Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 4, pp 649–663 | Cite as

Primates in the Eocene

  • Philip D. Gingerich


The mammalian order Primates made its first appearance in the fossil record during the Paleocene–Eocene thermal maximum (PETM), the global greenhouse warming event that marks the beginning of the Eocene. Two primate superfamilies, Tarsioidea and Adapoidea, dominate early and middle Eocene primate faunas. Warm climates enabled primates to thrive, and warming events within the Eocene facilitated cosmopolitan dispersal. Declining diversity at the end of the Eocene reflects environmental cooling. Fossils of earliest Tarsioidea and Adapoidea are similar dentally, often confused, and appear closely related as stem or crown Haplorhini. The superfamily Tarsioidea is represented by a single genus, Tarsius, living today, while Adapoidea appear to be ancestral to living Anthropoidea. Little is known of the Eocene history of strepsirrhine Lemuroidea and Lorisoidea. Temporal scaling of molecular clock ages suggests that Strepsirrhini appeared before Haplorhini in the Paleocene or possibly with Haplorhini at the beginning of the Eocene. Substantial skeletons of Eocene primates like those of adapoid Darwinius and Europolemur from Messel in Germany and Notharctus and Smilodectes from western North America constrain phylogenetic interpretation of primate relationships much more than dental remains ever can. A specialised grasping foot distinguishes early primates from other mammals. Traits associated in a functional complex include replacement of claws by nails on all digits; movement of the pedal fulcrum from the metatarsals to the tarsals; elongation of digit IV relative to digit III, with reduction of digit II and sometimes III; and then secondary development of a grooming claw or claws on digits II and sometimes III. The specialised grasping foot of early primates was later moderated in the emergence of anthropoid primates.


PETM Grande Coupure Primate phylogeny Haplorhini Adapoidea Tarsioidea Messel Darwinius Europolemur Notharctus Smilodectes 



My research on Messel fossils has been supported by the Alexander von Humboldt Stiftung. I am greatly indebted to Wighart von Koenigswald for collaboration in Bonn, and Jörg Habersetzer for collaboration in Frankfurt. I thank Jørn Hurum for including me in the team studying Darwinius, and Jens Franzen, Jörg Habersetzer, Jørn Hurum, Wighart von Koenigswald, and B. Holly Smith for making study of Darwinius so interesting and informative. William Jungers generously provided access to comparative measurements required to undertake the principal components analysis in Fig. 7, and JoAnn Ballor, Gregg Gunnell, and William Sanders made inclusion of Smilodectes possible. Bonnie Miljour assisted in preparing all figures included here. I thank Wighart von Koenigswald and an anonymous referee for critical reviews of the manuscript.


  1. Abdul Aziz H, Hilgen FJ, Van LGM, Sluijs A, Kraus MJ, Pares JM, Gingerich PD (2008) Astronomical climate control on paleosol stacking patterns in the upper Paleocene--lower Eocene Willwood Formation (Bighorn Basin, Wyoming). Geology 36:531–534. doi: 10.1130/G24734A.1 CrossRefGoogle Scholar
  2. Antoine P-O, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Gismondi RS (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc Lond B 279:1319–1326. doi: 10.1098/rspb.2011.1732 CrossRefGoogle Scholar
  3. Bajpai S, Kay R, Williams BA, Das DP, Kapur VV, Tiwari BN (2008) The oldest Asian record of Anthropoidea. Proc Nat Acad Sci USA, 105:11093–11098. doi: 10.1073/pnas.0804159105 Google Scholar
  4. Beard KC, Tong Y, Dawson MR, Wang J, Huang X (1996) Earliest complete dentition of an anthropoid primate from the late middle Eocene of Shanxi Province, China. Science 272:82–85. doi: 10.1126/science.272.5258.82 CrossRefGoogle Scholar
  5. Beard KC, Marivaux L, Chaimanee Y, Jaeger J-J, Marandat B, Tafforeau P, Soe AN, Tun ST, Kyaw AA (2009) A new primate from the Eocene pondaung formation of Myanmar and the monophyly of Burmese amphipithecids. Proc R Soc Lond B 276:3285–3294. doi: 10.1098/rspb.2009.0836 CrossRefGoogle Scholar
  6. Bowen GJ, Clyde WC, Koch PL, Ting S, Alroy J, Tsubamoto T, Wang Y, Wang Y (2002) Mammalian dispersal at the Paleocene/Eocene boundary. Science 295:2062–2065. doi: 10.1126/science.1068700 CrossRefGoogle Scholar
  7. Bown TM, Rose KD (1984) Reassessment of some early Eocene omomyidae, with description of a new genus and three new species. Folia Primatol 43:97–112. doi: 10.1159/000156175 CrossRefGoogle Scholar
  8. Bown TM, Rose KD (1987) Patterns of dental evolution in early Eocene anaptomorphine primates (Omomyidae) from the Big Horn Basin, Wyoming. J Paleontol 61 (Suppl.):1–162.
  9. Burney DA, Burney LP, Godfrey LR, Jungers WL, Goodman SM, Wright HT, Jull T (2004) A chronology for late prehistoric Madagascar. J Hum Evol 47:25–63. doi: 10.1016/j.jhevol.2004.05.005 CrossRefGoogle Scholar
  10. Ciochon RL, Gingerich PD, Gunnell GF, Simons EL (2001) Primate postcrania from the late middle Eocene of Myanmar. Proc Natl Acad Sci USA 98:7672–7677. doi: 10.1073/pnas.051003298 CrossRefGoogle Scholar
  11. Clyde WC, Gingerich PD (1994) Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape. Paleobiology 20:506–522. Google Scholar
  12. Clyde WC, Gingerich PD (1998) Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern bighorn basin, Wyoming. Geology 26:1011–1014. doi: 10.1130/0091-7613(1998)026<1011:MCRTTL>2.3.CO;2 CrossRefGoogle Scholar
  13. Cooper CF (1932) On some mammalian remains from the lower Eocene of the London clay. Ann Mag Nat Hist 9:458–467CrossRefGoogle Scholar
  14. Dagosto M (1988) Implications of postcranial evidence for the origin of euprimates. J Hum Evol 17:35–56. doi: 10.1016/0047-2484(88)90048-6 CrossRefGoogle Scholar
  15. Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  16. Estravís C (2000) Nuevos mamíferos del Eoceno Inferior de Silveirinha (Baixo Mondego, Portugal). Coloq Paleontol 51:281–311Google Scholar
  17. Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic, San DiegoGoogle Scholar
  18. Franzen JL (1987) Ein neuer Primate aus dem Mitteleozän der Grube Messel (Deutschland, S-Hessen). Cour Forsch-Inst Senckenberg 97:151–187Google Scholar
  19. Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Hum Evol 44:373–378. doi: 10.1016/S0047-2484(02)00204-X CrossRefGoogle Scholar
  20. Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH (2009) Complete primate skeleton from the middle Eocene of messel in Germany: morphology and paleobiology. PLoS One 4(e5723):1–27. doi: 10.1371/journal.pone.0005723 Google Scholar
  21. Gebo DL (2002) Adapiformes: phylogeny and evolution. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 21–43Google Scholar
  22. Gebo DL (2004) A shrew-sized origin for primates. Yearb Phys Anthropol 47:40–62CrossRefGoogle Scholar
  23. Gebo DL, Simons EL, Rasmussen DT, Dagosto M (1994) Eocene anthropoid postcrania from the fayum, Egypt. In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum Press, New York, pp 203–233Google Scholar
  24. Gingerich PD (1973) Anatomy of the temporal bone in the Oligocene anthropoid Apidium and the origin of Anthropoidea. Folia Primatol 19:329–337. doi: 10.1159/000155549 CrossRefGoogle Scholar
  25. Gingerich PD (1977) New species of Eocene primates and the phylogeny of European Adapidae. Folia Primatol 28:60–80. doi: 10.1159/000155799 CrossRefGoogle Scholar
  26. Gingerich PD (1979) Paleontology, phylogeny and classification: an example from the mammalian fossil record. Syst Zool 28:451–464. doi: 10.2307/sysbio/28.4.451 CrossRefGoogle Scholar
  27. Gingerich PD (1984) Primate evolution: evidence from the fossil record, comparative morphology, and molecular biology. Yearb Phys Anthropol 27:57–72.
  28. Gingerich PD (1986a) Early Eocene Cantius torresi– oldest primate of modern aspect from North America. Nature 320:319–321. doi: 10.1038/319319a0 CrossRefGoogle Scholar
  29. Gingerich PD (1986b) Temporal scaling of molecular evolution in primates and other mammals. Mol Biol Evol 3:205–221. Google Scholar
  30. Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Univ Mich Pap Paleontol 28:1–97.
  31. Gingerich PD (1990) Mammalian order proprimates. J Hum Evol 19:821–822. doi: 10.1016/0047-2484(90)90025-7 CrossRefGoogle Scholar
  32. Gingerich PD (1993) Early Eocene Teilhardina brandti: oldest omomyid primate from North America. Contr Mus Paleontol Univ Mich 28:321–326.
  33. Gingerich PD (1995) Sexual dimorphism in earliest Eocene Cantius torresi (Mammalia, Primates, Adapoidea). Contr Mus Paleontol Univ Mich 29:185–199.
  34. Gingerich PD (2001) Rates of evolution on the time scale of the evolutionary process. Genetica 112/113:127–144. doi: 10.1023/A:1013311015886 Google Scholar
  35. Gingerich PD (2006) Environment and evolution through the Paleocene-Eocene thermal maximum. Trends Ecol Evol 21:246–253. doi: 10.1016/j.tree.2006.03.006 CrossRefGoogle Scholar
  36. Gingerich PD (2009) Rates of evolution. Annu Rev Ecol Evol Syst 40:657–675. doi: 10.1146/annurev.ecolsys.39.110707.173457 CrossRefGoogle Scholar
  37. Gingerich PD, Rose KD (1979) Anterior dentition of the Eocene condylarth Thryptacodon: convergence with the tooth comb of lemurs. J Mamm 60:16–22. Google Scholar
  38. Gingerich PD, Smith T (2006) Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian wash sites at Polecat Bench in the northern Bighorn Basin, Wyoming. Contr Mus Paleontol Univ Mich 31:245–303.
  39. Gingerich PD, Franzen JL, Habersetzer J, Hurum JH, Smith BH (2010) Darwinius masillae is a haplorhine– reply to Williams et al. J Hum Evol 59:574–579. doi: 10.1016/j.jhevol.2010.07.013 CrossRefGoogle Scholar
  40. Godinot M (1978) Un nouvel adapidé (primate) de l’Éocène inférieur de Provence. C R Acad Sci Paris, Sér D 286:1859–1862Google Scholar
  41. Godinot M (1981) Les mammifères de rians (Eocène inférieur, Provence). Palaeovertebrata (Montpellier) 10:44–126Google Scholar
  42. Granger W (1914) On the names of lower Eocene faunal horizons of Wyoming and New Mexico. Bull Am Mus Nat Hist 33:201–207.
  43. Gregory WK (1920) On the structure and relations of Notharctus, an American Eocene primate. Am Mus Nat Hist Mem 3:49–243.
  44. Gunnell GF (1995) Newnotharctine (primates, adapiformes) skull from the uintan (Middle Eocene) of San Diego county, California. Am J Phys Anthropol 93:447–470. doi: 10.1002/ajpa.1330980406 CrossRefGoogle Scholar
  45. Gunnell GF, Rose KD (2002) Tarsiiformes: evolutionary history and adaptation. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 1–82Google Scholar
  46. Gunnell GF, Ciochon RL, Gingerich PD, Holroyd PA (2002) New assessment of Pondaungia and Amphipithecus (Primates) from the late middle Eocene of Myanmar, with a comment on ‘Amphipithecidae’. Contr Mus Paleontol Univ Mich30:337–372.
  47. Hamrick MW, Alexander JP (1996) The hand skeleton of Notharctus tenebrosus (Primates, Notharctidae) and its significance for the origin of the primate hand. Am Mus Novit 3182:1–20.
  48. Hartenberger J-L, Marandat B (1992) A new genus and species of an early Eocene primate from North Africa. Hum Evol 7:9–16. doi: 10.1007/BF02437474 CrossRefGoogle Scholar
  49. Hill WCO (1953) Primates: comparative anatomy and taxonomy. I-- Strepsirhini, a monograph. Edinburgh University Press, EdinburghGoogle Scholar
  50. Hill WCO (1955)Google Scholar
  51. Ivany LC, Van Simaeys S, Domack EW, Samson SD (2006) Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula. Geology 34:377–380. doi: 10.1130/G22383.1 CrossRefGoogle Scholar
  52. Jablonski NG, Frost S (2010) Cercopithecoidea. In: Werdelin L, Sanders WJ (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, pp 393–428CrossRefGoogle Scholar
  53. Jaeger J-J, Beard KC, Chaimanee Y, Salem M, Benammi M, Hlal O, Coster P, Bilal AA, Duringer P, Schuster M, Valentin X, Marandat B, Marivaux L, Metais E, Hammuda O, Brunet M (2010) Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids. Nature 467:1095–1098. doi: 10.1038/nature09425 Google Scholar
  54. Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229. doi: 10.1038/353225a0 CrossRefGoogle Scholar
  55. Kingston AK, Boyer DM, Patel BA, Larson SG, Stern JT (2010) Hallucal grasping in Nycticebus coucang: further implications for the functional significance of a large peroneal process. J Hum Evol 58:33–42. doi: 10.1016/j.jhevol.2009.08.002 CrossRefGoogle Scholar
  56. Koch PL, Zachos JC, Gingerich PD (1992) Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene-Eocene boundary. Nature 358:319–322. doi: 10.1038/358319a0 CrossRefGoogle Scholar
  57. Koenigswald W von, Habersetzer J, Gingerich PD (2012) Pedal distal phalanges of the Eocene adapoids Europolemur and Darwinius compared to phalanges of Notharctus and other primates. In: Lehmann T, Schaal SFK (eds) Messel and the terrestrial Eocene - Proceedings of the 22nd Senckenberg Conference. Palaeobio Palaeoenv 92(4). doi: 10.1007/s12549-012-0096-2
  58. Lde Bonis, Jaeger J-J, Coiffait B, Coiffait P-E (1988) Découverte du plus ancien primate catarrhinien connudans l‘eocène supérieur d’Afrique du Nord. C R Acad Sci Paris, Sér II 306:929–934Google Scholar
  59. Lyle M, Gibbs S, Moore TC, Rea DK (2007) Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacific. Geology 35:691–694. doi: 10.1130/G23806A.1 CrossRefGoogle Scholar
  60. Maiolino S, Boyer DM, Bloch JI, Gilbert CC, Groenke J (2012) Evidence for a grooming claw in a North American adapiform primate: implications for anthropoid origins. PLoS One 7:e29135. doi: 10.1371%2Fjournal.pone.0029135 CrossRefGoogle Scholar
  61. McInerney FA, Wing SL (2011) The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Planet Sci 39:489–516. doi: 10.1146/annurev-earth-040610-133431 CrossRefGoogle Scholar
  62. Morton DJ (1924) Evolution of the human foot II. Am J Phys Anthropol 7:1–52. doi: 10.1002/ajpa.1330070114 CrossRefGoogle Scholar
  63. Napier JR, Walker AC (1967) Vertical clinging and leaping– a newly recognized category of locomotor behavior of primates. Folia Primatol 6:204–219. doi: 10.1159/000155079 CrossRefGoogle Scholar
  64. Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68. doi: 10.1038/nature02126 CrossRefGoogle Scholar
  65. Ni X, Beard KC, Meng J, Wang Y, Gebo DL (2007) Discovery of the first early Cenozoic euprimate (Mammalia) from Inner Mongolia. Am Mus Novit 3571:1―11.
  66. Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O’Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7(3):e1001342. doi: 10.1371/journal.pgen.1001342 CrossRefGoogle Scholar
  67. Pickford M, Senut B, Morales J, Mein P, Sanchez IM (2008) Mammalia from the lutetian of Namibia. Mem Geol Surv Namibia 20:465–514Google Scholar
  68. Rose KD (2006) The beginning of the age of mammals. Johns Hopkins University Press, BaltimoreGoogle Scholar
  69. Rose KD, Bown TM (1991) Additional fossil evidence on the differentiation of the earliest euprimates. Proc Natl Acad Sci USA 88:98–101.
  70. Rose KD, Chester SGB, Dunn RH, Boyer DM, Bloch JI (2011) New fossils of the oldest North American euprimate Teilhardina brandti (Omomyidae) from the Paleocene-Eocene thermal maximum. Am J Phys Anthropol 146:281–305. doi: 10.1002/ajpa.21579 CrossRefGoogle Scholar
  71. Rose KD, Chew AE, Dunn RH, Kraus MJ, Fricke HC, Zack SP (2012) Earliest Eocene mammalian fauna from the Paleocene-Eocene Thermal Maximum at Sand Creek Divide, southern Bighorn Basin, Wyoming. Univ Mich Pap Paleontol 36:1–122.
  72. Russell DE, Louis P, Savage DE (1967) Primates of the French early Eocene. Univ Calif Publ Geol Sci 73:1–46Google Scholar
  73. Sargis EJ, Boyer DM, Bloch JI, Silcox MT (2007) Evolution of pedal grasping in primates. J Hum Evol 53:103–107. doi: 10.1016/j.jhevol.2007.01.008 CrossRefGoogle Scholar
  74. Schultz AH (1963) Relations between the lengths of the main parts of the foot skeleton in primates. Folia Primatol 1:150–171. doi: 10.1159/000165791 CrossRefGoogle Scholar
  75. Secord R, Bloch JI, Chester SGB, Boyer DM, Wood AR, Wing SL, Kraus MJ, McInerney FA, Krigbaum J (2012) Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 335:959–962. doi: 10.1126/science.1213859 CrossRefGoogle Scholar
  76. Seiffert ER, Simons EL (2001) Astragalar morphology of late Eocene anthropoids from the fayum depression (Egypt) and the origin of cararrhine primates. J Hum Evol 41:577–606. doi: 10.1006/jhev.2001.0508 CrossRefGoogle Scholar
  77. Seiffert ER, Simons EL, Attia Y (2003) Fossil evidence for an ancient divergence of lorises and galagos. Nature 422:421–424. doi: 10.1038/nature01489 CrossRefGoogle Scholar
  78. Seiffert ER, Simons EL, Ryan TM, Attia Y (2005a) Additional remains of Wadilemur elegans, a primitive stem galagid from the late Eocene of Egypt. Proc Natl Acad Sci USA 102:11396–11401. doi: 10.1073/pnas.0505310102 CrossRefGoogle Scholar
  79. Seiffert ER, Simons EL, Clyde WC, Rossie JB, Attia Y, Bown TM, Chatrath P, Mathison ME (2005b) Basal anthropoids from Egypt and the antiquity of Africa’s higher primate radiation. Science 310:300–304. doi: 10.1126/science.1116569 CrossRefGoogle Scholar
  80. Seiffert ER, Perry JMG, Simons EL, Boyer DM (2009) Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates. Nature 461:1118–1121. doi: 10.1038/nature08429 CrossRefGoogle Scholar
  81. Simons EL (1962) A new Eocene primate genus, Cantius, and a revision of some allied European lemuroids. Bull Brit Mus (Nat hist). Geol 7:1–36Google Scholar
  82. Simons EL (1995a) Egyptian Oligocene primates: a review. Yearb Phys Anthropol 38:199–238. doi: 10.1002/ajpa.1330380610 CrossRefGoogle Scholar
  83. Simons EL (1995b) Skulls and anterior teeth of Catopithecus (primates: Anthropoidea) from the Eocene and anthropoid origins. Science 268:1885–1888. doi: 10.1126/science.7604261 CrossRefGoogle Scholar
  84. Simons EL, Bown TM (1985) Afrotarsius chatrathi, first tarsiiform primate (?Tarsiidae) from Africa. Nature 313:475–477CrossRefGoogle Scholar
  85. Simons EL, Rasmussen DT (1996) Skull of Catopithecus browni, an early tertiary catarrhine. Am J Phys Anthropol 100:261–292. doi: 10.1002/(SICI)1096-8644(199606)100:2<261::AID-AJPA7>3.0.CO;2-%23 CrossRefGoogle Scholar
  86. Simpson GG (1940) Studies on the earliest primates. Bull Am Mus Nat Hist 77:185–212. Google Scholar
  87. Smith T (1999) Les mammifères de la transition Paléocène-Eocène de Belgique (formation de tienen, MP7): systématique, phylogénie, paléoécologie, paléobiogéographie et biostratigraphie. Université de Louvain, Louvain-la-NeuveGoogle Scholar
  88. Smith T, Smith R (1996) Synthèse des données actuelles sur les vertébrés de la transition Paléocène-Eocène de dormaal (belgique). Bull Soc Belg Géol 104:119–131Google Scholar
  89. Smith T, Rose KD, Gingerich PD (2006) Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene thermal maximum. Proc Natl Acad Sci USA 103:11223–11227. doi: 10.1073/pnas.0511296103 CrossRefGoogle Scholar
  90. Stehlin HG (1909) Remarques sur les faunules de mammifères des couches Éocènes et Oligocènes du Bassin de Paris. Bull Soc Géol Fr, Sér 4 9:488-520Google Scholar
  91. Stehlin HG (1912) Die Säugetiere des Schweizerischen Eocans – Adapis. Schweiz Paläontol Gesell 38:1165–1298Google Scholar
  92. Storme J-Y, Devleeschouwer X, Schnyder J, Cambier G, Baceta JI, Pujalte V, Di Matteo A, Iacumin P, Yans J (2012) The palaeocene/Eocene boundary section at zumaia (basque-cantabric basin) revisited: new insights from high-resolution magnetic susceptibility and carbon isotope chemostratigraphy on organic matter (d13Corg). Terra Nova 00:1–9. doi: 10.1111/j.1365-3121.2012.01064.x Google Scholar
  93. Strait SG (2001) New Wa-0 mammalian fauna from Castle Gardens in the southeastern Bighorn Basin. In: Gingerich PD (ed) Paleocene-Eocene stratigraphy and biotic change in the Bighorn and Clarks Fork basins, Wyoming; University of Michigan Papers on Paleontology, vol 33. pp 127–143.
  94. Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony and other methods, version 4.0b10. Sinauer, SunderlandGoogle Scholar
  95. Szalay FS (1976) Systematics of the Omomyidae (Tarsiiformes, Primates): taxonomy, phylogeny, and adaptations. Bull Am Mus Nat Hist 156:159–450.
  96. Tabuce R, Marivaux L, Lebrun R, Adaci M, Bensalah M, Fabre P-H, Fara E, Gomes Rodrigues H, Hautier L, Jaeger J-J, Lazzari V, Mebrouk F, Peigné S, Sudre J, Tafforeau P, Valentin X, Mahboubi M (2009) Anthropoid versus strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proc R Soc Lond B 276:4087–4094. doi: 10.1098/rspb.2009.1339 CrossRefGoogle Scholar
  97. Takai M, Shigehara N (2004) The pondaung primates, enigmatic 'possible anthropoids' from the latest middle Eocene, central Myanmar. In: Ross CF, Kay RF (eds) Anthropoid origins: new visions. Kluwer/Plenum, New York, pp 283–321. doi: 10.1007/978-1-4419-8873-7_12 CrossRefGoogle Scholar
  98. Takai M, Shigehara N, Egi N, Tsubamoto T (2003) Endocranial cast and morphology of the olfactory bulb of Amphipithecus mogaungensis (latest middle Eocene of Myanmar). Primates 44:137–144. doi: 10.1007/s10329-002-0027-3 CrossRefGoogle Scholar
  99. Teilhard de Chardin P (1927) Les Mammifères de l’Éocène inférieur de la Belgique. Mém Mus Nat Hist Natur (Paris) 36:1–33Google Scholar
  100. Ting S (1993) A preliminary report on an early Eocene mammalian fauna from Hengdong, Hunan Province, China. Kaupia, Beitr Naturgesch Darmstadt 3:201–207Google Scholar
  101. Ting S, Bowen GJ, Koch PL, Clyde WC, Wang Y, Wang Y, McKenna MC (2003) Biostratigraphic, chemostratigraphic, and magnetostratigraphic study across the Paleocene-Eocene boundary in the Hengyang Basin, Hunan, China. In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) Causes and consequences of globally warm climates in the early Paleogene; Geological Society of America, Special Papers, vol 369. pp 521–535Google Scholar
  102. von Koenigswald W (1979) Ein Lemurenrest aus dem eozänen Ölschiefer der Grube Messel bei Darmstadt. Paläontol Z 53:63–76. doi: 10.1007/BF02987788 Google Scholar
  103. Zachos JC, Pagani M, Sloan LC, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. doi: 10.1126/science.1059412 CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  1. 1.Department of Earth and Environmental Sciences, Museum of PaleontologyUniversity of MichiganAnn ArborUSA

Personalised recommendations