Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 4, pp 459–476 | Cite as

Locomotion and biomechanics in Eocene mammals from Messel

Original Paper

Abstract

Eocene mammals from Grube Messel are divided into those that lived terrestrially on the ground (2D-mammals) or arboreally (3D-mammals). Their biomechanics and locomotion are discussed on the basis of equids (Eurohippus, Propalaeotherium) and Leptictidium as examples of 2D-mammals and primates (Europolemur, Darwinius) of 3D-mammals. The determining factor for lifestyle is the autopodia: 2D-mammals need nothing more than compression-transmitting balls with reinforced anterior margins (hooves). These autopodia do not require much energy, but metapodia and even phalanges can elongate the functional length of the free limbs. Primates as 3D-animals need prehensile hands and feet, which can transmit tensile forces and even torques. Their metapodials are part of the prehensile organ. Their strong and energy-requiring musculature increases the masses on the distal limb segments and so influences the locomotor modes.

Keywords

Biomechanics Mammals Eocene Messel 2D-mammals 3D-mammals 

References

  1. Arms A, Voges D, Preuschoft H, Fischer M (2002) Arboreal locomotion in small new-world monkeys. In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Z Morphol Anthropol, Sonderh 83(2/3):243–263Google Scholar
  2. Buck C, Bär H (1993) Investigations on the biomechanical significance of dermatoglyphic ridges. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 285–306CrossRefGoogle Scholar
  3. Camp CL, Smith N (1942) Phylogeny and functions of the digital ligaments of the horse. Mem Univ Calif 13:69–122Google Scholar
  4. Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins P (ed) Primate locomotion. Academic Press, New York, pp 45–83Google Scholar
  5. Cartmill M (1985) Climbing. In: Hildebrand et al (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 73–88Google Scholar
  6. Christian A (1995) Zur Biomechanik der Lokomotion vierfüßiger Reptilien. Cour Forsch-Inst Senckenberg 180:1–58Google Scholar
  7. Christian A (1999) Zur Biomechanik der Fortbewegung von Leptictidium (Mammalia, Proteutheria). Cour Forsch-Inst Senckenberg 216:1–18Google Scholar
  8. Christian A, Horn HG, Preuschoft H (1994a) Bipedie bei rezenten Reptilien. Natur und Museum 124:45–57Google Scholar
  9. Christian A, Horn HG, Preuschoft H (1994b) Biomechanical reasons for bipedalism in reptiles. Amphibia-Reptilia 15:275–284CrossRefGoogle Scholar
  10. Demes B, Günther MM (1989a) Wie die Körpermasse den Springstil von Halbaffen und deren Proportionen bestimmt. Z Morphol Anthropol 77:209–225Google Scholar
  11. Demes B, Günther MM (1989b) Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatol 53:125–141CrossRefGoogle Scholar
  12. Dubbel H (1981) Taschenbuch des Maschinenbaus. Springer, BerlinGoogle Scholar
  13. Fischer M (1994) Crouched posture and high fulcrum, a principle of locomotion in small mammals. J Hum Evol 26:501–521CrossRefGoogle Scholar
  14. Fischer MS, Lilje KE (2011) Hunde in Bewegung. Franckh-Kosmos, StuttgartGoogle Scholar
  15. Fischer M, Krause C, Lilje KE (2010) Evolution of chamaeleon locomotion, or how to become arboreal if being a reptile. Zoology 113(2):67–74CrossRefGoogle Scholar
  16. Franzen JL (1987) Ein neuer Primate aus dem Mitteleozän der Grube Messel (Deutschland, S-Hessen). Cour Forsch-Inst Senckenberg 91:151–187Google Scholar
  17. Franzen JL (1988) Ein weiterer Primatenfund aus der Grube Messel bei Darmstadt. Cour Forsch-Inst Senckenberg 107:275–289Google Scholar
  18. Franzen JL (2000) Europolemur kelleri n. sp. von Messel und ein Nachtrag zu Europolemur koenigswaldi (Mammalia, Primates, Notharctidae, Cercamoniinae). Senck leth 80:275–287CrossRefGoogle Scholar
  19. Franzen JL (2007) Eozäne Equoidea (Mammalia, Perissodactyla) aus der Grube Messel bei Darmstadt (Deutschland). Funde der Jahre 1969–2000. Schweiz Paläontol Abh 127:1–245Google Scholar
  20. Franzen JL (2010) Darwinius masillae – Darwins Halbaffe und die Primatenfunde aus der Grube Messel. Natur und Museum 140(1/2):12–29Google Scholar
  21. Franzen JL (2011) Strepsirrhine or haplorhine? In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in palaeobiology, palaeoenvironment and the history of early primates. (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 59–60Google Scholar
  22. Franzen JL, Frey E (1993) Europolemur completed. Kaupia-Darmstädter Beitr Naturgesch 3:113–130Google Scholar
  23. Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, Koenigswald W, Smith H (2009) Complete primate skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology. PLoS One 4(5):1–27. doi:10.1371/journal.pone.0005723, e5723CrossRefGoogle Scholar
  24. Godinot M, Beard KC (1993) A survey of fossil primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Fischer, Wien, pp 335–378CrossRefGoogle Scholar
  25. Günther MM (1989) Funktionsmorphologische Untersuchungen zum Sprungverhalten mehrerer Halbaffen. Dissertation, FU BerlinGoogle Scholar
  26. Günther MM, Preuschoft H, Ishida H, Nakano Y (1992) Can prosimian-like leaping be considered a preadaptation to bipedal walking in hominids? In: Matano S, Tuttle RH, Ishida H, Goodman M (eds) Topics in primatology, 3 Evolutionary biology, reproductive endocrinology and virology. University of Tokyo Press, Tokyo, pp 153–165Google Scholar
  27. Herkner B (1989) Die Entwicklung der saltatorischen Bipedie bei Säugetieren innerhalb der Tetrapoden-Evolution. Cour Forsch-Inst Senckenberg 111:1–102Google Scholar
  28. Ishida H, Jouffroy FK, Nakano Y (1990) Comparative dynamics of pronograde and upside-down horizontal quadrupedalism in the slow loris (Nycticebus coucang). In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Firenze, pp 209–220Google Scholar
  29. Jouffroy FK, Lessertisseur J (1979) Relationships between limb morphology and locomotor adaptations among prosimians: an osteometric study. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York, pp 143–181Google Scholar
  30. Jouffroy FK, Stern JT (1990) Telemetered EMG-study of the antigravity versus propulsive actions of the knee and elbow muscles in the slow loris (Nycticebus coucang). In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo Firenze, pp 221–236Google Scholar
  31. Jouffroy FK, Godinot M, Nakano Y (1993) Biometrical characteristics of primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 133–172CrossRefGoogle Scholar
  32. Koenigswald Wv, Habersetzer J, Gingerich PD (2011) Morphology and evolution of the distal phalanges in primates. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in palaeobiology, palaeoenvironment and the history of early primates. (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 91–94Google Scholar
  33. Kümmell S (2009) Die Digiti der Synapsida: Anatomie, evolution und Konstruktionsmorphologie. Shaker, Aachen, p 424Google Scholar
  34. Kummer B (1959) Bauprinzipien des Säugerskeletes. Thieme, StuttgartGoogle Scholar
  35. Kummer B (1960) Biomechanik des Säugerskelettes. In: Helmke JG, Lengerken H, Starck D (eds) Handbuch der Zoologie. Walter de Gruyter, Berlin, p 80 and following, 8, 6(2)Google Scholar
  36. Leakey MD (1987) Introduction to the hominid footprints. In: Leakey MD, Harris JM (eds) Laetoli: a Pleistocene site in northern Tansania. Clarendon Press, Oxford, pp 490–496Google Scholar
  37. Lehmann T (1974/1977) Elemente der Mechanik, 3 Bde., Braunschweig (Vieweg)Google Scholar
  38. Mollison T (1911) Die Körperproportionen der Primaten. Gegenbauers Morphol Jahrb 42:79–304Google Scholar
  39. Morbeck ME (1979) Forelimb use and positional adaptation in Colobus guereza: integration of behavioural, ecological and anatomical data. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York, pp 95–117Google Scholar
  40. Nakano Y (1998) Footfall patterns in the early development of quadrupedal walking of Japanese macaques. In: Kimura T, Preuschoft H, Rose MD (eds) Development and control in primate locomotion. Folia Primatol spec iss 66:126–136Google Scholar
  41. Nakano Y (2002) The effects of substratum inclination on locomotor patterns in primates. In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Z Morphol Anthropol, Sonderh 83:189–199Google Scholar
  42. Nieschalk U (1991) Fortbewegung und Funktionsmorphologie von Loris tardigradus und anderen kleinen quadrupeden Halbaffen in Anpassung an unterschiedliche Habitate. Naturwiss Diss, BochumGoogle Scholar
  43. Nieschalk U, Demes B (1993) Biomechanical determinants of reduction of the second ray in Lorisinae. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 225–234CrossRefGoogle Scholar
  44. Owen-Smith R (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Patel BA, Seiffert ER, Boyer DM (2011) Origin and early evolution of the grasping big toe in primates: new fossils and key characters evaluated within a phylogenetic context. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in palaeobiology, palaeoenvironment and the history of early primates. (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 127–128Google Scholar
  46. Pauwels F (1965) Gesammelte Abhandlungen zur Funktionellen Anatomie des Bewegunsapparates. Springer, BerlinGoogle Scholar
  47. Peters A, Preuschoft H (1984) External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In: Niemitz C (ed) Biology of tarsiers. G. Fischer, Stuttgart, pp 227–256Google Scholar
  48. Peters DS, Gutmann WF (1971) Über die Lesrichtung von Merkmals- und Konstruktionsreihen. Z zool Syst Evolutionsforsch 9:237–263CrossRefGoogle Scholar
  49. Pflughöft G (1990) Untersuchungen zum Verhalten von Lemur fulvus E. Geoffroy, 1796 und Lemur catta Linnaeus, 1758 in zoologischen Gärten unter besonderer Berücksichtigung der Positions- und Lokomotionsweisen sowie der Substratnutzung. Dissertation BerlinGoogle Scholar
  50. Preuschoft H (1961) Muskeln und Gelenke der Hinterextremität des Gorilla. Morphol Jahrb 101:432–540Google Scholar
  51. Preuschoft H (1963) Beitrag zu Funktion des Pongidenfußes. Z Morphol Anthropol 53:19–28Google Scholar
  52. Preuschoft H (1969) Statische Untersuchungen am Fuß der Primaten. I. Phalangen und Metatarsalia. Z Anat Entwicklungsgesch 129:285–345CrossRefGoogle Scholar
  53. Preuschoft H (1970) Functional anatomy of the lower extremity. In: Bourne GH (ed) The chimpanzee, vol 3. Karger, Basel, pp 221–294Google Scholar
  54. Preuschoft H (1971) Body posture and mode of locomotion in early Pleistocene hominids. Folia Primatol 14:209–240CrossRefGoogle Scholar
  55. Preuschoft H (1973a) Functional anatomy of the upper extremity. In: Bourne GH (ed) The chimpanzee, vol 6. Karger, pp 34–120Google Scholar
  56. Preuschoft H (1973b) Body posture and locomotion in some East African Miocene Dryopithecinae. In: Day MH (ed) Human evolution, 11th edn. Taylor & Francis, London, pp 13–46Google Scholar
  57. Preuschoft H (1975) Body posture and mode of locomotion in fossil primates - method and example: Aegyptopithecus zeuxis. Symposium, 5th Congress of the International Primatological Society. Nagoya 1974, Japan Science Press, Tokyo, 345–359Google Scholar
  58. Preuschoft H (2002) What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Z Morphol Anthropol 83:171–188Google Scholar
  59. Preuschoft H (2004a) Die Biomechanik des aufrechten Gangs und deren Konsequenzen für die Evolution des Menschen. Conard NJ (ed) Ringvorlesung “Woher kommt der Mensch?” Attempto, Tübingen, pp 32–68Google Scholar
  60. Preuschoft H (2004b) Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat 204:363–384CrossRefGoogle Scholar
  61. Preuschoft H, Demes B (1984) Biomechanics of brachiation. In: Preuschoft H, Brockelman WY, Chivers DJ, Creel N (eds) The lesser apes. Evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 96–118Google Scholar
  62. Preuschoft H, Demes B (1985) Influence of size and proportions on biomechanics of brachiation. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 383–398Google Scholar
  63. Preuschoft H, Günther MM (1994) Biomechanics and body shape in primates compared with horses. Z Morphol Anthropol 80:149–165Google Scholar
  64. Preuschoft H, Witte H, Demes B (1992) Biomechanical factors that influence overall body shape of large apes and humans. In: Matanao S, Tuttle R, Ishida H, Goodman M (eds) Topics in primatology, evolutionary biology, vol 3. University of Tokyo Press, Tokyo, pp 259–289Google Scholar
  65. Preuschoft H, Godinot M, Beard C, Nieschalk U, Jouffroy FK (1993) Biomechanical considerations to explain important morphological characters of primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 246–253CrossRefGoogle Scholar
  66. Preuschoft H, Witte H, Christian A, Recknagel S (1994) Körpergestalt und Lokomotion bei grossen Säugetieren. Verh Deutsch Zool Ges 87:147–163Google Scholar
  67. Preuschoft H, Witte H, Fischer M (1995) Locomotion in nocturnal primates. In: Alterman L et al (eds) Creatures of the dark: the nocturnal prosimians. Plenum Press, New York, pp 453–472Google Scholar
  68. Preuschoft H, Witte H, Christian A, Fischer M (1996) Size influence on primate locomotion and body shape, with special emphasis on the locomotion of “small mammals”. Folia Primatol 66:93–112CrossRefGoogle Scholar
  69. Preuschoft H, Christian A, Günther MM (1998) Size dependences in prosimian locomotion and their implications for the distribution of body mass. Folia Primatol 69(suppl 1):60–81CrossRefGoogle Scholar
  70. Preuschoft H, Schmidt M, Hayama S, Okada M (2003) The influence of three-dimensional movements of the forelimb on the shape of the thorax and its importance for erect body posture. In: Franzen JL (ed) Walking upright. Cour Forsch-Inst Senckenberg 243:9–24Google Scholar
  71. Preuschoft H, Hohn B, Stoinski S, Witzel U (2011) Why so huge? Biomechanical reasons for the acquisition of large size in sauropod and theropod dinosaurs. In: Klein NK, Remes K, Gee CT, Sander M (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 197–218Google Scholar
  72. Rose MD (1979) Positional behaviour of natural populations: some quantitative results of a field study of Colobus guereza and Cercopithecus aethiops. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York, pp 95–117Google Scholar
  73. Schilling N, Fischer MS (1999) Kinematic analysis of treadmill locomotion of Tupaia glis (Scandentia, Tupaiidae). Z Säugetierkd 64:129–153Google Scholar
  74. Schmalfuss UK (1995) Kinematik und funktionelle Anatomie der Vorderextremität von Tragulus javanicus (Mammalia: Artiodactyla: Tragulidae), Diplomarbeit Biologie TübingenGoogle Scholar
  75. Schmidt M, Fischer M (2000) Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae). Am J Phys Anthropol 111:245–262CrossRefGoogle Scholar
  76. Schmidt M, Voges C, Fischer M (2002) Shoulder movements during quadruped locomotion in arboreal primates. Z Morphol Anthropol 78:235–242Google Scholar
  77. Schultz AH (1930) The skeleton of the trunk and limbs of higher primates. Hum Biol 2:303–438Google Scholar
  78. Schultz AH (1933) Die Körperproportionen der erwachsenen catarrhinen Primaten. Anthropol Anz 10:154–185Google Scholar
  79. Slijper EJ (1946) Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh Koningl Akad Wetensch, Afd Natuurkd (2)142:1–128Google Scholar
  80. Stoinski S, Suthau T, Gunga HC (2011) Reconstructing body volume and surface area of dinosaurs using laser scanning and photogrammetry. In: Klein NK, Remes K, Gee CT, Sander M (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 94–115Google Scholar
  81. Van der Sluijs L, Gerken M, Preuschoft H (2010) Comparative analysis of walking gaits in South American camelids. J Zool. doi:10.1007/s10764-010-9399-1
  82. Vilensky JA (1983) Gait characteristics of two macaques, with emphasis on relationships with speed. Am J Phys Anthropol 61:255–265CrossRefGoogle Scholar
  83. Vilensky JA, Gankiewicz E (1989) Early development of locomotor behaviour in vervet monkeys. Am J Primatol 17:11–25CrossRefGoogle Scholar
  84. Witte H, Preuschoft H, Recknagel S (1991) Human body proportions explained on the basis of biomechanical principles. Z Morphol Anthropol 78:407–423Google Scholar
  85. Witte H, Preuschoft H, Fischer MS (2002) The importance of the evolutionary heritage of locomotion on flat ground in small mammals for the development of arboreality. Z Morphol Anthropol 83:221–233Google Scholar
  86. Witzel U, Preuschoft H (2008) The mechanical reasons of the internal structure of finger tips. Poster, presented at the Congress of the International Primatological Society, Edinburgh, UKGoogle Scholar
  87. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, BerlinGoogle Scholar
  88. Wood AR, Bebej RM, Manz CL, Begun DL, Gingerich PD (2002) Postcranial functional morphology of Hyracotherium (Equidae, Perissodactyla) and locomotion in the earliest horses. J Mamm Evol. doi:t0t007ht0914-0r0-9145-7

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  1. 1.Sub-Department of Functional Morphology, Anatomical InstituteRuhr-Universität BochumBochumGermany
  2. 2.Forschungsinstitut und Naturmuseum SenckenbergFrankfurt am MainGermany
  3. 3.Naturhistorisches Museum BaselBaselSwitzerland

Personalised recommendations