Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 94, Issue 4, pp 529–567 | Cite as

The Euro-American genus Eopelobates, and a re-definition of the family Pelobatidae (Amphibia, Anura)

  • Zbyněk RočekEmail author
  • Michael Wuttke
  • James D. Gardner
  • Bhart-Anjan Singh Bhullar
Original Paper

Abstract

The extinct Eopelobates (Eocene of western North America; Eocene–Pliocene of Europe) and Pelobates (Oligocene–Recent of Europe; Recent of northern Africa and the Middle East) are superficially toad-like anurans that are united within the family Pelobatidae mainly on the basis of a unique, tripartite frontoparietal complex. Both genera have a relatively good fossil record consisting of isolated bones, skeletons, and developmental series of tadpoles through adults, all of which are potentially informative for tracing the evolutionary history of the family. Eopelobates is of interest for several reasons. Of the two pelobatid genera, Eopelobates appears earlier in the fossil record (early Eocene vs. late Oligocene) and it is more primitive in lacking many of the features associated with fossoriality in extant Pelobates. The taxonomic composition of Eopelobates has been contentious and at least one putative new species has long been recognised, but never formally named. Here, we provide updated taxonomic accounts for Pelobatoidea, Pelobatidae, Pelobates, and Eopelobates and document development within a series of tadpoles and juveniles of E. bayeri from Bechlejovice (late Oligocene in age), Czech Republic. We also provide updated accounts for the five previously named and currently accepted species of Eopelobates. For the European congeners, E. anthracinus (late Oligocene) and E. bayeri (early Oligocene–middle Miocene) can confidently be regarded as separate species; although the distinction between E. hinschei and E. wagneri (both middle Eocene) is less certain, we provisionally maintain them as separate species. Micro-CT scans for the holotype skeleton of E. grandis (latest Eocene, USA) help resolve some problematic features, most notably showing that the cranial sculpture is of the pit-and-ridge style that is typical for Eopelobates. A sixth congener is named and described based on two skeletons from the middle Eocene portion of the Green River Formation, in Wyoming, USA. We caution that reports of Eopelobates-like anurans from the pre-Eocene of western North America and the early Eocene of India are based on isolated bones that cannot be assigned with confidence to that genus. The presence of Eopelobates in both North America and Europe may be explained by dispersal via the high latitude land bridge that connected those two continents during the late Paleocene through Eocene. The pelobatid fossil record is informative for documenting the nature and timing of changes in cranial features (e.g. ornament patterns, shape of nasals, pattern of frontoparietal–squamosal contact) from the inferred primitive condition seen in most Eopelobates to the more derived condition seen in extant Pelobates, but it is less informative for tracing the evolution of fossoriality, which is a key attribute of extant Pelobates.

Keywords

Eopelobates Fossoriality Green River Formation Palaeobiogeography Pelobates Pelobatidae 

Notes

Acknowledgements

We thank Sandra Chapman (Natural History Museum, London), Boris Ekrt (National Museum, Prague), Yuri Gubin (Paleontological Institute, Moscow), Robert Farrar and Neal Larson (Black Hills Institute, Hill City), and Daniel Brinkman and Jacques Gauthier (Yale Peabody Museum, New Haven) for allowing us to study specimens under their care; Larry Hutson and Ashley Waldorf (Black Hills Institute) for help with procuring a replica of the holotype of Eopelobates deani; and Graeme Housego for accessioning that replica into the Royal Tyrrell Museum of Palaeontology collections. Robert Farrar deserves additional thanks for having canvassed collectors and dealers on our behalf about locality information for the paratype of E. deani and for hosting J.D.G.’s visit to the Black Hills Institute in October 2013. Meinolf Hellmund (Geiseltalmuseum, Halle) provided information on the lithostratigraphy of the Cecilie III and IV localities. Amy Henrici (Carnegie Museum of Natural History, Pittsburgh) and Jean-Claude Rage (Muséum national d’Histoire naturelle, Paris) reviewed the manuscript and provided helpful comments and suggestions. Expenses for museum visits were covered by the Geological Institute, Academy of Sciences of the Czech Republic, Prague for Z.R., by the General Department of Cultural Heritage Rhineland Palatinate for M.W., and by the Royal Tyrrell Museum Cooperating Society for J.D.G. The photograph in Fig. 2a is courtesy of the Natural History Museum (London) and the photographs in Fig. 7a, b are from the archive of Zdeněk V. Špinar currently housed in the Department of Paleontology, National Museum, Prague.

References

  1. Antunes MT, Russell DE (1981) Le gisement de Silveirinha (Bas Mondego, Portugal): La plus ancienne faune de vertébrés éocènes connue en Europe. CR Acad Sci Paris II 293:1099–1102Google Scholar
  2. Archibald SB, Johnson KR, Mathewes RW, Greenwood DR (2011) Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals. Proc R Soc Lond B 278:3679–3686. doi: 10.1098/rspb.2011.0729 Google Scholar
  3. Archibald SB, Makarkin VN (2006) Tertiary giant lacewings (Neuroptera: Polystoechotidae) revision and description of new taxa from western North America and Denmark. J Syst Palaeontol 4:119–155. doi: 10.1017/S1477201906001817 Google Scholar
  4. Armstrong-Ziegler JG (1980) Amphibia and Reptilia from the Campanian of New Mexico. Fieldiana Geol N Ser 4:1–39Google Scholar
  5. Bailon S, Bour R, Rage J-C (1988) Quand les especes de l’herpetofaune francaise sont-elles apparues? Bull Soc Herp Fr 45:1–8Google Scholar
  6. Beard KC, Dawson MR (1999) Intercontinental dispersal of Holarctic land mammals near the Paleocene/Eocene boundary: paleogeographic, paleoclimatic and biostratigraphic implications. Bull Soc Géol Fr 170:697–706Google Scholar
  7. Bellon H, Bůžek C, Gaudant J, Kvaček Z, Walther H (1998) The České Středohoří magmatic complex in Northern Bohemia 40K-40Ar ages for volcanism and biostratigraphy of the Cenozoic freshwater formations. Newsl Stratigr 36:77–103Google Scholar
  8. Böhme M (2008) Ectothermic vertebrates (Teleostei, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Upper Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Cour Forsch-Inst Senckenberg 260:161–183Google Scholar
  9. Böhme M (2010) Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their implications for environment reconstruction and palaeoclimate. Paläontol Z 84:3–41. doi: 10.1007/s12542-010-0050-4 Google Scholar
  10. Böhme M, Vasilyan D (2014) Ectothermic vertebrates from the late Middle Miocene of Gratkorn (Austria, Styria). In: Böhme M, Gross M, Prieto J (eds) The Sarmatian vertebrate locality Gratkorn, Styrian Basin. Palaeobio Palaeoenv 94:21–40Google Scholar
  11. Böhme W, Roček Z, Špinar ZV (1982) On Pelobates decheni Troschel, 1861, and Zaphrissa eurypelis Cope, 1966 (Amphibia: Salientia: Pelobatidae) from the Early Miocene of Rott near Bonn, West Germany. J Vertebr Paleontol 2:1–7Google Scholar
  12. Bolkay SJ (1919) Osnove uporedne osteologije anurskih batrahija. Glas Zemaljskog Muz Bosni Hercegovini 31(3):277–356 (available online from http://www.scribd.com/doc/76034384/glasnik-zemaljskog-muzeja-1919-god-31-knj-3)Google Scholar
  13. Bonaparte CLJL (1850) Conspectus systematum herpetologiae et amphibiologiae. Editio altera reformata. Brill, Leiden [Lugdini Batavorum]Google Scholar
  14. Borsuk-Białynicka M (1978) Eopelobates leptocolaptus sp. n. – the first Upper Cretaceous pelobatid frog from Asia. Palaeontol Pol 38:57–63Google Scholar
  15. Boulenger GA (1910) Les Batraciens, et principalement ceux d’Europe. Doin, ParisGoogle Scholar
  16. Bradley WH (1931) Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah. US Geol Surv Prof Pap 168:1–58Google Scholar
  17. Buffeteaut E (1997) New remains of the giant bird Gastornis from the Upper Paleocene of the eastern Paris Basin and the relationships between Gastornis and Diatryma. N Jb Geol Paläont, Mh 1997:179–190Google Scholar
  18. Chkhikvadze VM (1981) [Survey of the evidence on the fossil remains of the Amphibia and Reptilia from the Neogene deposits of the north Black Sea shore region]. In: Problems in Herpetology. Proceedings of the 5th All-Union Herpetological Conference, pp. 151–152 Nauka, Leningrad. (In Russian)Google Scholar
  19. Chkhikvadze VM (1984) Survey of the fossil urodelan and anuran amphibians in the USSR. Proc Acad Sci Georgian SSR Ser Biol 10:5–13 (In Russian, with English summary)Google Scholar
  20. Chkhikvadze VM (1985) Preliminary results of studies on Tertiary amphibians and squamate reptiles of the Zaisan Basin. In: Darevsky IS (ed) Problems in Herpetology. Proceedings of the 6th All-Union Herpetological Conference. Leningrad, Nauka, pp 234–235 (In Russian)Google Scholar
  21. Cope ED (1865) Sketch of the primary groups of Batrachia Salientia. Nat Hist Rev 1865:97–120Google Scholar
  22. Cope ED (1866) On the structure and distribution of the genera of the arciferous Anura. J Acad Nat Sci Phila 6:67–112Google Scholar
  23. Crochet JY (1972) Les vertébrés de l’Oligocene supérieur du Pech du Fraysse, poche a phosphate du Quercy (commune de Saint-Projet, Tarn-et-Garonne). CR Somm Seanc Soc Geol Fr 6:316–317Google Scholar
  24. Crochet JY, Hartenberger J-L, Rage J-C, Remy JA, Sige B, Sudre J, Vianey-Liaud M (1981) Les nouvelles faunes de vertebres anterieurs a la “Grande Coupure” decouverts dans les phosphorites du Quercy. Bull Mus Natl Hist Nat Paris, ser.4, 3, sect.C(3):245–266Google Scholar
  25. Cuvier G (1829) Le Regne Animal distribue d’apres son Organisation, pour servir de Base a l’Histoire naturelle des Animaux et d’Instruction a l’Anatomie comparee. Nouvelle Edition, revue et augmentee par P.A. Latreille. Vol.2. Deterville, ParisGoogle Scholar
  26. de Bonis L, Crochet JY, Rage J-C, Sige B, Vianey-Liaud M (1973) Nouvelles faunes de vertébrés oligocenes des phosphorites du Quercy. Bull Mus Natl Hist Nat Paris 174(3):105–113Google Scholar
  27. Delwig W (1928) Eine neue Art der Gattung Pelobates Wagl. aus dem zentralen Transkaukasus. Zool Anz 75:24–31Google Scholar
  28. DeMar DG Jr, Breithaupt BH (2008) Terrestrial and aquatic vertebrate paleocommunities of the Mesaverde Formation (Upper Cretaceous, Campanian) of the Wind River and Bighorn basins, Wyoming. In: Sankey JT, Baszio S (eds) Vertebrate microfossil assemblages: Their role in paleoecology and paleobiogeography. Indiana University Press, Bloomington, pp 78–103Google Scholar
  29. Denton RK, O’Neill RC (1998) Parrisia neocesariensis, a new batrachosauroidid salamander and other amphibians from the Campanian of eastern North America. J Vertebr Paleontol 18:484–494Google Scholar
  30. Duellman WE, Trueb L (1994) Biology of the amphibians. Johns Hopkins University Press, BaltimoreGoogle Scholar
  31. Duffaud S (2000) Les faunes d’amphibiens du Crétacé supérieur à l’Oligocène inférieur en Europe: paléodiversité, évolution, mise en place. PhD thesis, Muséum national d’Histoire Naturelle, ParisGoogle Scholar
  32. Eberle JJ, Greenwood DR (2012) Life at the top of the greenhouse Eocene world – A review of the Eocene flora and vertebrate fauna from Canada’s High Arctic. Geol Soc Am Bull 124:3–23Google Scholar
  33. Estes R (1964) Fossil vertebrates from the Late Cretaceous Lance Formation, eastern Wyoming. Univ Calif Publ Geol Sci 49:1–180 + 5 platesGoogle Scholar
  34. Estes R (1969) A new fossil discoglossid frog from Montana and Wyoming. Breviora 328:1–7Google Scholar
  35. Estes R (1970) New fossil pelobatid frogs and a review of the genus Eopelobates. Bull Mus Comp Zool 139:293–339Google Scholar
  36. Estes R, Hutchison JH (1980) Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago. Palaeogeogr Palaeoclimatol Palaeoecol 30:325–347Google Scholar
  37. Estes R, Sanchíz B (1982) New discoglossid and palaeobatrachid frogs from the Late Cretaceous of Wyoming and Montana, and a review of other frogs from the Lance and Hell Creek Formations. J Vertebr Paleontol 2:9–20Google Scholar
  38. Evans SE, Milner AR (1993) Frogs and salamanders from the Upper Jurassic Morrison Formation (Quarry Nine, Como Bluff) of North America. J Vertebr Paleontol 13:24–30Google Scholar
  39. Fabrezi M, Alberch P (1996) The carpal elements of anurans. Herpetologica 52:188–204Google Scholar
  40. Folie A, Rana RR, Rose KD, Sahni A, Kumar K, Singh L, Smith T (2013) Early Eocene frogs from Vastan Lignite Mine, Gujarat, India. Acta Palaeontol Pol 58:511–524Google Scholar
  41. Frost DR (2014) Amphibian Species of the World: an Online Reference. Version 6.0 (30 January 2014). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA
  42. Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sá RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. Am Mus Nat Hist Bull 297:1–370Google Scholar
  43. Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM (2011) Coming to America: multiple origins of New World geckos. J Evol Biol 24:231–244. doi: 10.1111/j.1420-9101.2010.02184.x Google Scholar
  44. García-París M, Buchholz DR, Parra-Olea G (2003) Phylogenetic relationships of Pelobatoidea re-examined using mtDNA. Mol Phylog Evol 28:12–23Google Scholar
  45. Gardner JD (1999) Comments on amphibians from the Green River Formation, with a description of a fossil tadpole. In: Gillette DD (ed) Vertebrate paleontology in Utah. Utah Geol Surv Misc Publ 99–1:455–461Google Scholar
  46. Gardner JD (2008) New information on frogs (Lissamphibia: Anura) from the Lance Formation (late Maastrichtian) and Bug Creek Anthills (late Maastrichtian and early Paleocene), Hell Creek Formation, USA. In: Sankey JT, Baszio S (eds) Vertebrate microfossil assemblages: their role in paleoecology and paleobiogeography. Indiana University Press, Bloomington, pp 219–249Google Scholar
  47. Gardner JD, DeMar DG Jr. (2013) Mesozoic and Palaeocene lissamphibian assemblages of North America: a comprehensive review. In: Gardner JD, Nydam RL (eds) Mesozoic and Cenozoic lissamphibian and squamate assemblages of Laurasia. Palaeobio Palaeoenv 93:459–516Google Scholar
  48. Gaudant J (1985) Mise au point sur les Vertébrés inférieurs de l’Oligocene de Sieblos (Hesse, Allemagne). CR Acad Sci Paris 300(2):185–188Google Scholar
  49. Gayet H, Rage J-C, Rana RS (1984) Nouvelles ichthyofaune et herpetofaune de Gitti Khadan, le plus ancien gisement connu du Deccan (Cretace, Paleocene) a microvertebres. Implications paleogeographiques. Mem Soc Geol Fr NS 147:55–65Google Scholar
  50. Godinot M, de Lapparent de Broin F (2003) Arguments for a mammalian and reptilian dispersal from Asia to Europe during the Paleocene-Eocene boundary interval. In: Reumer JWF, Wessels W (eds) Distribution and migration of Tertiary mammals in Eurasia. A volume in honour of Hans de Bruijn. Deinsea, 10:255–275Google Scholar
  51. Golz DJ, Lillegraven J (1977) Summary of known occurrences of terrestrial vertebrates from Eocene strata of southern California. Univ Wyo Contrib Geol 15:43–65Google Scholar
  52. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  53. Grande L (1984) Paleontology of the Green River Formation with a review of the fish fauna. Geol Surv Wyo Bull 63:1–333Google Scholar
  54. Grande L (2013) The lost world of Fossil Lake: Snapshots from deep time. University of Chicago Press, ChicagoGoogle Scholar
  55. Gubin YM (1996) The first find of pelobatids (Anura) in the Paleogene of Mongolia. Paleont Zh 1996:73–76 (in Russian, with English summary)Google Scholar
  56. Haas A (2003) Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19:23–90Google Scholar
  57. Hecht MK (1959) Amphibian and reptiles. In: McGrew PO, Berman JE, Hecht MK, Hummel JM, Simpson GG, Wood AE (authors) The geology and paleontology of the Elk Mountain and Tabernacle Butte area, Wyoming. Am Mus Nat Hist Bull 117:130–146Google Scholar
  58. Hecht M, Hoffstetter R (1962) Note preliminaire sur les amphibiens et les squamates du Landenien superieur et du Tongrien de Belgique. Bull Inst R Sci Nat Belg 38:1–30Google Scholar
  59. Henrici A (1994) Tephrodytes brassicarvalis, new genus and species (Anura: Pelodytidae), from the Arikareean Cabbage Patch beds of Montana, USA, and pelodytid-pelobatid relationships. Ann Carnegie Mus 63:155–183Google Scholar
  60. Henrici A (2000) Reassessment of the North American pelobatid anuran Eopelobates guthriei. Ann Carnegie Mus 69:145–156Google Scholar
  61. Henrici A (2002) Redescription of Eopelobates grandis, a late Eocene anuran from the Chadron Formation of South Dakota. Ann Carnegie Mus 71:241–259Google Scholar
  62. Henrici AC, Haynes SR (2006) Elkobatrachus brocki, a new pelobatid (Amphibia: Anura) from the Eocene Elko Formation of Nevada. Ann Carnegie Mus 75:11–35. doi: 10.2992/0097-4463(2006)75[11:EBANPA]2.0.CO;2 Google Scholar
  63. Henrici AC, Báez AM, Grande L (2013) Aerugoamnis paulus, new genus and species (Anura: Anomocoela): first reported anuran from the early Eocene (Wasatchian) Fossil Butte Member of the Green River Formation, Wyoming. Ann Carnegie Mus 81:295–309Google Scholar
  64. Hodrová M (1981) Plio-Pleistocene frog fauna from Hajnáčka and Ivanovce, Czechoslovakia. Věst ÚÚG 56:215–224Google Scholar
  65. Hodrová M (1985) Amphibia of Pliocene and Pleistocene Včeláre localities (Slovakia). Čas Min Geol 30:145–161Google Scholar
  66. Hodrová M (1987) Lower Miocene frogs from the Dolnice locality in the Cheb Basin (Czechoslovakia). Acta Univ Carol Geol 1987: 97–115Google Scholar
  67. Hodrová M (1988) Miocene frog fauna from the locality Devínska Nová Ves – Bonanza. Věst ÚÚG 305–310Google Scholar
  68. Holman JA (2003) Fossil frogs and toads of North America. Indiana University Press, BloomingtonGoogle Scholar
  69. Hooker JJ, Dashzeveg D (2003) Evidence for direct mammalian faunal interchange between Europe and Asia near the Paleocene-Eocene boundary. In: Wing SL, Gingerich PD, Schmitz B and Thomas E (eds) Causes and consequences of globally warm climates in the early Paleogene. Geol Soc Am Spec Pap 369:479–500Google Scholar
  70. Ivanov M (2008) Early Miocene Amphibians (Caudata, Salientia) from the Mokrá-Western Quarry (Czech Republic) with comments on the evolution of Early Miocene amphibian assemblages in Central Europe. Geobios 41:465–492Google Scholar
  71. Khosatzky LI (1985) [A new species of spade-foot toads from the Pliocene of Moldavia]. In: Fauna and flora of the Late Cenozoic of Moldavia, pp. 59–72. Shtiintsa, Kishinev (In Russian)Google Scholar
  72. von Koenigswald W, Martin T, Mörs T, Pfretzschner HU (1992) Die oberoligozäne Wirbeltierfauna von Rott bei Hennef am Siebengebirge. Synonymien und Literatur 1828-1991. Decheniana 145:312–340Google Scholar
  73. Krishtalka L, West RM, Black CC, Dawson MR, Flynn JJ, Turnbull WD, Sucky RK, McKenna MC, Bown TM, Golz DJ, Lillegraven JA (1987) Eocene (Wasatchian through Duchesnean) biochronology of North America. In: Woodburne MO (ed) Cenozoic mammals of North America: Geochronology and biostratigraphy. University of California Press, Berkeley, pp 77–117Google Scholar
  74. Kuhn O (1941) Die eozänen Anura aus dem Geiseltale nebst einer Übersicht über die fossile Gattungen. Nov Acta Leopold NF 10:345–376Google Scholar
  75. Laurenti JN (1768) Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa Venena et antidota reptilium Austriacorum. Thom, ViennaGoogle Scholar
  76. Lebedkina NS (2004) Evolution of amphibian skull. Pensoft, Sofia-MoscowGoogle Scholar
  77. Maglia AM (1998) Phylogenetic relationships of extant pelobatoid frogs (Anura: Pelobatoidea): Evidence from adult morphology. Univ Kansas Nat Hist Mus Sci Pap 10:1–19Google Scholar
  78. Mason GM (2011) Fossil insect larvae provide clues for interpretation of the depositional environment of the Green River Formation in early summer … give or take a few million years. Proceedings of 31st Oil Shale Symposium, Colorado School of Mines, Golden, Colorado, USA, 17–19 October 2011. Available at: http://www.costar-mines.org/oss/31/F-paper-sec/18-09_Mason_Glenn_Paper_Final.pdf
  79. Maus M, Wuttke M (2002) Comparative anatomical and taphonomical examination of the larvae of Pelobates decheni Troschel 1861 and Eopelobates anthracinus Parker 1929 (Anura: Pelobatidae) found at the Upper Oligocene sites at Enspel (Westerwald/Germany) and Rott (Seibengebirge/Germany). Cour Forsch-Inst Senckenberg 237:129–138Google Scholar
  80. Maus M, Wuttke M (2004) The ontogenetic development of Pelobates cf. decheni tadpoles from the Upper Oligocene of Enspel (Westerwald/Germany). N Jb Geol Paläont, Abh 232:215–230Google Scholar
  81. Mertens R (1923) Beiträge zur Kenntnis der Gattung Pelobates Wagler. Senck biol 5:118–128Google Scholar
  82. Michahelles C (1830) Neue südeuropäische Amphibien. Isis (Oken) 1830:806–809Google Scholar
  83. Milner AC, Milner AR, Estes R (1982) Amphibians and Squamates from the Upper Eocene of Hordle Cliff, Hampshire - a preliminary report. Tertiary Res 4:149–154Google Scholar
  84. Milner AR (1983) The biogeography of salamanders in the Mesozoic and Early Caenozoic: a cladistic-vicariance model. In: Sims RW, Price JH, Whalley PES (eds.), Evolution, time and space: the emergence of the biosphere. Syst Assoc Spec Vol 23. Academic Press, London, pp. 431–468Google Scholar
  85. Młynarski M (1961) Plazy (Amphibia) z pliocenu Polski. Acta Paleontol Pol 6:261–282Google Scholar
  86. Młynarski M (1962) Notes on the amphibian and reptilian fauna of the Polish Pliocene and early Pleistocene. Acta Zool Cracov 7:177–194Google Scholar
  87. Młynarski M (1977) New notes on the amphibian and reptilian fauna of the Polish Pliocene and Pleistocene. Acta Zool Cracov 22:13–36Google Scholar
  88. Młynarski M, Szyndlar Z (1989) Plazy i gady – Amphibia et reptilia. Folia Quaternaria Krakow 59–60:69–88Google Scholar
  89. Młynarski M, Szyndlar Z, Estes R, Sanchíz B (1984) Amphibians and reptiles from the Pliocene locality of Weze II near Działoszyn (Poland). Acta Paleontol Pol 29:209–226Google Scholar
  90. Müller J (1832) Über die natürliche Einteilung der Amphibien. Isis (Oken) 5:504–539Google Scholar
  91. Naylor BG (1981) Cryptobranchid salamanders from the Paleocene and Miocene of Saskatchewan. Copeia 1981(1):76–86Google Scholar
  92. Nel A, de Plöeg G, Dejax J, Dutheil D, de Frasceschi D, Gheerbrant E, Godinot M, Hervet S, Menier J-J, Augé M, Bignot G, Cavagnetto C, Duffaud S, Gaudant J, Hua S, Jossang A, de Lapparent de Broin F, Pozzi J-P, Paicheler J-C, Beuchet F, Rage J-C (1999) Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). CR Acad Sci Paris Sci Terre Planèt 329:65–72Google Scholar
  93. Nessov LA (1981) [Cretaceous salamanders and frogs of Kizylkum Desert]. Trudy Zoologicheskogo Instituta. Akad Nauk SSSR 101:57–88 (In Russian)Google Scholar
  94. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland, AmsterdamGoogle Scholar
  95. Noble GK (1924) A new spadefoot toad from the Oligocene of Mongolia with a summary of the evolution of the Pelobatidae. Am Mus Novit 132:1–15Google Scholar
  96. Noble GK (1931) The biology of the Amphibia. McGraw Hill, New YorkGoogle Scholar
  97. Paicheler J-C, de Broin F, Gaudant J, Mourier-Chauvre C, Rage J-C, Vergnaud-Grazzini C (1978) Le basin lacustre miocene de Bes-Konak (Anatolie-Turquie): geologie et introduction a la paleontologie des vertébrés. Geobios 11:43–65Google Scholar
  98. Parker HW (1929) Two fossil frogs of the lower Miocene of Europe. Ann Mag Nat Hist 10:270–281Google Scholar
  99. Pasteur G (1958) Sur les tendences evolutives et la phylogenie des Pelobates (Batraciens anoures) actuels. CR Acad Sci Paris 247:1037–1039Google Scholar
  100. Paunović M (1984) Fische, Amphibien und Reptilien aus oberpleistozänen Ablagerungen von Šandalja bei Pula (Istrien, Kroatien). Palaeont Jugosl 31:5–44Google Scholar
  101. Petrulevičius JF, Nel A, Rust J, Bechly G, Kohls D (2007) New Paleogene Epallagidae (Insecta: Odonata) recorded in North America and Europe. Biogeographic implications. Alavesia 1:15–25Google Scholar
  102. Prasad GVR, Sahni A (1987) Coastal-plain microvertebrate assemblage from the terminal Cretaceous of Asifabad, peninsular India. J Paleo Soc India 32:5–19Google Scholar
  103. Prasad GVR, Sahni A (2009) Late Cretaceous continental vertebrate fossil record from India: Palaeobiogeographical insights. Bull Soc Geol Fr 180:369–381Google Scholar
  104. Přikryl T, Aerts P, Havelková P, Herrel A, Roček Z (2009) Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion. J Anat 214:100–139Google Scholar
  105. Rage J-C (1972) Les Amphibiens et les Reptiles des couches paleochretiennes de la grotte de l’Hortus. Etudes Quatern Mem 1:299–301Google Scholar
  106. Rage J-C (1988) Le gisement du Bretou (phosphorites du Quercy, Tarn-et-Garonne, France) et sa faune de vertébrés de l’Eocene superieur. I. Amphibiens et reptiles. Palaeontographica Abt A 205:3–27Google Scholar
  107. Rage JC, Augé M (2003) Amphibians and squamate reptiles from the lower Eocene of Silveirinha (Portugal). Ciências Terra (UNL) 15:103–116, http://hdl.handle.net/10362/4731 Google Scholar
  108. Rage J-C, Ford RLE (1980) Amphibians and squamates from the upper Eocene of the Isle of Wight. Tertiary Res 3:47–60Google Scholar
  109. Rage J-C, Hossini S (2000) Les Amphibiens du Miocène moyen de Sansan. In: Ginsburg L (ed) La faune miocène de Sansan et son environment. Mém Mus Nat. Hist Nat 183:177–217Google Scholar
  110. Rage J-C, Roček Z (2003) Evolution of anuran assemblages in the Tertiary and Quaternary of Europe, in the context of palaeoclimate and palaeogeography. Amphibia-Reptilia 24:133–167Google Scholar
  111. Rage J-C, Sen S (1976) Les amphibiens et les reptiles du Pliocene superieur de Çalta (Turquie). Geol Mediter 3:127–134Google Scholar
  112. Rage J-C, Vergnaud-Grazzini C (1978) La poche a phosphate de Ste-Neboule (Lot) et sa faune de vertebres du Ludien supérieur. 2. Amphibiens. Note preliminaire. Palaeovertebrata Montpellier 8(2–4):175–179Google Scholar
  113. Rage JC, Folie A, Rana RS, Singh H, Rose KD, Smith T (2008) A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontol Pol 53:391–403Google Scholar
  114. Rana RS, Kumar K, Escarguel G, Sahni A, Rose KD, Smith T, Singh H, Singh L (2008) An ailuravine rodent from the lower Eocene Cambay Formation at Vastan, western India, and its palaeobiogeographic implications. Acta Palaeontol Pol 53:1–14Google Scholar
  115. Ratnikov VY (1988) Upper Quaternary herpetofaunas of the Belgorodskaya Region. Paleontol Zh 1988:119–122Google Scholar
  116. Roček Z (1981) Cranial anatomy of frogs of the family Pelobatidae Stannius, 1856, with outlines of their phylogeny and systematics. Acta Univ Carol Biol 1980:1–164Google Scholar
  117. Roček Z (1982) Macropelobates osborni Noble, 1924—Redescription and reassignment. Acta Univ Carol Geol 1982:421–438Google Scholar
  118. Roček Z (1995) A new specimen of Eopelobates (Anura: Pelobatidae) from the Tertiary near Bonn (Germany) and the problem of E. anthracinus-E. bayeri relations. Paläontol Z 69:283–287Google Scholar
  119. Roček Z (2005) Late Miocene Amphibia from Rudabánya. Palaeont Ital 90(2004):11–29Google Scholar
  120. Roček Z (2013) Mesozoic and Tertiary Anura of Laurasia. Palaeobio Palaeoenv 93:397–439. doi: 10.1007/s12549-013-0131-y Google Scholar
  121. Roček Z, Nessov LA (1993) Cretaceous anurans from Central Asia. Palaeontographica Abt A 266:1–54Google Scholar
  122. Roček Z, Rage JC (2000) Tertiary anura of Europe, Africa, Asia, North America, and Australia. In: Heatwole H, Carroll RL (eds) Amphibian Biology, vol 4, Paleontology. Surrey Beatty, Chipping Norton, pp 1332–1387Google Scholar
  123. Roček Z, Wuttke M (2010) Amphibia of Enspel (Late Oligocene, Germany). In: Wuttke M, Uhl D, Schindler T (eds) Fossil-lagerstätte Enspel - exceptional preservation in an Upper Oligocene maar. Palaeobio Palaeoenv 90:321–340Google Scholar
  124. Roček Z, Eaton JG, Gardner J, Přikryl T (2010) Evolution of anuran assemblages in the Late Cretaceous of Utah, USA. Palaeobio Palaeoenv 90:341–393Google Scholar
  125. Roček Z, Dong L, Přikryl T, Sun C, Tan J, Wang Y (2011) Fossil frogs (Anura) from Shanwang (Middle Miocene; Shandong Province, China). Geobios 44:499–518Google Scholar
  126. Ročková H, Roček Z (2005) Development of the pelvis and posterior part of the vertebral column in the Anura. J Anat 206:17–35Google Scholar
  127. Roelants K, Bossuyt F (2005) Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Syst Biol 54:111–126Google Scholar
  128. Sahni A (1972) The vertebrate fauna of the Judith River Formation, Montana. Am Mus Nat Hist Bull 147:323–412Google Scholar
  129. Sahni A, Kumar K, Hartenberger J-L, Jaeger J-J, Rage J-C, Sudre J, Vianey-Liaud M (1982) Microvertébrés nouveaux des Trapps du Deccan (Inde): Mise en evidence d’une voie de communication terrestre probable entre la Laurasie et l’Inde à la limite Crétacé-Tertiaire. Bull Soc Géol Fr 24:1093–1099Google Scholar
  130. Sanchíz FB (1977) Catalogo de los anfibios fosiles de Espana (Noviembre de 1977). Acta Geol Hisp 12:103–107Google Scholar
  131. Sanchíz B (1983) The fossil record of living European amphibians. Abstracts 2nd Ord. Gen. Meet. SEH, Leon, pp. 16–17Google Scholar
  132. Sanchíz B (1984) Algunas faunas pleistocenicas de islas del Mediterraneo oriental. In: Castroviejo (Ed.) Actas II Reunion Iberoamericana Conservacion Zoologia Vertebrados, pp. 59–69. Estacion Biol. Doñana, SevillaGoogle Scholar
  133. Sanchiz B (1998) Salientia. In: Encyclopedia of Paleoherpetology, Part 4 (ed. Wellnhofer P). Verlag Dr. Friedrich Pfeil, München, pp. 1–275Google Scholar
  134. Sanchíz FB, Mlynarski M (1979) Remarks on the fossil anurans from the Polish Neogene. Acta Zool Cracov 24:153–174Google Scholar
  135. San Mauro D, Vences M, Alcobendas M, Zardoya R, Meyer A (2005) Initial diversification of living amphibians predated the breakup of Pangaea. Am Nat 165:590–599Google Scholar
  136. Schmalhausen JJ (1907) Die Entwickelung des Skelettes der vorderen Extremität der anuren Amphibien. Anat Anzeiger 31:177–187Google Scholar
  137. Skutschas PP, Bannikov AF (2009) The first find of a spadefoot toad (Anura, Pelobatidae) in the Miocene of Moldova. Paleont J 43:433–437Google Scholar
  138. Smith ME, Carroll AR, Singer BS (2008) Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geol Soc Am Bull 120:54–84Google Scholar
  139. Smith ME, Chamberlain KR, Singer BS, Carroll AR (2010) Eocene clocks agree: coeval 40Ar/39Ar, U-Pb, and astronomical ages from the Green River Formation. Geology 38:527–530Google Scholar
  140. Smith R (2003) Les vertébrés terrestres de l’Oligocène inférieur de Belgique (Formation de Borgloon, MP 21): inventaire et interprétation des données actuelles. Coloquios Paleontol 1:647–657Google Scholar
  141. Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene Thermal Maximum. Proc Natl Acad Sci USA 103:11223–11227. doi: 10.1073/pnas.0511296103 Google Scholar
  142. Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H, Singh L (2007) High bat (Chiroptera) diversity in the early Eocene of India. Naturwissenschaften 94:1003–1009Google Scholar
  143. Solé F, Smith T (2013) Dispersals of placental carnivorous mammals (Carnivoramorpha, Oxyaenodonta & Hyaenodontida) near the Paleocene-Eocene boundary: a climatic and almost worldwide story. Geol Belg 16:254–261Google Scholar
  144. Špinar ZV (1952) Eopelobates bayeri—a new frog from the Tertiary of Bohemia. Sbor ÚÚG Paleontol 19:457–488Google Scholar
  145. Špinar ZV (1972) Tertiary frogs from Central Europe. Academia, PragueGoogle Scholar
  146. Špinar ZV, Roček Z (1984) The discovery of the impression of the ventral side of Eopelobates anthracinus Parker, 1929 holotype. Amphibia-Reptilia 5:87–95Google Scholar
  147. Špinar ZV, Tatarinov LP (1986) A new genus and species of discoglossid frog from the Upper Cretaceous of the Gobi Desert. J Vertebr Paleontol 6:113–122Google Scholar
  148. Sullivan RM, Augé M, Wille E, Smith R (2012) A new glyptosaurine lizard from the earliest Eocene of Dormaal, Belgium. Bull Soc Géol Fr 183:627–633Google Scholar
  149. Troschel FH (1861) Uebersicht aller bisher aus der Braunkohle des Siebengebirges beschriebenen fossilen Tiere etc. Sitzungsber Niederrheinischen Ges Bonn 1861:55–56Google Scholar
  150. Trueb L, Hanken L (1992) Skeletal development in Xenopus laevis (Anura: Pipidae). J Morphol 214:1–41Google Scholar
  151. Venczel M (2001) Anurans and squamates from the Lower Pliocene (MN 14) Osztramos 1 locality (Northern Hungary). Fragm Paläontol Hung 19:79–90Google Scholar
  152. Venczel M (2004) Middle Miocene anurans from the Carpathian Basin. Palaeontographica Abt A 271:151–174Google Scholar
  153. Venczel M, Hír J (2013) Amphibians and squamates from the Miocene of Felsötárkány Basin, N-Hungary. Palaeontogr A 300:117–158Google Scholar
  154. Vergnaud-Grazzini C (1970) Les Amphibiens fossiles du gisement d’Arondelli. Palaeontogr Ital 66:45–65Google Scholar
  155. Wagler JG (1830) Natürliches System der Amphibien, mit vorangehender Classification der Saugethiere und Vögel. Gotta, MunichGoogle Scholar
  156. Wassersug R, Wake D (1995) Fossil tadpoles from the Miocene of Turkey. Alytes 12:145–157Google Scholar
  157. Weitzel K (1938) Propelodytes wagneri n. g. n. sp., ein Frosch aus dem Mittel-eozän von Messel. Notizbl Hess Geol Landesanst 19:42–46Google Scholar
  158. West RM, Dawson MR (1978) Vertebrate paleontology and the Cenozoic history of the north Atlantic region. Polarforschung 48:103–119Google Scholar
  159. Wuttke M (1988) Untersuchungen zur Morphologie, Paläobiologie und Biostratonomie der mitteleozänen Anuren von Messel. Mit einem Beitrag zur Aktuopaläontologie von Anuren und zur Weichteildiagenese der Wirbeltiere von Messel. PhD thesis, University of Mainz, MainzGoogle Scholar
  160. Wuttke M (2012a) Redescription of the Middle Eocene frog Lutetiobatrachus gracilis Wuttke in Sanchiz, 1998 (Lower Geiseltalian, “Grube Messel”, near Darmstadt, southern Hesse, Germany). Kaupia—Darmstädter Beitr Naturgesch 18:29–41Google Scholar
  161. Wuttke M (2012b) The genus Eopelobates (Anura, Pelobatidae) from Messel, Geiseltal, and Eckfeld (middle Eocene, Germany). Part I: Redescription of Eopelobates wagneri (Weitzel, 1938) from Messel (lower Geiseltalium, Germany). Kaupia—Darmstädter Beitr Naturgesch 18:43–71Google Scholar
  162. Wuttke M, Přikryl T, Ratnikov VY, Dvořák Z, Roček Z (2012) Generic diversity and distributional dynamics of the Palaeobatrachidae (Amphibia: Anura). Palaeobio Palaeoenv 92:367–395. doi: 10.1007/s12549-012-0071-y Google Scholar
  163. Yang J (1977) On some Salientia and Chiroptera from Shanwang, Linqu, Shandong. Vertebr Pal Asiat 15:76–80Google Scholar
  164. Zerova GA (1985) Preliminary results of investigation of Middle Sarmatian herpetofauna of Ukraine. Problems of herpetology – Abstracts of 6th All-Union Herpetological Conference, Tashkent, p. 78. Nauka, LeningradGoogle Scholar
  165. Zweifel RG (1956) Two pelobatid frogs from the Tertiary of North America and their relationships to fossil and recent forms. Am Mus Novit 1762:1–45Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zbyněk Roček
    • 1
    Email author
  • Michael Wuttke
    • 2
  • James D. Gardner
    • 3
  • Bhart-Anjan Singh Bhullar
    • 4
  1. 1.Department of Palaeobiology, Geological InstituteAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Department of Archaeology, General Department of Cultural Heritage Rhineland PalatinateSection Geological History of the EarthMainzGermany
  3. 3.Royal Tyrrell Museum of PalaeontologyDrumhellerCanada
  4. 4.Harvard UniversityCambridgeUSA

Personalised recommendations