleistocene biochronology: micromammalian evidence for MNs and ELMAs calibration in southwestern Europe. Journal of Quaternary Science, 19, 605–616.CrossRefGoogle Scholar
  70. Hernández Fernández, M., Álvarez-Sierra, M. A., & Peláez-Campomanes, P. (2007). Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeography Palaeoclimatology Palaeoecology, 251, 500–526.Google Scholar
  71. HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248.CrossRefGoogle Scholar
  72. Holt, R. D. (1993). Ecology at the mesoscale: the influence of regional processes on local communities Species diversity in ecological communities. In R. Ricklefs & D. Schluter (Eds.), Species diversity in ecological communities (pp. 77–88). Chicago: University of Chicago Press.Google Scholar
  73. Horáček, I., Knitlová, M., Wagner, J., Kordos, L., & Nadachowski, A. (2013). Late Cenozoic history of the genus Micromys (Mammalia, Rodentia) in Central Europe. PloS ONE, 8, e62498.CrossRefGoogle Scholar
  74. Horváth, G., Herczeg, R., Tamási, K., & Sali, N. (2011). Nestedness of small mammal assemblages and role of indicator species in isolated marshland habitats. Natura Somogyiensis, 19, 281–283.Google Scholar
  75. Jackson, J. E. (2003). A user's guide to Principal Components. New York: Wiley-Interscience.Google Scholar
  76. Jaeger, J.-J. (1994). The evolution of biodiversity among the Southwest European Neogene rodent (Mammalia, Rodentia) communities: pattern and process of diversification and extinction. Palaeogeography Palaeoclimatology Palaeoecology, 111, 305–336.CrossRefGoogle Scholar
  77. Janossy, D. (1986). Pleistocene vertebrate faunas of Hungary. Budapest: Akadémiai Kiadó.Google Scholar
  78. Jiménez-Moreno, G., & Suc, J.-P. (2007). Middle Miocene latitudinal climatic gradient in Western Europe: evidence from pollen records. Palaeogeography Palaeoclimatology Palaeoecology, 253, 208–225.CrossRefGoogle Scholar
  79. Kelt, D. A. (1999). On the relative importance of history and ecology in structuring communities of desert small animals. Ecography, 22, 123–137.CrossRefGoogle Scholar
  80. Kohn, R., Schimek, M. G., & Smith, M. (2000). Spline and kernel regression for dependent data. In M. G. Schimekk (Ed.), Smoothing and Regression: approaches, computation and application (pp. 135–158). New York: Wiley.Google Scholar
  81. Kolfschoten, T. van, & Meulen, A. J. van der (1986). Villanyian and Biharian mammal faunas from The Netherlands. Memoire della Societa Geologica Italiana, 31, 191–200.Google Scholar
  82. Kowalski, K. (2001). Pleistocene rodents of Europe. Folia Quaternaria, 72, 3–389.Google Scholar
  83. Kruckenhauser, L., Pinsker, W., Haring, E., & Arnold, W. (1999). Marmot phylogeny revisited: molecular evidence for a diphyletic origin of sociality. Journal of Zoological Systematics and Evolutionary Research, 37, 49–56.CrossRefGoogle Scholar
  84. Lawton, J. H. (1999). Are there general laws in ecology? Oikos, 84, 177–192.CrossRefGoogle Scholar
  85. Leaper, R., Dunstan, P. K., Foster, S. D., Barrett, N. S., & Edgar, G. J. (2013). Do communities exist? Complex patterns of overlapping marine species distributions. Ecology, 95, 2016–2025.CrossRefGoogle Scholar
  86. Leavitt, D. J., & Fitzgerald, L. A. (2013). Disassembly of a dune-dwelling lizard community due to landscape fragmentation. Ecosphere, 4, art97.CrossRefGoogle Scholar
  87. Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.CrossRefGoogle Scholar
  88. Leibold, M. A., & Mikkelson, G. M. (2002). Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos, 97, 237–250.CrossRefGoogle Scholar
  89. Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
  90. Lomolino, M. (1996). Investigating causality of nestedness of insular communities: selective immigrations or extinctions? Journal of Biogeography, 23, 699–703.CrossRefGoogle Scholar
  91. Lomolino, M. V., & Perault, D. R. (2000). Assembly and disassembly of mammal communities in a fragmented temperate rain forest. Ecology, 81, 1517–1532.Google Scholar
  92. Lundelius, E. L., Downs, T., Lindsay, E. H., Semken, H. A., Zakrzewski, R. J., Churcher, C. S., et al. (1987). The North American Quaternary sequence. In M. O. Woodburne (Ed.), Cenozoic mammals of North America: geochronology and biostratigraphy (pp. 211–235). Berkeley: University of California Press.Google Scholar
  93. Maridet, O., Escarguel, G., Costeur, L., Mein, P., Hugueney, M., & Legendre, S. (2007). Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene. Global Ecology and Biogeography, 16, 529–544.CrossRefGoogle Scholar
  94. Maridet, O., Costeur, L., & Legendre, S. (2013). European Neogene rodent communities: explaining family-level replacements through a spatiotemporal approach. Historical Biology, 25, 655–677.CrossRefGoogle Scholar
  95. Martin, R. A., & Peláez-Campomanes, P. (2014). Diversity dynamics of the Late Cenozoic rodent community from south-western Kansas: the influence of historical processes on community structure. Journal of Quaternary Science, 29, 221–231.CrossRefGoogle Scholar
  96. Maul, L. C., & Markova, A. K. (2007). Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe. Quaternary International, 160, 81–99.CrossRefGoogle Scholar
  97. Maurer, B. A. (1999). Untangling ecological complexity: the macroscopic perspective. Chicago: University of Chicago Press.Google Scholar
  98. McGill, B. J., Hadly, E. A., & Maurer, B. A. (2005). Community inertia of Quatrnary small mammal assemblages in North America. Proceedings of the National Academy of Sciences of the USA, 102, 16701–16706.CrossRefGoogle Scholar
  99. Mein, P. (1970). Les sciuroptères (Mammalia, Rodentia) néogènes d’Europe occidentale. Geobios, 3, 7–77.CrossRefGoogle Scholar
  100. Meulen, A. J. van der (1974). On Microtus (Allophaiomys) deucalion (Kretzoi, 1969), (Arvicolidae, Rodentia), from the upper Villányian (Lower Pleistocene) of Villány-5, S. Hungary. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. B, 77, 259–266.Google Scholar
  101. Meulen, A. J. van der, & Bruijn, H. de (1982). The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. B, 85, 485–524.Google Scholar
  102. Meulen, A. J. van der, & Daams, R. (1992). Evolution of Early-Middle Miocene rodent faunas in relation to long-term palaeoenvironmental changes. Palaeogeography Palaeoclimatology Palaeoecology, 93, 227–253.Google Scholar
  103. Meulen, A. J. van der, Peláez-Campomanes, P., & Levin, S. A. (2005). Age structure, residents, and transients of Miocene rodent communities. The American Naturalist, 165, E108–E125.Google Scholar
  104. Mikkelson, G. M. (1993). How do food webs fall apart? A study of changes in trophic structure during relaxation on habitat fragments. Oikos, 67, 539–547.CrossRefGoogle Scholar
  105. Millien-Parra, V., & Loreau, M. (2000). Community composition and size structure of murid rodents in relation to the biogeography of the Japanese archipelago. Ecography, 23, 413–423.CrossRefGoogle Scholar
  106. Minwer-Barakat, R., García-Alix, A., Martín Suárez, E., Freudenthal, M., & Viseras, C. (2012). Micromammal biostratigraphy of the Upper Miocene to lowest Pleistocene continental deposits of the Guadix basin, southern Spain. Lethaia, 45, 594–614.CrossRefGoogle Scholar
  107. Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P. J. H., Spitzenberger, F., et al. (1999). The Atlas of European Mammals. London: Academic.Google Scholar
  108. Morales Muñiz, A., Cereijo Pecharroman, M. A., Hernández Carrasquilla, F., & Liesau von Lettow-Vorbeck, C. (1995). Of mice and sparrows: commensal faunas from the Iberian Iron Age in the Duero Valley (Central Spain). International Journal of Osteoarchaeology, 5, 127–138.Google Scholar
  109. Morris, D. W. (2005). On the roles of time, space and habitat in a boreal small mammal assemblage: predictably stochastic assembly. Oikos, 109, 223–238.CrossRefGoogle Scholar
  110. Nadachowski, A. (1990). Lower Pleistocene rodents of Poland: faunal succession and biostratigraphy. Quartärpaläontologie, 8, 215–223.Google Scholar
  111. Nadachowski, A. (1998). Faunal succession of small mammal assemblages at the Pliocene-Pleistocene boundary in Poland. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60, 281–286.Google Scholar
  112. Nieto, M., & Rodríguez, J. (2003). Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología, 1, 459–474.Google Scholar
  113. Okie, J. G., & Brown, J. H. (2009). Niches, body sizes, and the disassembly of mammal communities on the Sunda Shelf islands. Proceedings of the National Academy of Sciences of the USA, 106, 19679–19684.CrossRefGoogle Scholar
  114. Olson, E. C. (1952). The evolution of a Permian vertebrate chronofauna. Evolution, 6, 181–196.CrossRefGoogle Scholar
  115. Patterson, B. D. (1999). Contingency and determinism in mammalian biogeography: the role of history. Journal of Mammalogy, 80, 345–360.CrossRefGoogle Scholar
  116. Patterson, B. D., & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos Biological. Biological Journal of the Linnean Society, 28, 65–82.CrossRefGoogle Scholar
  117. Patterson, B. D., & Atmar, W. (2000). Analyzing species composition in fragments. Bonner Zoologische Monographien, 46, 9–24.Google Scholar
  118. Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86, 792–812.CrossRefGoogle Scholar
  119. Peinado Lorca, M., & Rivas-Martínez, S. (1987). La vegetación de España. Alcalá de Henares: Servicio de Publicaciones de la Universidad de Alcalá de Henares.Google Scholar
  120. Peláez-Campomanes, P. (1993). Micromamíferos del Paleogeno Continental Español: Sistemática, Biocronología y Paleoecología. PhD thesis, Universidad Complutense de Madrid, Madrid.Google Scholar
  121. Pennington, R. T., Richardson, J. E., & Lavin, M. (2006). Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytologist, 172, 605–616.CrossRefGoogle Scholar
  122. Pevzner, M., Tesakov, A., & Vangengeim, E. (1998). The position of the Tizdar locality (Taman Peninsula, Russia) in the magnetochronological scale. Paludicola, 2, 95–97.Google Scholar
  123. Pokines, J. T. (1998). A late survival of Pliomys lenki (Heller, 1930) in Cantabrian Spain. Mammalia, 62, 143–145.Google Scholar
  124. Potts, R., & Behrensmeyer, A. K. (1992). Late Cenozoic terrestrial ecosystems. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time (pp. 419–541). Chicago: University of Chicago Press.Google Scholar
  125. Presley, S. J., Cisneros, L. M., Patterson, B. D., & Willig, M. R. (2012). Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: a comparison of bats, rodents and birds. Global Ecology and Biogeography, 21, 968–976.CrossRefGoogle Scholar
  126. Presley, S. J., Higgins, C. L., & Willig, M. R. (2010). A comprehensive framework for the evaluation of metacommunity structure. Oikos, 119, 908–917.CrossRefGoogle Scholar
  127. Preston, F. W. (1960). Time and space and the variation of species. Ecology, 41, 611–627.CrossRefGoogle Scholar
  128. Prieto, G., Angelone, C., Casanovas-Vilar, I., Gross, M., Hír, J., Hoek Ostende, L. W. van den, et al. (2014). The small mammals from Gratkorn: an overview. In M. Böhme, M. Gross, J. Prieto (eds) The Sarmatian vertebrate locality Gratkorn, Styrian Basin. Palaeobiodiversity and Palaeoenvironments, 94(1), 135–162.Google Scholar
  129. Purroy, F. J., & Varela, J. M. (2003). Guía de los mamíferos de España: Península, Baleares y Canarias. Barcelona: Lynx.Google Scholar
  130. R Development Core team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  131. Razafindratsima, O. H., Mehtani, S., & Dunham, A. E. (2013). Extinctions, traits and phylogenetic community structure: insights from primate assemblages in Madagascar. Ecography, 36, 47–56.CrossRefGoogle Scholar
  132. Reed, K. E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology, 24, 384–408.Google Scholar
  133. Rekovets, L., & Nadachowski, A. (1995). Pleistocene voles (Arvicolidae) of the Ukraine. Paleontologia i Evolució, 28–29, 145–245.Google Scholar
  134. Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1–15.CrossRefGoogle Scholar
  135. Ricklefs, R. E. (2008). Disintegration of the ecological community. The American Naturalist, 172, 741–750.CrossRefGoogle Scholar
  136. Ricklefs, R. E., & Schluter, D. (1993). Species diversity in ecological communities: historical and geographical perspectives. Chicago: University of Chicago Press.Google Scholar
  137. Riddle, B. R. (1998). The historical assembly of continental biotas: late Quaternary range-shifting, areas of endemism, and bio-geographic structure in the North American mammal fauna. Ecography, 21, 437–442.CrossRefGoogle Scholar
  138. Rodríguez, J. (2006). Structural continuity and multiple alternative stable States in Middle Pleistocene European mammalian communities. Palaeogeography Palaeoclimatology Palaeoecology, 239, 355–373.CrossRefGoogle Scholar
  139. Rodríguez-Gironés, M. A., & Santamaría, L. (2006). A new algorithm to calculate the nestedness temperature of presence-absence matrices. Journal of Biogeography, 33, 924–935.CrossRefGoogle Scholar
  140. Rull, V. (2012). Community ecology: diversity and dynamics over time. Community Ecology, 13, 102–116.CrossRefGoogle Scholar
  141. Savage, D. E., & Russell, D. E. (1983). Mammalian paleofaunas of the world. Reading: Addison-Wesley.Google Scholar
  142. Sesé, C. (2006). Los roedores y lagomorfos del Neógeno de España. Estudios Geológicos, 62, 429–480.CrossRefGoogle Scholar
  143. Simberloff, D. (2004). Community ecology: is it time to move on? The American Naturalist, 163, 787–799.CrossRefGoogle Scholar
  144. Smith, F. A., Lyons, S. K., Ernest, S. K. M., & Brown, J. H. (2008). Macroecology: more than the division of food and space among species on continents. Progress in Physical Geography, 32, 115–138.CrossRefGoogle Scholar
  145. Stegen, J. C., & Swenson, N. G. (2009). Functional trait assembly through ecological and evolutionary time. Theoretical Ecology, 2, 239–250.CrossRefGoogle Scholar
  146. Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., Fraser, D. G., Vorontsov, N. N., Hoffmann, R. S., et al. (1999). Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses. Systematic Biology, 48, 715–734.CrossRefGoogle Scholar
  147. Stevens, R. D., & Tello, J. S. (2012). Do desert rodents form metacommunities? Journal of Mammalogy, 93, 1029–1041.CrossRefGoogle Scholar
  148. Tesakov, A. S. (1998). Voles of the Tegelen fauna. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60, 71–134.Google Scholar
  149. Tesakov, A. S., Lebedev, V. S., Bannikova, A. A., & Abramson, N. I. (2010). Clethrionomys Tilesius, 1850 is the valid generic name for red-backed voles and Myodes Pallas, 1811 is a junior synonym of Lemmus Link, 1795. Russian Journal of Theriology, 9, 83–86.Google Scholar
  150. Thibault, K. M., & Brown, J. H. (2008). Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences of the USA, 105, 3410–3415.CrossRefGoogle Scholar
  151. Ulrich, W., Almeida-Neto, M., & Gotelli, N. (2009). A consumer’s guide to nestedness analysis. Oikos, 118, 3–17.CrossRefGoogle Scholar
  152. Valenzuela-Lamas, S., Baylac, M., Cucchi, T., & Vigne, J. D. (2011). House mouse dispersal in Iron Age Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society, 102, 483–497.CrossRefGoogle Scholar
  153. Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236.Google Scholar
  154. Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of miocene-recent mammal clades. Evolutionary Ecology, 1, 283–300.CrossRefGoogle Scholar
  155. Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28.CrossRefGoogle Scholar
  156. Weerd, A. van de, & Daams, R. (1978). Quantitative composition of rodent faunas in the Spanish Neogene and paleoecological implications. I & II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. B, 81, 448–473.Google Scholar
  157. Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.CrossRefGoogle Scholar
  158. Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world: a taxonomic and geographic reference. Baltimore: Johns Hopkins University Press.Google Scholar
  159. Wilson, D. S. (1992). Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology, 73, 1984–2000.CrossRefGoogle Scholar
  160. Wilson, J. B. (1999). Guilds, functional types and ecological groups. Oikos, 86, 507–522.CrossRefGoogle Scholar
  161. Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.CrossRefGoogle Scholar
  162. Zavaleta, E., Pasari, J., Moore, J., Hernandez, D., Suttle, K. B., & Wilmers, C. C. (2009). Ecosystem responses to community disassembly. Annals of the New York Academy of Sciences, 1162, 311–333.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Manuel Hernández Fernández
    • 1
    • 2
  • Juan L. Cantalapiedra
    • 3
    • 4
  • Ana R. Gómez Cano
    • 5
  1. 1.Departamento de Paleontología, Facultad de Ciencias GeológicasUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Departamento de Cambio MedioambientalInstituto de Geociencias (UCM, CSIC)MadridSpain
  3. 3.Departamento de Paleobiología. Museo Nacional de Ciencias NaturalesConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  4. 4.Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
  5. 5.Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Ecole Normale Supérieure de LyonLyonFrance

Personalised recommendations