Palaeobiodiversity and Palaeoenvironments

, Volume 94, Issue 3, pp 487–494 | Cite as

Reply to “Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion” by van Loon (2013)

  • Achim G. Reisdorf
  • Gail S. Anderson
  • Lynne S. Bell
  • Christian Klug
  • Annette Schmid-Röhl
  • Hans-Joachim Röhl
  • Michael Jung
  • Michael Wuttke
  • Michael W. Maisch
  • Mark Benecke
  • Daniel Wyler
  • Roman Bux
  • Peter Fornaro
  • Andreas Wetzel

In his recent discussion on the taphonomy of ichthyosaurs, van Loon (2013) supported—at least partially—the view of Reisdorf et al. (2012) and emphasized that explosion of vertebrate carcasses on the sea floor should not be considered as a taphonomically reasonable scenario. Carcass explosion is thus not a process that can be used to explain both the disarticulation of certain ichthyosaur skeletons and the displacement of their bones in the geological record. Van Loon (2013), however, did suggest that, as an alternative hypothesis, implosion could have led to the displacement of bones on the sea floor.

Van Loon (2013) focussed his explanation of the implosion hypothesis on the example of a maternal ichthyosaur having embryonic ichthyosaurs around and within its body cavity (Staatliches Museum für Naturkunde Stuttgart, specimen number SMNS 50 007). Reisdorf et al. (2012) outlined that this maternal specimen is just one example of many similar cases. In fact, Reisdorf et al. (2012)...


Bottom Current Toarcian Primary Sedimentary Structure Vertebrate Carcass Stagnant Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson GS (2010) Decomposition and invertebrate colonization of cadavers in coastal marine environments. In: Amendt J, Campobasso CP, Goff ML, Grassberger M (eds) Current concepts in forensic entomology. Springer, Dordrecht, Heidelberg, London, New York, pp 223–272Google Scholar
  2. Anderson GS, Bell LS (2010) Deep coast marine taphonomy: interim results from an ongoing experimental investigation of decomposition in the Saanich Inlet, British Columbia. Proc Am Acad Forensic Sci 16:381–382Google Scholar
  3. Bernaldo de Quirós Y, Seewald JS, Sylva SP, Greer B, Niemeyer M, Bogomolni AL, Moore MJ (2013) Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins. PLoS ONE 8(12):e83994. doi: 10.1371/journal.pone.0083994 CrossRefGoogle Scholar
  4. Blackburn DG, Weaber KK, Stewart JR, Thompson MB (2003) Do pregnant lizards resorb or abort inviable eggs and embryos? Morphological evidence from an Australian skink, Pseudemoia pagenstecheri. J Morphol 256:219–234CrossRefGoogle Scholar
  5. Böttcher R (1990) Neue Erkenntnisse über die Fortpflanzungsbiologie der Ichthyosaurier. Stuttgarter Beitr Naturk B 164:1–51Google Scholar
  6. Bour I, Mattioli E, Pittet B (2007) Nannofacies analysis as a tool to reconstruct paleoenvironmental changes during the early Toarcian anoxic event. Palaeogeogr Palaeoclimatol Palaeoecol 249:58–79CrossRefGoogle Scholar
  7. Brenner K (1976a) Ammonitengehäuse als Anzeiger für Paläo-strömungen. N Jb Geol Paläont, Abh 151:101–118Google Scholar
  8. Brenner K (1976b) Schwarzschiefer biostratinomische Untersuchungen im Posidonienschiefer (Lias epsilon, Unteres Toarcium) von Holzmaden (Württemberg, Süd-Deutschland). Zbl Geol Paläont 2:223–226Google Scholar
  9. Brenner K, Seilacher A (1979) New aspects about the origin of the Toarcian Posidonia Shales. N Jb Geol Paläont, Abh 157:11–18Google Scholar
  10. Cope JCW, Ingham JK, Rawson PF (1992) Atlas of palaeogeography and lithofacies. Geol Soc Mem 13:1–152CrossRefGoogle Scholar
  11. Dumser TK, Türkay M (2008) Postmortem changes of human bodies on the Bathyal Sea Floor—two cases of aircraft accidents above the open sea. J Forensic Sci 53:1049–1052CrossRefGoogle Scholar
  12. Einsele G, Mosebach R (1955) Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura. N Jb Geol Paläont, Abh 101:319–430Google Scholar
  13. Fröbisch NB, Sander M, Rieppel O (2006) A new species of Cymbospondylus (Diapsida, Ichthyosauria) from the Middle Triassic of Nevada and a re-evaluation of the skull osteology of the genus. Zool J Linn Soc 147:515–538CrossRefGoogle Scholar
  14. Gans C, Parsons TS (eds) (1977) Biology of the Reptilia. Morphology E. Academic Press, London, New YorkGoogle Scholar
  15. Hallam A (1988) A re-evaluation of the Jurassic eustasy in the light of new data and the revised Exxon curve. SEPM Soc Sed Geol Spec Publ 42:261–273Google Scholar
  16. Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37CrossRefGoogle Scholar
  17. Hänggi H, Reisdorf AG (2007) Der Ichthyosaurier vom Hauensteiner Nebelmeer—Wie eine Kopflandung die Wissenschaft Kopf stehen lässt. Mitt Naturforsch Ges Kanton Solothurn 40:7–22Google Scholar
  18. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Spec Publ 42:71–108Google Scholar
  19. Harazim D, Van De Schootbrugge B, Sorichter K, Fiebig J, Weug A, Suan G, Oschmann W (2013) Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60:359–390CrossRefGoogle Scholar
  20. Hauff B, Hauff RB (1981) Das Holzmadenbuch. Hauff & Hauff, Holzmaden, TeckGoogle Scholar
  21. Heller W (1966) Untersuchungen zur sogenannten Hauterhaltung bei Ichthyosauriern aus dem Lias epsilon Holzmadens (Schwaben). N Jb Geol Paläont, Mh 1966:304–317Google Scholar
  22. Hewitt RA, Westermann GEG (1987) Post-mortem behaviour of Early Paleozoic nautiloids and paleobathymetry. Paläontol Z 70:405–424CrossRefGoogle Scholar
  23. Hofmann J (1958) Einbettung und Zerfall der Ichthyosaurier im Lias von Holzmaden. Meyniana 6:10–55Google Scholar
  24. Hui CA (1975) Thoracic collapse as affected by the retia thoracica in the dolphin. Respir Physiol 25:63–70CrossRefGoogle Scholar
  25. Kanie Y, Hattori M (1983) Shell implosion depth of living Nautilus. Occas Pap 1:30–35Google Scholar
  26. Kauffman EG (1979) Benthic environments in paleoecology of the Posidonienschiefer (Toarcian). N Jb Geol Paläont, Abh 157:18–36Google Scholar
  27. Kauffman EG (1981) Ecolocial reappraisal of the German Posidonienschiefer and the Stagnant Basin Model. In: Gray J, Boucot AJ, Berry WBN (eds) Communities of the past. Hutchinson Ross, Stroudsburg, pp 311–381Google Scholar
  28. Kear BP, Zammit M (2014) In utero foetal remains of the Cretaceous ichthyosaurian Platypterygius: ontogenetic implications for character state efficacy. Geol Mag 151:71–86Google Scholar
  29. Keller T (1992) “Weichteil-Erhaltung” bei großen Vertebraten (Ichthyosauriern) des Posidonienschiefers Holzmadens (Oberer Lias, Mesozoikum Süddeutschlands). Kaupia–Darmstädter Beitr Naturgesch 1:23–62Google Scholar
  30. Kelly D (1990) Postmortem gastrointestinal gas production in submerged Yucatan micro-pigs. Unpublished MA thesis. Colorado State University, Fort CollinsGoogle Scholar
  31. Kooyman GL (1989) Diverse divers. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  32. Lindgren J, Sjövall P, Carney RM, Uvdal P, Gren JA, Dyke G, Schultz BP, Shawkey MD, Barnes KR, Polcyn MJ (2014) Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506(7489):484–488. doi: 10.1038/nature12899
  33. Mallach HJ, Schmidt WK (1980) Über ein quantitatives und qualitatives Verfahren zum Nachweis der Luft- oder Gasembolie. Beitr Gerichtl Med 38:409–419Google Scholar
  34. Martill DM (1993) Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia–Darmstädter Beitr Naturgesch 2:77–97Google Scholar
  35. Maxwell EE, Caldwell MW (2003) First record of live birth in Cretaceous ichthyosaurs: closing an 80 million year gap. Proc R Soc Lond Ser B 270[Suppl]:S104–S107CrossRefGoogle Scholar
  36. McGhee GR (2011) Convergent evolution: limited forms most beautiful. The MIT Press, Cambridge, LondonCrossRefGoogle Scholar
  37. Motani R, D-y J, Tintori A, Rieppel O, G-b C (2014) Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by early Triassic embryonic fossils. PLoS ONE 9:e88640CrossRefGoogle Scholar
  38. Osborn HF (1905) Ichthyosaurs. The evolution of fitness in ichthyosaurs (Fossil wonders of the West). Cent Mag 69:414–422Google Scholar
  39. Polmar N (2004) The death of the U.S.S. Thresher: the story behind history’s deadliest submarine disaster. Lyons Press, GuilfordGoogle Scholar
  40. Prauss M, Ligouis B, Luterbacher H (1991) Organic matter and palynomorphs in the “Posidonienschiefer” (Toarcian, Lower Jurassic) of southern Germany. In: Thyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Publ 58:335–351Google Scholar
  41. Reisdorf AG (2007) No joke movement: Mehr über den Hauensteiner Ichthyosaurier und rezente marine Lungenatmer. Mitt Naturforsch Ges Kanton Solothurn 40:23–49Google Scholar
  42. Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s Opisthotonic-Posture Hypothesis in fossil vertebrates. Part I: reptiles—the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92:119–168Google Scholar
  43. Reisdorf AG, Wuttke M (2013) Exploding the myth: can carcasses explode? In: 57th Annu Meet Palaeont Assoc (Programme and Abstracts). The Palaeontological Association. Zurich, p 84Google Scholar
  44. Reisdorf AG, Bux R, Wyler D, Benecke M, Klug C, Maisch MW, Fornaro P, Wetzel A (2012) Float, explode or sink: post-mortem fate of lung-breathing marine vertebrates. In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92:67–81Google Scholar
  45. Ridgway SH, Scronce BL, Kanwisher J (1969) Respiration and deep diving in the bottlenose porpoise. Science 166:1651–1654CrossRefGoogle Scholar
  46. Riegraf W (1985) Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium Südwestdeutschlands und Vergleiche mit benachbarten Gebieten. Tübinger Mikropal Mitt 3:1–232Google Scholar
  47. Riegraf W, Werner G, Lörcher F (1984) Der Posidonienschiefer. Enke, StuttgartGoogle Scholar
  48. Röhl H-J (1998) Hochauflösende palökologische und sedimentologische Untersuchungen im Posidonienschiefer (Lias ε) von SW-Deutschland. Tübinger Geowissenschaft Arb Reihe A 47:1–170Google Scholar
  49. Röhl H-J, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: a sequence stratigraphic case study from the SW German Posidonia Shale. SEPM Soc Sed Geol Spec Publ 82:165–189Google Scholar
  50. Röhl H-J, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate”. Palaeogeogr Palaeoclimatol Palaeoecol 169:273–299CrossRefGoogle Scholar
  51. Schieber J, Southard J, Thaisen K (2007) Accretion of mudstone beds from migrating floccule ripples. Science 318:1760–1763CrossRefGoogle Scholar
  52. Schmid-Röhl A, Röhl H-J (2003) Overgrowth on ammonite conchs—environmental implications of the Lower Toarcian Posidonia Shale. Palaeontology 46:339–352CrossRefGoogle Scholar
  53. Scholle PA, Arthur MA, Ekdale AA (1983) Pelagic environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petrol Geol Mem 33:619–691Google Scholar
  54. Seilacher A (1982) Posidonia Shale (Toarcian, S. Germany)—stagnate basin model revalidated. In: Gallitelli EM (ed) Palaeontology, essential of historical geology. STEM Mucchi, Modena, pp 25–55Google Scholar
  55. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354Google Scholar
  56. Suan G, Rulleau L, Mattioli E, Suchéras-Marx B, Rousselle B, Pittet B, Vincent P, Martin JE, Léna A, Spangenberg JE, Föllmi KB (2013) Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geol 150:728–742Google Scholar
  57. Taylor MA (1987) Reinterpretation of ichthyosaurs swimming and buoyancy. Palaeontology 30:531–535Google Scholar
  58. Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31CrossRefGoogle Scholar
  59. Teather RG (1994) Encyclopedia of underwater investigations. Best Publishing Company, FlagstaffGoogle Scholar
  60. van Loon AJ (2013) Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion. Palaeobio Palaeoenv 93:103–109CrossRefGoogle Scholar
  61. Vogel S (1994) Life in moving fluids. Princeton University Press, PrincetonGoogle Scholar
  62. Wahl WR (2009) Taphonomy of a nose dive: bone and tooth displacement and mineral accretion in an Ichthyosaur Skull. Paludicola 7:107–116Google Scholar
  63. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735Google Scholar
  64. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  65. Wetzel A, Reisdorf AG (2007) Ichnofabrics elucidate the accumulation history of a condensed interval containing a vertically emplaced ichthyosaur skull. SEPM Soc Sed Geol Spec Publ 88:241–251Google Scholar
  66. Wetzel A, Uchman A (1998) Biogenic sedimentary structures in mudstones—an overview. In: Schieber J, Zimmerle W, Sethi P (eds) Shales and mudstones, I. Schweizerbart, Stuttgart, pp 351–369Google Scholar
  67. Wetzel A, Weissert H, Schaub M, Voegelin AR (2013) Seawater circulation on an oolite-dominated carbonate system in an epeiric sea (Middle Jurassic, Switzerland). Sedimentology 60:19–35CrossRefGoogle Scholar
  68. Wiesenburg DA, Guinasso NL Jr (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data 24:356–360CrossRefGoogle Scholar
  69. Zammit M, Kear BP, Norris RM (2014) Locomotory capabilities in the early Cretaceous ichthyosaur Platypterygius australis based on osteological comparisons with extant marine mammals. Geol Mag 151:87–99CrossRefGoogle Scholar
  70. Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij, The HagueGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Achim G. Reisdorf
    • 1
    • 2
  • Gail S. Anderson
    • 3
  • Lynne S. Bell
    • 3
  • Christian Klug
    • 8
  • Annette Schmid-Röhl
    • 10
  • Hans-Joachim Röhl
    • 11
  • Michael Jung
    • 4
  • Michael Wuttke
    • 12
  • Michael W. Maisch
    • 9
  • Mark Benecke
    • 7
  • Daniel Wyler
    • 6
  • Roman Bux
    • 5
  • Peter Fornaro
    • 13
  • Andreas Wetzel
    • 1
  1. 1.Geologisch-Paläontologisches InstitutUniversität BaselBaselSwitzerland
  2. 2.Naturhistorisches Museum der BurgergemeindeBernSwitzerland
  3. 3.Centre for Forensic Research, School of CriminologySimon Fraser UniversityBurnabyCanada
  4. 4.Ubootgeschwader, Hydroakustisches Analysezentrum der MarineEckernfördeGermany
  5. 5.Institut für Rechtsmedizin und VerkehrsmedizinUniversitätsklinikum HeidelbergHeidelbergGermany
  6. 6.Institut für Pathologie und Rechtsmedizin des Kantonspitals GraubündenChurSwitzerland
  7. 7.International Forensic Research & ConsultingCologneGermany
  8. 8.Paläontologisches Institut und MuseumUniversität ZürichZurichSwitzerland
  9. 9.Institut für GeowissenschaftenEberhard Karls-Universität TübingenTübingenGermany
  10. 10.Holcim (Süddeutschland) GmbHFossil MuseumDotternhausenGermany
  11. 11.TübingenGermany
  12. 12.Generaldirektion Kulturelles Erbe RLPMainzGermany
  13. 13.Imaging and Media LabUniversität BaselBaselSwitzerland

Personalised recommendations