Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 4, pp 425–443 | Cite as

Amphisbaenians from the European Eocene: a biogeographical review

  • Marc Louis Augé
Original Paper


In this paper, part of the amphisbaenian fossil record from the european Eocene is revised. There is no evidence for the existence of amphisbaenian lizards in Europe or on other continents during the Late Cretaceous. Crown amphisbaenians were present in Europe in the early Paleocene and throughout the Paleogene, with the notable exception of the middle Eocene. In particular, they were not found at Messel. European fossil taxa previously assigned to the amphisbaenians are briefly reviewed, and a description of some representative specimens from the Eocene fossil record is presented: dentary and vertebrae from Mutigny (early Eocene, France) are referred to the North American genus Anniealexandria; fossils from the late Eocene of the Phosphorites du Quercy (France) are attributed to Blanidae, and they are the earliest secure occurrence of Blanidae in the fossil record; and dentaries and maxillae from Grisolles (middle-late Eocene, Paris Basin, France) are referred to a new species, Louisamphisbaena ferox. Global distribution of fossil amphisbaenians in the Eocene reveals at least one episode of dispersal between North America and Europe during the early Eocene. Finally, some explanations are suggested for the absence of crown amphisbaenians at Messel and in the European middle Eocene.


Amphisbaenians Blanidae Eocene Europe 



It is a particular pleasure to thank the Senckenberg Institute for its invitation to participate in the 22nd International Senckenberg Conference, and in particular T. Lehmann, S.F.K Schaal and S. Weber. For helpful advice and assistance, I would like to thank J.-C. Rage, K. Smith, J. Müller and S. Bailon. It is a pleasure to acknowledge the assistance provided by the MNHN and in particular by P. Janvier. I am indebted to C. Lemzaouda and P. Loubry from the MNHN for the photographs.


  1. Alroy J, Koch PL, Zachos JC (2000) Global climate change and North American mammalian evolution. In: Erwin DH, Wing SL (eds) Deep time. Paleobiology Suppl 26(4):259–288Google Scholar
  2. Astibia H, Buffetaut E, Buscalioni AD, Cappetta H, Corral C, Garcia-Garmilla F, Jaeger JJ, Jimenez-Fuentes E, Le Loeuff J, Mazin JM, Orue-Etxebarria X, Pereda-Suberbiola J, Powell JE, Rage JC, Rodriguez-Lazaro J, Sanz JL, Tong H (1990) The fossil vertebrates from Lano (Basque Country, Spain); new evidence on the composition and affinities of the Late Cretaceous continental faunas of Europe. Terra Nova 2:460–466CrossRefGoogle Scholar
  3. Augé M (1992) Campinosaurus woutersi n.g. n.sp., Anguimorphe nouveau (Lacertilia) de l’Eocène inférieur de Dormaal, Belgique. Une relique éocène des Dorsetisauridae du Crétacé basal? CR Acad Sci, Paris 315(II):885–889Google Scholar
  4. Augé M (2003) Lacertilian faunal change across the Paleocene-Eocene boundary in Europe. In Wing SL, Gingerich PD, Schmitz B, Thomas E (eds), Causes and Consequences of globally warm climates in the Early Paleogene. Boulder, Colorado, Geol Soc Am Spec Paper 369:441–453Google Scholar
  5. Augé M (2005) Evolution des lézards du Paléogène en Europe. Mém Mus Natl Hist Nat Paris 192Google Scholar
  6. Augé M (2007) Past and present distribution of iguanid lizards. Arqu Museu Nac Rio de Janeiro 65(4):403–416Google Scholar
  7. Augé M, Rage JC (2006) Herpetofaunas from the Upper Paleocene and Lower Eocene of Morocco. Annal Paléont 92:235–253CrossRefGoogle Scholar
  8. Augé M, Smith R (2009) An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene–Oligocene transition. Zool J Linn Soc 155:148–170CrossRefGoogle Scholar
  9. Avery DF, Tanner W (1971) Evolution of the Iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters. Brigh Young Univ Sci Bull 12:1–79Google Scholar
  10. Bailon S (2000) Amphibiens et reptiles du Pliocène terminal d’Ahl al Oughlam (Casablanca, Maroc). Geodiversitas 22(4):539–558Google Scholar
  11. Berman DS (1972) Hyporhina tertia, new species (Reptilia: Amphisbaenia), from the early Oligocene (Chadronian) white river formation of Wyoming. Ann Carn Mus 44:1–10Google Scholar
  12. Berman DS (1973) Spathorhynchus fossorium, a middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia 4:704–721CrossRefGoogle Scholar
  13. BiochroM’97 (1997) Actes du Congrès BiochroM’97. In: Aguilar JP, Legendre S, Michaux J (eds) Mem Trav EPHE, Inst Montpellier 21Google Scholar
  14. Blain HA, Bailon S, Agusti J (2007) Anurans and squamate reptiles from the latest early Pleistocene of Almenara-Casablanca-3 (Castellón, East of Spain). Systematic, climatic and environmental considerations. Geodiversitas 29(2):269–295Google Scholar
  15. Blain HA, Canudo JI, Cuenca-Bescos G, Lopez-Martinez N (2010) Amphibians and squamate reptiles from the latest Maastrichtian (Upper Cretaceous) of Blasi 2 (Huesca, Spain). Cret Res 31:433–446CrossRefGoogle Scholar
  16. Böhme M (2007) Herpetofauna (Anura, Squamata) and paleoclimatic implications: preliminary results. In: Daxner-Höck G (ed) Oligocene vertebrates from the Valley of lakes (Central Mongolia): morphology, phylogenetic and stratigraphic implications. Ann Naturhist Mus Wien 108A:43–52Google Scholar
  17. Böhme M (2008) Ectothermic vertebrates (Teleostei, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Upper Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Cour Forsch-Inst Senckenberg 260:161–183Google Scholar
  18. Borsuk-Bialynicka M (1991) Cretaceous lizard occurences in Mongolia. Cret Res 12:607–608CrossRefGoogle Scholar
  19. Brooks DR, McLennan DA (2002) The nature of diversity. University of Chicago Press, ChicagoGoogle Scholar
  20. Camp CL (1923) A classification of the lizards. Bull Am Mus Nat Hist 48:289–481Google Scholar
  21. Charig AJ, Gans C (1990) Two new amphisbaenians from the Lower Miocene of Kenia. Bull Br Mus Nat Hist (Geol) 46(1):19–36Google Scholar
  22. De Rochebrune A (1884) Faune ophiologique des Phosphorites du Quercy. Mém Soc Sci Nat Saône et Loire 5:149–164Google Scholar
  23. Delfino M (1997) Blanus from the early pleistocene of Southern Italy, another small tessera from a big mosaic. In: Böhme W, Bischoff W, Ziegler T (eds) Herpetologia Bonnensis II. Societas Europea Herpetologica, Bonn, pp 89–97Google Scholar
  24. Donadio OE (1982) Restos de anfisbenidos fósiles de Argentina (Squamata, Amphisbaenidae) del Pli- oceno y Pleistoceno de la provincia de Buenos Aires. Circ Inf Asoc Paleont Arg 10:10Google Scholar
  25. Erwin TL (1979) Thoughts on the evolutionary history of ground beetles: Hypotheses generated from comparative faunal analyses of lowland forest sites in temperate and tropical regions. In: Erwin TL, Ball GE, Whitehead DR (eds) Carabid beetles: Their evolution, natural history, and classification. Junk, The Hague, pp 539–592Google Scholar
  26. Erwin TL (1981) Taxon pulses, vicariance, and dispersal: An evolutionary synthesis illustrated by carabid beetles. In: Nelson G, Rosen DE (eds) Vicariance biogeography: A critique. Columbia University Press, New York, pp 371–391Google Scholar
  27. Estes R (1965) Notes on some Paleocene lizards. Copeia 1965:104–106CrossRefGoogle Scholar
  28. Estes R (1975) Lower vertebrates from the Fort Union formation, late Paleocene, Big Horn Basin, Wyoming. Herpetologica 31:365–385Google Scholar
  29. Estes R (1983) Sauria terrestria, Amphisbaenia. In: Kuhn O, Wellnhofer P (eds) Handbuch der Paläoherpetologie, Teil 10A, Gustav Fischer, pp 1–249Google Scholar
  30. Estes R, de Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard Families. Stanford University Press, Stanford, pp 119–281Google Scholar
  31. Folie A (2006) Evolution des amphibiens et squamates de la transition Crétacé-Paléogène en Europe: les faunes du Maastrichtien du Bassin de Hateg (Roumanie) et du Paléocène du Bassin de Mons (Belgique). Dissertation, Université libre de BruxellesGoogle Scholar
  32. Franzen JL (2005) The implication of the numerical dating of the Messel fossil deposit (Eocene, Germany). Ann Paleont 91(4):329–335CrossRefGoogle Scholar
  33. Gans C (1968) Relative success of divergent pathways in amphisbaenian specialization. Am Nat 102:345–362CrossRefGoogle Scholar
  34. Gans C (1974) Biomechanics, an approach to vertebrate biology. Lippincott, PhiladelphiaGoogle Scholar
  35. Gans C (1978) The characteristics and affinities of the Amphisbaenia. Trans Zool Soc Lond 34:347–416CrossRefGoogle Scholar
  36. Gans C (1990) Patterns in amphisbaenian biogeography: A preliminary analysis. In: Peters G, Hutterer R (eds) Vertebrates in the tropics. Museum Alexander Koenig, Bonn, pp 133–143Google Scholar
  37. Gans C (2005) Checklist and bibliography of the amphisbaenia of the world. Bull Amer Mus Nat Hist 289:1–130CrossRefGoogle Scholar
  38. Gaston K (2003) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  39. Gheerbrant E, Cappetta H, Feist M, Jaeger JJ, Sudre J, Vianey-Liaud M (1993) La succession des faunes de vertébrés d’âge paléocène supérieur et Eocène inférieur dans le Bassin d’Ouarzazate. Portée biostratigraphique et paléogéographique. Newslett Strati 28:33–55Google Scholar
  40. Gheerbrant E, Abrial C, Cappetta H (1997) Nouveaux sites à microvertébrés continentaux du Crétacé terminal des Petites Pyrénées (Haute-Garonne et Ariège, France). Geobios 20:257–269CrossRefGoogle Scholar
  41. Gilmore CW (1928) Fossil lizards of North America. Mem Natl Acad Sci 22(3):1–201Google Scholar
  42. Gilmore CW (1942) Paleocene faunas of the polecat bench formation, Park County, Wyoming. part. II Lizards. Am Philos Soc Proc 85:159–167Google Scholar
  43. Gilmore CW (1943) Fossil lizards of Mongolia. Bull Am Mus Nat Hist 81:361–384Google Scholar
  44. Hartenberger JL (1987) Modalités des extinctions et apparitions chez les mammifères du Paléogène d’Europe. Mém Soc Géol Fr NS 150:133–143Google Scholar
  45. Hecht MK, Hoffstetter R (1962) Note préliminaire sur les Amphibiens et les Squamates du Landenien supérieur et du Tongrien de Belgique. Bull Inst R Soc Nat Belg 39:1–30Google Scholar
  46. Hedges SB, Vidal N (2009) Lizards, snakes and amphisbaenians (squamata). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 383–389Google Scholar
  47. Hembree DI (2006) Amphisbaenia paleobiogeography: evidence of vicariance and geodispersal patterns. Palaeogeogr Palaeoclimatol Palaeoecol 235:340–354CrossRefGoogle Scholar
  48. Hipsley CA, Himmelmann L, Metzler D (2009) Müller J (2009) Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evol Biol 9:151CrossRefGoogle Scholar
  49. Hoffstetter R (1942) Sur la présence d’Amphisbaenidae dans les gisements tertiaires français. CR Sci Soc Geol Fr 3:24–25Google Scholar
  50. Hoffstetter R (1962) Revue des récentes acquisitions concernant l’histoire et la systématique des squamates. Problèmes actuels de Paléontologie (evolution des vertébrés). Coll Inter CNRS Paris 104:243–279Google Scholar
  51. Hoffstetter R (1967) Coup d’oeil sur les Sauriens (Lacertiliens) des couches de Purbeck (Jurassique supérieur d’Angleterre, Résumé d’un mémoire). Coll Inter CNRS 163:349–371Google Scholar
  52. Hooker JJ, Collinson ME, Sille NP (2004) Eocene-Oligocene mammalian faunal turnover in the Hampshire basin, UK: calibration to the global time scale and the major cooling event. J Geol Soc Lond 161:161–172CrossRefGoogle Scholar
  53. Huelsenbeck JP, Rannala B (2000) Using stratigraphic information in phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington DC, pp 165–191Google Scholar
  54. Huey RB, Pianka ER, Egan ME, Coons LW (1974) Ecological shifts in sympatry: Kalahari fossorial lizards (Typhlosaurus). Ecology 55:304–316CrossRefGoogle Scholar
  55. Hunn CA, Upchurch P (2001) The importance of time/space in diagnosing the causality of phylogenetic events: towards a chronobiogeographical paradigm. Syst Biol 50:391–407Google Scholar
  56. Kearney M (2003) Systematics of the Amphibaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herp Mono 17:1–74CrossRefGoogle Scholar
  57. Kearney M, Stuart BL (2004) Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc R Soc Lond B 271:1677–1683CrossRefGoogle Scholar
  58. Kearney M, Maisano JA, Rowe T (2005) Cranial anatomy of the extinct Amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. J Morphol 264:1–33CrossRefGoogle Scholar
  59. Kritzinger CC (1946) The cranial anatomy and kinesis of the South African amphisbaenid Monopeltis capensis Smith. South Afr J Sci 42:175–204Google Scholar
  60. Kuhn O (1940) Die Placosauriden und Anguiden aus dem Mittleren Eozän des Geiseltales. Nov Act Acad Leopoldina-Carolinska 53(8):461–486Google Scholar
  61. Leduc P (1996) Caractéristiques évolutives des faunes d’Europe occidentale et d’Amérique du Nord au Paléogène. Dissertation, l’Université Paris VIGoogle Scholar
  62. Lieberman BS (2000) Paleobiogeography, using fossils to study global change, plate tectonics, and evolution. Topics in Geobiology, 16. Kluwer, NetherlandsGoogle Scholar
  63. Macey JR, Papenfuss TJ, Kuehl JV, Fourcade HM, Boore JL (2004) Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol Phylo Evol 33:22–31CrossRefGoogle Scholar
  64. Maisano JA, Kearney M, Rowe T (2006) Cranial anatomy of the spade-headed amphisbaenian Diplometopon zarudnyi (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. J Morphol 267:70–102CrossRefGoogle Scholar
  65. Maschio GF, Prudente A, Mott T (2009) Water dispersal of Amphisbaena alba and Amphisbaena amazonica (Squamata: Amphisbaenia: Amphisbaenidae) in Brazilian Amazonia. Zoologia (2009)Google Scholar
  66. Milner AC, Milner AR, Estes R (1982) Amphibians and squamates from the Upper Eocene of Hordle Cliff, Hampshire, a preliminary report. Tert Res 4(1):149–154Google Scholar
  67. Milner AC, Milner AR, Evans SE (2000) Amphibians, reptiles and birds: a biogeographical review. In: Culver SJ, Rawson PF (eds) Biotic response to global change. Cambridge University Press, CambridgeGoogle Scholar
  68. Montero R, Gans C (1999) The head skeleton of Amphisbaena alba Linnaeus. Ann Carn Mus 68:15–80Google Scholar
  69. Morrone JJ (2009) Evolutionary biogeography, an integrative approach with case studies. Columbia University Press, New YorkGoogle Scholar
  70. Mott T, Vieites DR (2009) Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Mol Phylo Evol 51:190–200CrossRefGoogle Scholar
  71. Müller J, Hipsley CA, Head J, Kardjilov N, Hilger A, Wuttke M, Reisz RR (2011) Eocene lizard from Germany reveals amphisbaenian origins. Nature 473:364–367CrossRefGoogle Scholar
  72. Nelson G (1974) Historical biogeography: an alternative formalization. Syst Zool 23:555–558CrossRefGoogle Scholar
  73. Nelson G, Platnick NI (1981) Systematics and biogeography: Cladistics and vicariance. Columbia University Press, New YorkGoogle Scholar
  74. Nessov LA (1985) Rare bony fishes, terrestrial lizards and mammals from the lagoonal zone of the Littoral lowlands of the Cretaceous of the Kyzylkumy. Yearbook All-Union Palaeont Soc, Leningrad 28:199–219Google Scholar
  75. Nessov LA, Gao K (1993) Cretaceous lizards from the Kizylkum Desert, Uzbekhistan. J Vertebr Paleontol 13:51AGoogle Scholar
  76. Oelrich T (1956) The anatomy of the head of Ctenosaura pectinata (Iguanidae). Misc Publ Mus Zool, Uni Michigan 94:1–122Google Scholar
  77. Pianka ER, Vitt LJ (2003) Lizards, windows to the evolution of diversity. University of California Press, BerkeleyGoogle Scholar
  78. Rage JC (1976) Les squamates du Miocène de Béni Mellal, Maroc. Géol medit 3:57–70Google Scholar
  79. Rage JC (1978) Squamates. In: Geze B, Rage JC, Vergnaud-Grazzini C, de Broin F, Buffetaut E, Mourer-Chauviré C, Crochet JY, Sigé B, Sudre J, Rémy JA, Lange-Badré B, de Bonis L, Hartenberger JL, Vianey-Liaud M (eds) La Poche à Phosphate de Ste-Néboule (Lot) et sa faune de vertébrés du Ludien supérieur. Palaeovertebrata 8:167–326Google Scholar
  80. Rage JC (1999) Squamates (Reptilia) from the Upper Cretaceous of Laño (Basque Country, Spain). Estud Museo Cienc Natur Alava, 14 num espec 1:121–133Google Scholar
  81. Rage JC (2006) The lower vertebrates from the Eocene and Oligocene of the Phosphorites du Quercy (France): an overview. Strata série 1(13):161–173Google Scholar
  82. Rage JC, Augé M (1993) Squamates from the Cainozoic of the western part of Europe. A review. Rev Paléobiol 7:199–216Google Scholar
  83. Rage JC, Augé M (2010) Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios 43:253–268CrossRefGoogle Scholar
  84. Rocek Z (1984) Lizards (Reptilia: Sauria) from the lower Miocene locality Dolnice (Bohemia, Czechoslovakia). Rozp Ceskoslo Akad Rada matem prirod ved 94(1):1–69Google Scholar
  85. Rose KD (2011) Importance of Messel for interpreting Eocene Holarctic mammalian faunas. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates (22nd Int Senckenberg conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 143–146Google Scholar
  86. Rusconi C (1937) La presencia de lagartijas en el piso Ensenadense. Bolet Paleont 9:6–7Google Scholar
  87. Savage JM (1982) The enigma of the Central American herpetofauna: dispersals or vicariance? Ann Missouri Bota Garden 69:464–547CrossRefGoogle Scholar
  88. Schleich HH (1985) Neue Reptilienfunde aus dem Tertiär Deutschlands. 3. Erstnachweis von Doppelschleichen (Blanus antiquus sp. nov.) aus dem Mittelmiozän Süddeutschlands. Münch Geowiss Abh (A) 4:67–149Google Scholar
  89. Schleich HH (1988) Neue Reptilienfunde aus dem Tertiär Deutschlands 8. Palaeoblanus tobieni n. gen., n. sp.- neue Doppelschleichen aus dem Tertiär Deutschlands. Paläontol Z 62(1/2):95–105Google Scholar
  90. Schmidt-Kittler N (ed) (1987) European reference levels and correlation tables. Münch Geowiss Abh (A) 10:15–31Google Scholar
  91. Schopf TJ (1984) Climate is only half the story in the evolution of organisms through time. In: Brenchley P (ed) Fossils and climate. Wiley, New YorkGoogle Scholar
  92. Scotese CR (2004) Cenozoic and Mesozoic paleogeography: changing terrestrial biogeographic pathways. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography. Sinauer, SunderlandGoogle Scholar
  93. Señaris JC (1999) Aportes al conocimiento taxonômico y ecológico de Amphisbaena gracilis Strauch 1881 (Squamata: Amphisbaenidae) em Venezuela. Fundación La Salle Ciências Naturales 152:115–120Google Scholar
  94. Smith KT (2006) A diverse new assemblage of late eocene squamates (Reptilia) from the Chadron formation of North Dakota, U.S.A. Palaeont Electro 9(2):1–44Google Scholar
  95. Smith KT (2009) A new lizard assemblage from the earliest Eocene (zone WAO) of the Bighorn Basin, Wyoming, USA. Biogeography during the warmest interval of the Cenozoic. J Syst Palaeont 7(3):299–358CrossRefGoogle Scholar
  96. Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci USA 103(30):11223–11227CrossRefGoogle Scholar
  97. Stocker MR, Kirk EC (2011) The Herpetofauna from the late Uintan of West Texas. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: Puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates (22nd Int Senckenberg conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 159–160Google Scholar
  98. Sullivan RM (1985) A new middle Paleocene (Torrejonian) rhineurid amphisbaenian, Plesiorhineura tsentasi new genus, new species, from the San Juan Basin, New Mexico. J Paleontol 59:1481–1485Google Scholar
  99. Sullivan RM, Holman JA (1996) Squamata. In: Prothero D, Emry R (eds) The terrestrial eocene-oligocene transition in North America. Cambridge University Press, Cambridge, pp 354–372Google Scholar
  100. Sullivan RM, Keller T, Habersetzer J (1999) Middle Eocene (Geiseltalian) anguid lizards from Geiseltal and Messel, Germany. I. Ophisauriscus quadrupes Kuhn 1940. Cour Forsch–Inst Senckenberg 216:97–129Google Scholar
  101. Torres SE, Montero R (1998) Leiosaurus marellii Rusconi 1937, is a South American Amphisbaenid. J Herpetol 32(4):602–604CrossRefGoogle Scholar
  102. Townsend TM, Larson A, Louis E, Macey JR (2004) Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol 53(5):735–757CrossRefGoogle Scholar
  103. Upchurch P, Hunn CA, Norman DB (2002) An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc R Soc Lond B 269:613–621CrossRefGoogle Scholar
  104. Van Dyck MC (1983) Etude de la faune herpétologique du “Montien” continental de Hainin (Hainaut, Belgique) et d’autres gisements paléogènes du Nord-Ouest de l’Europe. Thèse, Université Catholique de Louvain (Belgique), Faculté des Sciences, p 199Google Scholar
  105. Vanzolini PE (1951) Evolution, adaptation and distribution of the amphisbaenid lizards (Sauria: Amphisbaenidae). Thesis, Harvard UniversityGoogle Scholar
  106. Venczel M, Stiuca E (2008) Late middle Miocene amphibians and squamate reptiles from Taut, Romania. Geodiversitas 30(4):731–763Google Scholar
  107. Vidal N, Hedges BS (2005) The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol 328:1000–1008CrossRefGoogle Scholar
  108. Vidal N, Hedges BS (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biol 332:129–139CrossRefGoogle Scholar
  109. Vidal N, Azvolinsky A, Cruaud C, Hedges BS (2008) Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 4:115–118CrossRefGoogle Scholar
  110. Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60(1):123–141Google Scholar
  111. Woodburne MA, Gunnell GF, Stucky RK (2009) Climate directly influences Eocene mammal faunal dynamics in North America. Proc Natl Acad Sci USA 106(32):13399–13403CrossRefGoogle Scholar
  112. Wu XC, Brinkman DB, Russell AP, Dang ZM, Currie PJ, Hou LH, Cui GH (1993) Oldest known amphisbaenian from the Upper Cretaceous of Chinese Inner Mongolia. Nature 366:57–59CrossRefGoogle Scholar
  113. Wu XC, Brinkman DB, Russell AP (1996) Sineoamphisbaena hexatabularis, an amphisbaenian (Diapsida: Squamata) from the Upper Cretaceous redbeds at Bayan Mandahu (Inner Mongolia, People’s Republic of China), and comments on the phylogenetic relationships of the Amphisbaenia. Can J Earth Sci 33:541–577CrossRefGoogle Scholar
  114. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  115. Zangerl R (1944) Contributions to the osteology of the skull of the Amphisbaenidae. Am Midl Nat 31(2):417–454CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  1. 1.Muséum national d‘Histoire naturelle UMR 7207 CNRSParis cedex 05France

Personalised recommendations