Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 3, pp 329–341 | Cite as

Charcoal in the Late Jurassic (Kimmeridgian) of Western and Central Europe—palaeoclimatic and palaeoenvironmental significance

  • Dieter Uhl
  • André Jasper
  • Günter Schweigert
Original Paper

Abstract

Although fossil charcoal, as direct evidence of palaeo-wildfires, occurs in the fossil record at least since the Late Silurian, it is not equally distributed in sedimentary rocks from different ages. As the occurrence of wildfires is indeed not only controlled by climatic and environmental parameters, but also by the concentration of atmospheric oxygen, it has been argued by various authors that the fossil record of charcoal must also be influenced by (long-term) variations in atmospheric oxygen concentrations. Geochemical models have reconstructed low oxygen concentrations during almost the entire Jurassic, resulting, at least theoretically, in very low fire frequencies during this period. Here we describe new discoveries of fossil charcoal fragments from two Late Jurassic (Kimmeridgian) localities in Western (Boulonnais area in northern France) and Central Europe (Nusplingen Lithographic Limestone Fossillagerstätte in southwestern Germany). Combining our new data with currently available—but rather scarce—data on the occurrences of charcoal fragments during this particular interval of time demonstrates that all of these occurrences lie either within a Late Jurassic winter-wet climate belt, characterised by a marked seasonality, or within the assumedly drier part of a temperate climate belt, near the boundaries of the winter-wet climate belt. This is somewhat surprising as the preservation potential of charcoal is generally considered to be rather low under comparable climatic conditions, although charcoal production is usually high under seasonally dry climatic conditions. As almost all Kimmeridgian charcoals discovered to date come from marine deposits, it seems likely that taphonomic factors may have favoured the preservation of charcoal in such environments. Considering all data and interpretations, it seems possible that on a global scale fire frequencies were low during the Kimmeridgian due to relatively low atmospheric oxygen conditions during this period. Only in areas with a pronounced seasonality (i.e. under a winter-wet climate) could fires have occurred frequently enough to produce a certain amount of charcoal, and this charcoal has only been preserved under favourable conditions in marine sediments or in peat bogs with relatively high fire frequencies.

Keywords

Charcoal Wildfire Atmospheric oxygen Taphonomy Kimmeridgian Jurassic 

Notes

Acknowledgements

We thank Claudia Franz, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, for technical assistance with SEM facilities. The excavation team of the Nusplingen site, Gerd Dietl, Falk-Horst Epping, Rolf Hugger, August Ilg, Martin Kapitzke, Markus Rieter and Burkhart Ruß, are thanked for their careful work which even allowed the recognition of rather unspectacular fossils, such as charcoal. A. Jasper acknowledges the financial support of FAPERGS (Project 11/1307-0) and CNPq (Projects 301671/2009-5 and 401771/2010-5). Finally, we thank Leszek Marynowski and Christoph Hartkopf-Fröder for their reviews, as well as Michael Wuttke and Achim Reisdorf for their additional comments, all of which helped to improve the manuscript.

References

  1. Abbink O, Targarona J, Brinkhuis H, Visscher H (2001) Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the Southern North Sea. Global Planet Change 30:231–256CrossRefGoogle Scholar
  2. Aberhan M, Bussert R, Heinrich W-D, Schrank E, Schultka S, Sames B, Kriwet J, Kapilima S (2002) Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania). Mitt Mus Naturk Berlin, Geowiss Reihe 5:17–42Google Scholar
  3. Bantel G, Schweigert G, Nose M, Schulz H-M (1999) Mikrofazies, Mikro- und Nannofossilien aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb). Stuttgarter Beitr Naturk, Ser B 279:1–55Google Scholar
  4. Barale G (1981) La paléoflore jurassique du Jura français: étude systématique, aspects stratigraphiques et paléoécologiques. Doc Lab Géol Lyon 81:1–467Google Scholar
  5. Beerling DJ, Woodward FI (2001) Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years. Cambridge University Press, Port Chester, p 415CrossRefGoogle Scholar
  6. Belcher CM, McElwain JC (2008) Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321:1197–1200CrossRefGoogle Scholar
  7. Belcher CM, Yearsley JM, Hadden RM, McElwain JC, Rein G (2010) Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc Natl Acad Sci USA 107:22448–22453CrossRefGoogle Scholar
  8. Berner RA (2009) Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am J Sci 309:603–606CrossRefGoogle Scholar
  9. Bloos G (2004) The protection of fossils in Baden-Württemberg (Federal Republic of Germany). Riv Ital Paleont Stratig 110:399–406Google Scholar
  10. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth System. Science 324:481–484CrossRefGoogle Scholar
  11. Briggs DEG, Moore R, Shultz JW, Schweigert G (2005) Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proc R Soc London, Ser B 272:627–632CrossRefGoogle Scholar
  12. Bussert R, Heinrich W-D, Aberhan M (2009) The Tendaguru Formation (Upper Jurassic to Lower Cretaceous, southern Tanzania): Definition, palaeoenvironments, and sequence stratigraphy. Fossil Rec 12:141–174CrossRefGoogle Scholar
  13. Díaz-Somoano M, Suárez-Ruiz I, Alonso JIG, Ruiz Encinar J, López-Antón MA, Martínez-Tarazona MR (2007) Lead isotope ratios in Spanish coals of different characteristics and origin. Int J Coal Geol 71:28–36CrossRefGoogle Scholar
  14. Diessel CFK (2010) The stratigraphic distribution of inertinite. Int J Coal Geol 81:251–268CrossRefGoogle Scholar
  15. Dietl G, Schweigert G (1999) Der Nusplinger Plattenkalk und seine Fossilien (Weißer Jura ζ, Ober-Kimmeridgium) (Exkursion N am 10). Jb Mitt Oberrhein geol Ver NF 81:257–271Google Scholar
  16. Dietl G, Schweigert G (2001) Im Reich der Meerengel—der Nusplinger Plattenkalk und seine Fossilien. Munich, Verlag Dr. F. Pfeil, pp 144Google Scholar
  17. Dietl G, Schweigert G (2004) The Nusplingen Lithographic Limestone—a “fossil lagerstaette” of Late Kimmeridgian age from the Swabian Alb (Germany). Riv Ital Paleont Stratigr 110:303–309Google Scholar
  18. Dietl G, Schweigert G (2011) Im Reich der Meerengel—Fossilien aus dem Nusplinger Plattenkalk (2nd edition). Munich, Verlag Dr. F. Pfeil, pp 144Google Scholar
  19. Dietl G, Schweigert G, Franz M, Geyer M (1998) Profile des Nusplinger Plattenkalks (Oberjura, Schwäbische Alb). Stuttgarter Beitr Naturk, Ser B 265:1–37Google Scholar
  20. Dietl G, Schweigert G, Warth M (2000) Ein „industriöser Bauer“—die alten Grabungen im Nusplinger Plattenkalk. Jahresh Ges Naturk Württ 156:27–45Google Scholar
  21. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for globalwildland fire. Int J Wildl Fire 18:483–507CrossRefGoogle Scholar
  22. Fürsich FT, Oschmann W (1986) Storm shell beds of Nanogyra virgula in the Upper Jurassic of France. N Jb Geol Paläont, Abh 172:141–161Google Scholar
  23. Glasspool IJ, Scott AC (2010) Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat Geosci 3:627–630CrossRefGoogle Scholar
  24. Glasspool IJ, Edwards D, Axe L (2004) Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32:381–383CrossRefGoogle Scholar
  25. Harris TM, Rest JA (1966) The flora of the Brora Coal. Geol Mag 103:101–109CrossRefGoogle Scholar
  26. Herbin JP, Fernandez-Martinez JL, Geyssant JR, E1 Albani A, Deconinck JF, Proust JN, Colbeaux J, Vidier JP (1995) Sequence stratigraphy of source rocks applied to the study of the Kimmeridgian-Tithonian in the north-west European shelf (Dorset/UK, Yorkshire/UK and BoulonnaisfFrance ). Mar Petrol Geol 12:186–203CrossRefGoogle Scholar
  27. Hower JC, Wild GD (1994) Petrology of Jurassic (Kimmeridgian) coals, Atlantic continental slope, New Jersey. In: Schultz EK, Rader EK (eds.) Studies in Eastern Energy and the Environment. Virginia Div Min Res Publ 132:11–15Google Scholar
  28. Jones TP (1997) Fusain in Late Jurassic sediments from the Witch Ground Graben, North Sea, UK. Medelingen Nederlands Instituut voor Toegepaste geowetenschappen. TNO 58:93–103Google Scholar
  29. Klug C, Schweigert G, Dietl G, Fuchs D (2005) Coleoid beaks from the Nusplingen Lithographic Limestone (Late Kimmeridgian, SW Germany). Lethaia 38:173–192CrossRefGoogle Scholar
  30. Klug C, Schweigert G, Fuchs D, Dietl G (2010) First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia 43:445–456CrossRefGoogle Scholar
  31. Marynowski L, Scott AC, Zatoń M, Parent H, Garrido AC (2011) First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the Middle Jurassic of the Neuquén Basin, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 299:129–136CrossRefGoogle Scholar
  32. Mutschler O (1927) Die Gymnospermen des Weissen Jura ζ von Nusplingen. Jb Mitt Oberrhein geol Ver NF 16:25–50Google Scholar
  33. Naveh Z (1975) The evolutionary significance of fire in the mediterranean region. Plant Ecol 29:199–208CrossRefGoogle Scholar
  34. Nichols G, Cripps J, Collinson ME, Scott AC (2000) Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeogr Palaeoclimatol Palaeoecol 164:43–56CrossRefGoogle Scholar
  35. Philippe M (2011) How many species of Araucarioxylon? C R Palevol 10:201–208CrossRefGoogle Scholar
  36. Proust JN, Deconinck JF, Geyssant JR, Herbin JP, Vidier JP (1993) Nouvelles données sédimentologiques dans le Kimméridgien & le Tithonien du Boulonnais (France). C R Acad Sci Ser 316(2):363–369Google Scholar
  37. Proust JN, Deconinck JF, Geyssant JR, Herbin JP, Vidier JP (1995) Sequence analytical approach to the Upper Kimmeridgian-Lower Tithonian storm-dominated ramp deposits of the Boulonnais (Northern France). A landward time-equivalent to offshore marine source rocks. Geol Rundsch 84:255–271CrossRefGoogle Scholar
  38. Rees PM, Ziegler AM, Valdes PJ (2000) Jurassic phytogeography and climates: new data and model comparisons. In: Huber BT, Macleod KG, Wing SL (eds) Warm climates in earth history. Cambridge: Cambridge University Press, pp 297–318Google Scholar
  39. Salehi MR (1986) Determination of rank and petrographic composition of Jurassic coals from eastern Surat Basin, Australia. Int J Coal Geol 6:149–162CrossRefGoogle Scholar
  40. Schlirf M (2003) Palaeoecologic significance of Late Jurassic trace fossils from the Boulonnais, N France. Acta Geol Polon 53:123–142Google Scholar
  41. Schweigert G (1998) Die Ammonitenfauna des Nusplinger Plattenkalks (Ober-Kimmeridgium, Beckeri-Zone, Ulmense-Subzone, Schwäbische Alb). Stuttgarter Beitr Naturk, Ser B 267:1–61Google Scholar
  42. Schweigert G (2007) Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany—first results and open questions. N Jb Geol Paläont, Abh 245:117–125CrossRefGoogle Scholar
  43. Schweigert G, Dietl G (2003) Miscellanea aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb) 5. In-situ Bernstein in Araukarien-Zapfenschuppen. Jb Mitt Oberrhein geol Ver NF 85:473–483Google Scholar
  44. Schweigert G, Dietl G (2006) Miscellanea aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb) 7. Fossile Holzkohle. Jb Mitt Oberrhein geol Ver NF 88:85–92Google Scholar
  45. Schweigert G, Dietl G, Kapitzke M, Rieter M, Hugger R (1996) Libellen aus dem Nusplinger Plattenkalk (Oberjura, Ober-Kimmeridgium, Baden-Württemberg). Stuttgarter Beitr Naturk, Ser B 236:1–12Google Scholar
  46. Scotese CR (2002) Available at: http://www.scotese.com (PALEOMAP website)
  47. Scott AC (1989) Observations on the nature and origin of fusain. Int J Coal Geol 12:443–475CrossRefGoogle Scholar
  48. Scott AC (2000) The Pre-Quaternary history of fire. Palaeogeogr Palaeoclimatol Palaeoecol 164:297–345Google Scholar
  49. Scott AC (2010) Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr Palaeoclimatol Palaeoecol 291:11–39CrossRefGoogle Scholar
  50. Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci USA 103:10861–10865CrossRefGoogle Scholar
  51. Scott AC, Glasspool IJ (2007) Observations and experiments on the origin and formation of inertinite group macerals. Int J Coal Geol 70:55–66Google Scholar
  52. Scott AC, Galtier J, Mapes RH, Mapes G (1997) Anatomically preserved terrestrial plants in marine goniatite bullions from the Namurian B (Marsdenian, Upper Carboniferous) and their palaeoecological and evolutionary significance. J Geol Soc London 154:61–68CrossRefGoogle Scholar
  53. Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Austral J Soil Res 34:251–271CrossRefGoogle Scholar
  54. Süss H, Schultka S (2001) First Record of Glyptostroboxylon from the Upper Jurassic of Tendaguru, Tanzania. Bot J Linn Soc 135:421–429CrossRefGoogle Scholar
  55. Süss H, Schultka S (2006) Koniferenhölzer (Fusite) aus dem Oberjura vom Tendaguru (Tansania, Ostafrika). Palaeontogr B 275:133–165Google Scholar
  56. Uhl D, Kerp H (2003) Wildfires in the late Palaeozoic of Central Europe—The Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 199:1–15CrossRefGoogle Scholar
  57. Uhl D, Montenari M (2011) Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geol J 46:34–41CrossRefGoogle Scholar
  58. Uhl D, Lausberg S, Noll R, Stapf KRG (2004) Wildfires in the Late Palaeozoic of Central Europe—an overview of the Rotliegend (Upper Carboniferous–Lower Permian) of the Saar-Nahe Basin (SW-Germany). Palaeogeogr Palaeoclimatol Palaeoecol 207:23–35CrossRefGoogle Scholar
  59. Uhl D, Jasper A, Schindler T, Wuttke M (2010) First evidence of palaeo-wildfire in the early Middle Triassic (early Anisian) Voltzia Sandstone Fossil-Lagerstätte—the oldest post-Permian macroscopic evidence of wildfire discovered so far. Palaios 25:837–842CrossRefGoogle Scholar
  60. Vakhrameev VA (1991) Jurassic and Cretaceous floras and climates of the earth. Cambridge Univ Press, CambridgeGoogle Scholar
  61. van der Burgh J, van Konijnenburg-van Cittert JHA (1984) A drifted flora from the Kimmeridgian (Upper Jurassic) of Lothbeg Point, Sutherland, Scotland. Rev Palaeobot Palynol 43:359–398CrossRefGoogle Scholar
  62. van Konijnenburg-van Cittert JHA (2008) The Jurassic fossil plant record of the UK area. Proc Geol Assoc 119:59–72CrossRefGoogle Scholar
  63. Wignall PB, Sutcliffe OE, Clemson J, Young E (1996) Unusual shoreface sedimentology in the Upper Jurassic of the Boulonnais, northern France. J Sed Res 66:577–586Google Scholar
  64. Wildman RA, Hickey LJ, Dickinson MB, Berner RA, Robinson JM, Dietrich M, Essenhigh RH, Wildman CB (2004) Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32:457–460CrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  • Dieter Uhl
    • 1
    • 2
  • André Jasper
    • 3
  • Günter Schweigert
    • 4
  1. 1.Senckenberg Forschungsinstitut und NaturmuseumFrankfurt am MainGermany
  2. 2.Senckenberg Centre for Human Evolution and Palaeoenvironment, Fachbereich GeowissenschaftenUniversität TübingenTübingenGermany
  3. 3.Programa de Pós-Graduação em Ambiente e Desenvolvimento da UNIVATES (PPGAD/UNIVATES)Centro Universitário UnivatesLajeadoBrazil
  4. 4.Staatliches Museum für NaturkundeStuttgartGermany

Personalised recommendations