Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 4, pp 631–647 | Cite as

The importance of Messel for interpreting Eocene Holarctic mammalian faunas

  • Kenneth D. Rose


The middle Eocene Messel fauna includes 34 genera and 46 species of mammals, most of which have close relatives or analogues in other Eocene faunas. Unlike most other Eocene fossil assemblages, however, the Messel mammal assemblage consists of an extraordinary number of nearly complete, articulated skeletons, often exquisitely preserved and sometimes revealing details of soft anatomy and stomach contents as well as osteology. Consequently, Messel fossils provide a wealth of anatomical and ecomorphological data that inform our understanding of the functional anatomy, behaviour and phylogenetic relationships of these animals and of related Eocene mammals from other faunas. Several examples are highlighted here, including the metatherians Amphiperatherium and “Peradectes,” the pantolestan Buxolestes, the pholidotamorphs Eomanis and Eurotamandua, the possible stem macroscelidean Macrocranion, the leptictidan Leptictidium, the bats Hassianycteris and Archaeonycteris, the apatothere Heterohyus, and the artiodactyls Messelobunodon and Aumelasia. All of these Messel taxa have enhanced our knowledge of mammals from various North American and Asian faunas.


Fossil Butte Member (Green River Formation) Willwood Formation Vastan local fauna (Gujarat, India) Bridger Formation Mammalian skeletal anatomy Ecomorphology 



I am greatly indebted to my friends and colleagues Jens Franzen, Wighart von Koenigswald, and Gerhard Storch, who introduced me to Messel mammals and generously shared their knowledge of Messel with me. I am also grateful to the many other colleagues who provided access to, information about, and images of Messel mammals, especially Jörg Habersetzer, Conny Kurz, Stephan Schaal, and Friedemann Schrenk. Permission to reproduce images was granted by Tom Lehmann (Senckenberg Forschungsinstitut und Naturmuseum Frankfurt a. M.), Gabriele Gruber (Hessisches Landesmuseum Darmstadt), Eberhard Frey (Staatliches Museum für Naturkunde, Karlsruhe), Wighart von Koenigswald (Steinmann Institut, Bonn), Burkard Pohl, and Lance Grande. I thank Gregg Gunnell and Thierry Smith for reviewing the manuscript and offering numerous suggestions for its improvement. Finally, I thank Tom Lehmann for inviting me to contribute to the Messel Symposium, and for assistance with manuscript preparation. My research on Messel mammals has been supported by the U.S. National Science Foundation and the Alexander von Humboldt Stiftung.


  1. Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108CrossRefGoogle Scholar
  2. Bloch JI, Boyer DM (2001) Taphonomy of small mammals in freshwater limestones from the Paleocene of the Clarks Fork Basin. Univ Michigan Pap Paleontol 33:185–198Google Scholar
  3. Butler PM (1988) Phylogeny of the insectivores. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, volume 2: mammals. Clarendon, Oxford, pp 117–141Google Scholar
  4. Butler PM (1995) Fossil Macroscelidea. Mammal Rev 25:3–14CrossRefGoogle Scholar
  5. Christian A (1999) Zur Biomechanik der Fortbewegung von Leptictidium (Mammalia Proteutheria). Cour Forsch-Inst Senckenberg 216:1–18Google Scholar
  6. Cooper LN, Thewissen JGM, Bajpai S, Tiwari BN (2011) Postcranial morphology and locomotion of the Eocene raoellid Indohyus (Artiodactyla: Mammalia). Hist Biol 32 pp doi: 10.1080/08912963.2011.624184
  7. Corlett R, Primack R (2005) Dipterocarps: trees that dominate the Asian rain forest. Arnoldia 63:3–7Google Scholar
  8. Dorr JA Jr (1977) Partial skull of Palaeosinopa simpsoni (Mammalia, Insectivora), latest Paleocene Hoback Formation, central western Wyoming, with some general remarks on the family Pantolestidae. Contrib Mus Paleontol Univ Mich 24:281–307Google Scholar
  9. Dutta S, Tripathi SM, Mallick M, Mathews RP, Greenwood PF, Rao MR, Summons RE (2011) Eocene out-of-India dispersal of Asian dipterocarps. Rev Palaeobot Palyno 166:63–68CrossRefGoogle Scholar
  10. Erfurt J (2000) Rekonstruktion des Skelettes und der Biologie von Anthracobunodon weigelti (Artiodactyla, Mammalia) aus dem Eozän des Geiseltales. Hallesches Jb Geowiss 12:57–141Google Scholar
  11. Erfurt J, Haubold H (1989) Artiodactyla aus den Eozänen Braunkohlen des Geiseltales bei Halle (DDR). Palaeovertebrata 19:131–160Google Scholar
  12. Franzen JL (1981) Das erste Skelett eines Dichobuniden (Mammalia, Artiodactyla), geborgen aus mitteleozänen Ölschiefern der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senck leth 61:299–353Google Scholar
  13. Franzen JL (1983) Ein zweites Skelett von Messelobunodon (Mammalia, Artiodactyla, Dichobunidae) aus der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senck leth 64:403–445Google Scholar
  14. Franzen JL (1988) Skeletons of Aumelasia (Mammalia, Artiodactyla, Dichobunidae) from Messel (M. Eocene, W. Germany). Cour Forsch-Inst Senckenberg 107:309–321Google Scholar
  15. Franzen JL (2007) Eozäne Equoidea (Mammalia, Perissodactyla) aus der Grube Messel bei Darmstadt (Deutschland). Schweiz Paläontol Abh 127:1–243Google Scholar
  16. Franzen JL, Frey E (1993) Europolemur completed. Kaupia—Darmstädter Beitr Naturgesch 3:113–130Google Scholar
  17. Franzen JL, Richter G (1992) Primitive even-toed ungulates: loners in the undergrowth. In: Schaal S, Ziegler W (eds) Messel—an insight into the history of life and of the earth. Clarendon, Oxford, pp 251–256Google Scholar
  18. Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH (2009) Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiology. PLoS One 4(5):e5723. doi: 10.1371/journal.pone.0005723 CrossRefGoogle Scholar
  19. Frey E, Herkner B, Schrenk F, Seiffert C (1993) Reconstructing organismic constructions and the problem of Leptictidium’s locomotion. Kaupia—Darmstädter Beitr Naturgesch 3:89–95Google Scholar
  20. Gaudin TJ, Emry RJ, Wible JR (2009) The phylogeny of living and extinct pangolins (Mammalia, Pholidota) and associated taxa: a morphology based analysis. J Mammal Evol 16:235–305CrossRefGoogle Scholar
  21. Gheerbrant E, Rose KD, Godinot M (2005) First palaeanodont (?pholidotan) mammal from the Eocene of Europe. Acta Palaeontol Pol 50:209–218Google Scholar
  22. Godinot M, Smith T, Smith R (1996) Mode de vie et affinités de Paschatherium (Condylarthra, Hyopsodontidae) d’après ses os du tarse. Palaeovertebrata volume jubilaire D.E. Russell, 25:225–242Google Scholar
  23. Grande L (1984) Paleontology of the Green River Formation, with a review of the fish fauna. 2nd Edition. Bull Geol Surv Wyoming 63:1–333Google Scholar
  24. Grande L (in press) The lost world of fossil lake: snapshots from deep time. University of Chicago Press, ChicagoGoogle Scholar
  25. Gregory WK (1920) On the structure and relations of Notharctus, an American Eocene primate. Mem Am Mus Nat Hist 3:49–243Google Scholar
  26. Gunnell GF, Gingerich PD (1993) Skeleton of Brachianodon westorum, a new middle Eocene metacheiromyid (Mammalia, Palaeanodonta) from the early Bridgerian (Bridger A) of the southern Green River Basin, Wyoming. Contrib Mus Paleontol Univ Michigan 28:365–392Google Scholar
  27. Habersetzer J, Storch G (1989) Ecology and echolocation of the Eocene Messel bats. In: Hanak V, Horacek I, Gaisler J (eds) European bat research 1987. Charles University Press, Praha, pp 213–233Google Scholar
  28. Habersetzer J, Richter G, Storch G (1992) Bats: already highly specialized insect predators. In: Schaal S, Ziegler W (eds) Messel—an insight into the history of life and of the earth. Clarendon, Oxford, pp 181–191Google Scholar
  29. Hooker JJ, Russell DE (2012) Early Palaeogene Louisinidae (Macroscelidea, Mammalia), their relationships and north European diversity. J Linn Soc Lond Zool 164:856–936CrossRefGoogle Scholar
  30. Horovitz I, Ladevèze S, Argot C, Macrini TE, Martin T, Hooker JJ, Kurz C, de Muizon C, Sánchez-Villagra MR (2008) The anatomy of Herpetotherium cf. fugax Cope, 1873, a metatherian from the Oligocene of North America. Palaeontographica Abt. A 284:109–141Google Scholar
  31. Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra MR (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS One 4(12):e8278CrossRefGoogle Scholar
  32. Howell AB (1944) Speed in animals: their specialization for running and leaping. University of Chicago Press, ChicagoGoogle Scholar
  33. Koenigswald W von (1979) Ein Lemurenrest aus dem eozänen Ölschiefer der Grube Messel bei Darmstadt. Paläontol Z 53:63–76Google Scholar
  34. Koenigswald W von (1980) Das Skelett eines Pantolestiden (Proteutheria, Mamm.) aus dem mittleren Eozän von Messel bei Darmstadt. Paläontol Z 54:267–287Google Scholar
  35. Koenigswald W von (1987a) Apatemyiden-Skelette aus dem Mitteleozän von Messel und ihre paläobiologische Aussage. Carolinea 45:31–35Google Scholar
  36. Koenigswald W von (1987b) Ein zweites Skelett von Buxolestes (Pantolestidae, Proteutheria, Mammalia) aus dem Mitteleozän von Messel bei Darmstadt. Carolinea 45:36–42Google Scholar
  37. Koenigswald W von (1990) Die Paläobiologie der Apatemyiden (Insectivora s.l.) und die Ausdeutung der Skelettfunde von Heterohyus nanus aus dem Mitteleozän von Messel bei Darmstadt. Palaeontographica 210:41–77, Abt.AGoogle Scholar
  38. Koenigswald W von, Schierning H-P (1987) The ecological niche of an extinct group of mammals, the early Tertiary apatemyids. Nature 326:595–597CrossRefGoogle Scholar
  39. Koenigswald W von, Storch G (1987) Leptictidium tobieni n. sp., ein dritter Pseudoryncocyonide (Proteutheria, Mammalia) aus dem Eozän von Messel. Cour Forsch-Inst Senckenberg 91:107–116Google Scholar
  40. Koenigswald W von, Storch G (1988) Messeler Beuteltiere—unauffällige Beutelratten. In: Schaal S, Ziegler W (eds) Messel—Ein Schaufenster in die Geschichte der Erde und des Lebens. Waldemar Kramer, Frankfurt am Main, pp 155–158Google Scholar
  41. Koenigswald W von, Storch G (1992) The marsupials: inconspicuous opossums. In: Schaal S, Ziegler W (eds) Messel—an insight into the history of life and of the earth. Clarendon, Oxford, pp 155–158Google Scholar
  42. Koenigswald W von, Richter G, Storch G (1981) Nachweis von Hornschuppen bei Eomanis waldi aus der “Grube Messel” bei Darmstadt (Mammalia, Pholidota). Senck leth 61:291–298Google Scholar
  43. Koenigswald W von, Storch G, Richter G (1992) Primitive insectivores, extraordinary hedgehogs, and long-fingers. In: Schaal S, Ziegler W (eds) Messel—an insight into the history of life and of the earth. Clarendon, Oxford, pp 159–177Google Scholar
  44. Koenigswald W von, Rose KD, Grande L, Martin RD (2005) First apatemyid skeleton from the lower eocene fossil butte member, Wyoming, compared to the European apatemyid from Messel, Germany. Palaeontographica 272:149–169, Abt. AGoogle Scholar
  45. Krishtalka L (1976) Early Tertiary Adapisoricidae and Erinaceidae (Mammalia, Insectivora) of North America. Bull Carnegie Mus Nat Hist 1:1–40Google Scholar
  46. Krumbiegel G, Rüffle L, Haubold H (1983) Das Eozäne Geiseltal. A. Ziemsen, Wittenberg LutherstadtGoogle Scholar
  47. Kumar K, Rose KD, Rana RS, Singh L, Smith T, Sahni A (2010) Early Eocene artiodactyls (Mammalia) from western India. J Vertebr Paleontol 30:1245–1274CrossRefGoogle Scholar
  48. Kurz C (2001) Osteologie einer Beutelratte (Didelphimorphia, Marsupialia, Mammalia) aus dem Mitteleozän der Grube Messel bei Darmstadt. Kaupia—Darmstädter Beitr Naturgesch 11:83–109Google Scholar
  49. Kurz C (2005) Ecomorphology of opossum-like marsupials from the Tertiary of Europe and a comparison with selected taxa. Kaupia - Darmstädter Beitr Naturgesch 14:21–26Google Scholar
  50. Ladevèze S, Smith R, Smith T (2012) Reassessment of the morphology and taxonomic status of the earliest herpetotheriid marsupials of Europe. J Mamm Evol. doi: 10.1007/s10914-012-9195-0
  51. MacLeod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am J Sci 293-A:300–355CrossRefGoogle Scholar
  52. Maier W (1979) Macrocranion tupaiodon, an adapisoricid (?) insectivore from the Eocene of “Grube Messel” (western Germany). Paläontol Z 53:38–62Google Scholar
  53. Maier W, Richter G, Storch G (1986) Leptictidium nasutum—ein archaisches Säugetier aus Messel mit aussergewöhnlichen biologischen Anpassungen. Natur und Museum 116:1–19Google Scholar
  54. Matthew WD (1909) The Carnivora and Insectivora of the Bridger Basin, Middle Eocene. Mem Am Mus Nat Hist 9:291–567Google Scholar
  55. Matthew WD (1918) A revision of the lower Eocene Wasatch and Wind River faunas. Part V: Insectivora (continued), Glires, Edentata. Bull Am Mus Nat Hist 38:565–657Google Scholar
  56. McKenna MC (1975) Fossil mammals and early Eocene North Atlantic land continuity. Ann Mo Bot Gard 62:335–353CrossRefGoogle Scholar
  57. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York, 1–631Google Scholar
  58. Morlo M, Habersetzer J (1999) The Hyaenodontidae (Creodonta, Mammalia) from the lower middle Eocene (MP11) of Messel (Germany) with special remarks on new x-ray methods. Cour Forsch-Inst Senckenberg 216:31–73Google Scholar
  59. Morlo M, Schaal S, Mayr G, Seiffert C (2004) An annotated taxonomic list of the Middle Eocene (MP 11) Vertebrata of Messel. Cour Forsch-Inst Senckenberg 252:95–108Google Scholar
  60. Penkrot TA, Zack SP, Rose KD, Bloch JI (2008) Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): Evidence for a Paleocene Holarctic origin of Macroscelidea. In: Sargis E, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, pp 73–106CrossRefGoogle Scholar
  61. Pfretzschner H-U (1993) Muscle reconstruction and aquatic locomotion in the middle Eocene Buxolestes piscator from Messel near Darmstadt. Kaupia-Darmstädter Beitr Naturgesch 3:75–87Google Scholar
  62. Rana RS, Kumar K, Escarguel G, Sahni A, Rose KD, Smith T, Singh H, Singh L (2008) An ailuravine rodent from the lower Eocene Cambay Formation at Vastan, western India, and its palaeobiogeographic implications. Acta Palaeontol Pol 53:1–14CrossRefGoogle Scholar
  63. Rose KD (1982) Skeleton of Diacodexis, oldest known artiodactyl. Science 216:621–623CrossRefGoogle Scholar
  64. Rose KD (1985) Comparative osteology of North American dichobunid artiodactyls. J Paleontol 59:1203–1226Google Scholar
  65. Rose KD (1987) Climbing adaptations in the early Eocene mammal Chriacus and the origin of Artiodactyla. Science 236:314–316CrossRefGoogle Scholar
  66. Rose KD (1988) Early Eocene mammal skeletons from the Bighorn Basin (Wyoming): significance to the Messel fauna. Cour Forsch-Inst Senckenberg 107:435–450Google Scholar
  67. Rose KD (1990) Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. In: Bown TM, Rose KD (eds) Dawn of the Age of Mammals in the northern part of the Rocky Mountain Interior. Geol Soc Am Spec Pap 243:107–133Google Scholar
  68. Rose KD (1999a) Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. J Vertebr Paleontol 19:355–372CrossRefGoogle Scholar
  69. Rose KD (1999b) Eurotamandua and Palaeanodonta: convergent or related? Paläontol Z 73:395–401Google Scholar
  70. Rose KD (2001) Compendium of Wasatchian mammal postcrania from the Willwood Formation; pp 157–183 In: Gingerich PD (ed) Paleocene-Eocene stratigraphy and biotic change in the Bighorn and Clarks Fork basins of northwestern Wyoming. Univ. Michigan Pap Paleontol 33Google Scholar
  71. Rose KD (2006) The postcranial skeleton of early Oligocene Leptictis (Mammalia: Leptictida), with a preliminary comparison to Leptictidium from the middle Eocene of Messel. Palaeontographica 278:37–56, Abt AGoogle Scholar
  72. Rose KD, Gaudin TJ (2010) Xenarthra and Pholidota (armadillos, anteaters, sloths, and pangolins). Encyclopedia of Life Sciences. Wiley, Chichester. doi: 10.1002/9780470015902.a0001556.pub2
  73. Rose KD, von Koenigswald W (2005) An exceptionally complete skeleton of Palaeosinopa (Mammalia, Cimolesta, Pantolestidae) from the Green River Formation, and other postcranial elements of the Pantolestidae from the Eocene of Wyoming. Palaeontographica Abt A 273:55–96Google Scholar
  74. Rose KD, Emry RJ, Gaudin TJ, Storch G (2005) Xenarthra and pholidota. In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. Johns Hopkins University Press, Baltimore, pp 106–126Google Scholar
  75. Rose KD, Smith T, Rana RS, Sahni A, Singh H, Missiaen P, Folie A (2006) Early Eocene (Ypresian) continental vertebrate assemblage from India, with description of a new anthracobunid (Mammalia, Tethytheria). J Vertebr Paleontol 26:219–225CrossRefGoogle Scholar
  76. Rose KD, Chew AE, Dunn RH, Kraus MJ, Fricke HC, Zack SP (2012) Earliest Eocene mammalian fauna from the Paleocene-Eocene Thermal Maximum at Sand Creek Divide, southern Bighorn Basin, Wyoming. Univ Michigan Pap Paleontol 36:1–122Google Scholar
  77. Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC, Solórzano Kraemer M, Williams CJ, Engel MS, Sahni A, Grimaldi D (2010) Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc Natl Acad Sci USA 107:18360–18365CrossRefGoogle Scholar
  78. Schaal S, Ziegler W (eds) (1988) Messel—Ein Schaufenster in die Geschichte der Erde und des Lebens. Waldemar Kramer, Frankfurt am MainGoogle Scholar
  79. Schaal S, Ziegler W (eds) (1992) Messel—an insight into the history of life and of the earth. Clarendon, OxfordGoogle Scholar
  80. Shoshani J, McKenna MC, Rose KD, Emry RJ (1997) Eurotamandua is a pholidotan not a xenarthran. J Vertebr Paleontol 17(3):76AGoogle Scholar
  81. Silcox MT, Bloch JI, Boyer DM, Houde P (2010) Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria), and the relationships of the Apatemyidae to other mammals. J Linn Soc Lond Zool 160:773–825CrossRefGoogle Scholar
  82. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:818–821CrossRefGoogle Scholar
  83. Simpson GG (1931) Metacheiromys and the Edentata. Bull Am Mus Nat Hist 59:295–381Google Scholar
  84. Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H, Singh L (2007) High bat (Chiroptera) diversity in the early Eocene of India. Naturwissenschaften 94:1003–1009CrossRefGoogle Scholar
  85. Storch G (1978) Eomanis waldi, ein Schuppentier aus dem Mittel-Eozän der “Grube Messel” bei Darmstadt (Mammalia: Pholidota). Senck leth 59:503–529Google Scholar
  86. Storch G (1981) Eurotamandua joresi, ein Myrmecophagide aus dem Eozän der “Grube Messel” bei Darmstadt (Mammalia, Xenarthra). Senck leth 61:247–289Google Scholar
  87. Storch G (1993) Morphologie und Paläobiologie von Macrocranion tenerum, einem Erinaceomorphen aus dem Mittel-Eozän von Messel bei Darmstadt (Mammalia, Lipotyphla). Senck leth 73:61–81Google Scholar
  88. Storch G (1996) Paleobiology of Messel erinaceomorphs. Palaeovertebrata 25:215–224, Volume jubilaire DE RussellGoogle Scholar
  89. Storch G (2001) Paleobiological implications of the Messel mammalian assemblage. In: Gunnell GF (ed) Eocene biodiversity: unusual occurrences and rarely sampled habitats. Kluwer, New York, pp 215–235Google Scholar
  90. Storch G (2003) Fossil old world “edentates.”. Senck biol 83:51–60Google Scholar
  91. Storch G, Haubold H (1989) Additions to the Geiseltal mammalian faunas, middle Eocene: Didelphidae, Nyctitheriidae, Myrmecophagidae. Palaeovertebrata 19:95–114Google Scholar
  92. Storch G, Lister AM (1985) Leptictidium nasutum, ein Pseudorhyncocyonide aus dem Eozän der “Grube Messel” bei Darmstadt (Mammalia, Proteutheria). Senck leth 66:1–37Google Scholar
  93. Storch G, Martin T (1994) Eomanis krebsi, ein neues Schuppentier aus dem Mittel-Eozän der Grube Messel bei Darmstadt (Mammalia: Pholidota). Berliner Geowiss Abh E13:83–97Google Scholar
  94. Storch G, Richter G (1994) Zur Paläobiologie Messeler Igel. Natur und Museum 124:81–90Google Scholar
  95. Storch G, Sigé B, Habersetzer J (2002) Tachypteron franzeni n. gen, n. sp., earliest emballonurid bat from the Middle Eocene of Messel (Mammalia, Chiroptera). Paläontol Z 76:189–199Google Scholar
  96. Szalay FS, Schrenk F (1998) The middle Eocene Eurotamandua and a Darwinian phylogenetic analysis of “edentates.” Kaupia—Darmstädter Beitr Naturgesch 7:97–186Google Scholar
  97. Tabuce R, Antunes MT, Smith R, Smith T (2006) Dental and tarsal morphology of the European Paleocene/Eocene “condylarth” mammal Microhyus. Acta Palaeontol Pol 51:37–52Google Scholar
  98. Thalmann U (1994) Die Primaten aus dem eozänen Geiseltal bei Halle/Saale (Deutschland). Cour Forsch-Inst Senckenberg 175:1–161Google Scholar
  99. Thewissen JGM, Hussain ST (1990) Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anat Histol Embryol 19:37–48CrossRefGoogle Scholar
  100. Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194CrossRefGoogle Scholar
  101. Tobien H (1962) Insectivoran (Mamm.) aus dem Mitteleozän (Lutetium) von Messel bei Darmstadt. Notizbl hess L-Amt Bodenforsch Wiesbaden 90:7–47Google Scholar
  102. Tobien H (1980) Ein anthracotherioider Paarhufer (Artiodactyla, Mammalia) aus dem Eozän von Messel bei Darmstadt (Hessen). Geol Jb Hessen 108:11–22Google Scholar
  103. Wood AR, Bebej RM, Manz CL, Begun DL, Gingerich PD (2011) Postcranial functional morphology of Hyracotherium (Equidae, Perissodactyla) and locomotion in the earliest horses. J Mamm Evol 18:1–32CrossRefGoogle Scholar
  104. Zack SP, Penkrot TA, Bloch JI, Rose KD (2005) Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434:497–501CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  1. 1.Center for Functional Anatomy and EvolutionThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations