Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 1, pp 99–117 | Cite as

Taphonomy of neopterygian fishes from the Upper Kimmeridgian Wattendorf Plattenkalk of Southern Germany

  • Patrick Chellouche
  • Franz T. Fürsich
  • Matthias Mäuser
Original Paper


The Upper Kimmeridgian Wattendorf Plattenkalk, the oldest of the Solnhofen-type plattenkalks of southern Germany, has yielded a high number of exceptionally preserved fossils over the past several years. The high number of fossils and the fact that every bedding plane, along which the laminated rocks split, has been equally thoroughly searched for fossils, allow for qualitative as well as quantitative taphonomic investigations. For a quantitative analysis of the Wattendorf lagerstätte, four different taphofacies (A–D) were established by means of euclidean cluster analysis. For this, biostratinomic features of neopterygian fishes, primarily of the genus Tharsis, were recorded. Percentages of the occurrence of these features per layer were determined and clustered into groups of similar patterns. The taphonomic features utilised were bending of the spinal column, completeness, and skeletal articulation. Taphofacies A through D mark a change from a palaeoenvironment with only small extrinsic disturbing factors to a palaeoenvironment characterised by greater disturbance (e.g. bottom currents, fluctuating salinity). At the beginning of plattenkalk deposition, cyclic changes of the palaeoenvironment prevailed with periodic high disturbance, probably caused by storm-induced flows. These events initiated mixing of the supposedly chemically stratified water body. In the upper part of the plattenkalk unit, taphofacies indicative of higher disturbance dominate, suggesting a change from stable to less stable environmental conditions in the plattenkalk basin resulting in disruption of the typical plattenkalk sedimentation. Sporadic oxygenation of bottom waters is also indicated by the style of soft-tissue preservation. Besides typical phosphatisation, a specimen of Palaeohirudo? sp. shows soft-tissue preservation through iron-oxide permineralisation.


Taphofacies Soft-tissue preservation Plattenkalk Kimmeridgian Actinopterygii Wattendorf 



The authors would like to thank T. Bechmann, preparator of the Natural History Museum Bamberg, for sharing his insights into the Wattendorf quarry, the regional geology of northern Bavaria and for his outstanding work on the preparation of the Wattendorf fossils. Furthermore, we would like to thank all the voluntary helpers, who extracted the fossils from the quarry during the excavations. We also want to thank T. Bechmann and A. Weller for their logistic help at the collections of the Natural History Museum, Bamberg. C. Schulbert, FG PaläoUmwelt, GeoZentrum Nordbayern, is thanked for the preparation of the SEM samples and support in the usage of the SEM and EDX device. H. Schorr, owner of the Wattendorf quarry, kindly gave permission for, and logistically supported, the excavations. For fruitful discussions we thank M. Heinze, L. Scharfenberg, and B. Seuß. M. Hethke gave insights into cluster analysis. Last but not least, we acknowledge the constructive reviews of A. Reisdorf, M. Wilson and M. Wuttke.


  1. Allison PA (1988) Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia 21:403–410CrossRefGoogle Scholar
  2. Arratia G (1997) Basal teleosts and teleostean phylogeny. Palaeo-Ichthyologica 7:5–168Google Scholar
  3. Arratia G (2000) Remarkable teleostean fishes from the Late Jurassic of southern Germany and their phylogenetic relationships. Mitt Mus Nat kunde in Berl, Geowiss Reihe 3:137–179Google Scholar
  4. Barthel KW, Swinburne NHM, Conway Morris S (1990) Solnhofen: a study in Mesozoic palaeontology. Cambridge University Press, CambridgeGoogle Scholar
  5. Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Planet Sci Lett 31:275–301CrossRefGoogle Scholar
  6. Briggs DEG, Kear AJ (1993) Fossilization of soft-tissue in the laboratory. Science 259:1439–1442CrossRefGoogle Scholar
  7. Butler I, Grimes S, Rickard D (2000) Pyrite formation in an anoxic chemostatic reaction system. J Conf Abstr 5(2):274–275Google Scholar
  8. Canfield DE, Raiswell R (1991) Pyrite formation and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record, 1st edn. Plenum Press, New York, pp 338–387Google Scholar
  9. Dunham RJ (1962): Classification of carbonate rocks according to depositional texture. Mem - Am Assoc Pet Geol 108-121Google Scholar
  10. Elder RL (1985) Principles of aquatic Taphonomy with examples from the fossil record. Dissertation, University of MichiganGoogle Scholar
  11. Elder RL, Smith GR (1984) Fish taphonomy and paleoecology. Geobios Mém spec 8:287–291CrossRefGoogle Scholar
  12. Elder RL, Smith GR (1988) Fish taphonomy and environmental inference in paleolimnology. Palaeogeogr Palaeoclimatol Palaeoecol 62:577–592CrossRefGoogle Scholar
  13. Embry AF, Klovan JE (1971) A Late Devonian reef tract on Northeastern Banks Island, NWT. Can Pet Geol Bull 19:730–781Google Scholar
  14. Faux CM, Padian K (2007) The opisthotonic posture of vertebrate skeletons: post-mortem contraction or death throes? Paleobiology 33(2):201–226CrossRefGoogle Scholar
  15. Fielding S, Martill DM, Naish D (2005) Solnhofen-style soft-tissue preservation in a new species of turtle from the Crato Formation (Early Cretaceous, Aptian) of north-east Brazil. Palaeontology 48:1301–1310CrossRefGoogle Scholar
  16. Frakes LA, Francis JE, Syktus J (1992) Climate models of the Phanerozoic. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Frickinger KA (1994) The fossils of Solnhofen. Goldschneck Verlag, KorbGoogle Scholar
  18. Frickinger KA (1999) The fossils of Solnhofen 2. Goldschneck Verlag, KorbGoogle Scholar
  19. Fürsich FT, Werner W, Schneider S, Mäuser M (2007a) Sedimentology, taphonomy and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 243:92–117CrossRefGoogle Scholar
  20. Fürsich FT, Mäuser M, Schneider S, Werner W (2007b) The Wattendorf Plattenkalk (Upper Kimmeridgian) – a new conservation lagerstätte from the northern Franconian Alb, southern Germany. Neues Jahrb Geol Pal Abh 245:45–58CrossRefGoogle Scholar
  21. Gardiner BG (1960) A revision of certain actinopterygian and coelacanth fishes, chiefly from the Lower Lias. Bulletin of the British Museum (Natural History). Geology 4(7):241–384Google Scholar
  22. Genten F, Terwinghe E, Danguy A (2009) Atlas of fish histology. Science Publishers, EnfieldCrossRefGoogle Scholar
  23. Granéli E, Carlsson P, Olsson P, Sundström B, Granéli W, Lindahl O (1989) From anoxia to fish poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. Coastal Estuarine Stud 35:407–427Google Scholar
  24. Hammer O, Harper D (2006) Paleontological data analysis. Blackwell Publishing, Malden, p 67Google Scholar
  25. Hegenberger W, Schirmer W (1967) Erläuterungen zur Geologischen Karte von Bayern 1: 25000. Blatt Nr. 5932 Ützing, Bayerisches Geologisches Landesamt, MünchenGoogle Scholar
  26. Koch R, Weiss C (2005) Basin-platform transitions in Upper Jurassic limestones and dolomites of the northern Franconian Alb (Germany). Zitteliana 26:43–56Google Scholar
  27. Kozur H (1970) Fossile Hirudinea aus dem Oberjura von Bayern. Lethaia 3:225–232CrossRefGoogle Scholar
  28. Leng Q, Yang H (2003) Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization. Prog Nat Sci 13:206–212Google Scholar
  29. Lucas J, Prévôt LE (1991) Phosphates and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record, 1st edn. Plenum Press, New York, pp 389–409Google Scholar
  30. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, CambridgeGoogle Scholar
  31. Martill DM (1993) Fossils of the Santana and Crato formations, Brazil. The Palaeontological Association, LondonGoogle Scholar
  32. Martill DM, Wilby PR, Williams N (1992) Element mapping: a technique for investigating delicate phosphatised fossil soft tissues. Palaeontology 35:869–874Google Scholar
  33. Mäuser M (2008) Frankenland am Jurastrand: Versteinerte Schätze aus der Wattendorfer Lagune. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  34. Mayr FX (1967) Paläobiologie und Stratinomie der Plattenkalke der Altmühlalb. Erlanger Geol Abh 67:1–40Google Scholar
  35. Moodie RL (1918) Studies in paleopathology III: Opisthotonus and allied phenomena among fossil vertebrates. Am Nat 52:384–394CrossRefGoogle Scholar
  36. Moodie RL (1923) Paleopathology: an introduction to the study of ancient evidences of disease. University of Illinois Press, UrbanaGoogle Scholar
  37. Nixon SW (1989) An extraordinary red tide and fish kill in Narragansett Bay. Coast Estuar Stud 35:429–447Google Scholar
  38. Orr PJ, Kearns SL, Briggs DEG (2009) Elemental mapping of exceptionally preserved ‘carbonaceous compression’ fossils. Palaeogeogr Palaeoclimatol Palaeoecol 277:1–8CrossRefGoogle Scholar
  39. Poyato-Ariza FJ (1993) "Leptolepid"-like fish from the Lower Cretaceous of Spain; a preliminary approach. J Vertebr Paleontol 13:53Google Scholar
  40. Rickard D (1999) A pyrite grand unified theory. Proceedings of 9th annual V. M. Goldschmidt conference. LPI Contribution Series 971:246Google Scholar
  41. Schäfer W (1972) Ecology and palaeoecology of marine environments. University of Chicago Press, ChicagoGoogle Scholar
  42. Schirmer W (2000) Exkursion 6 - Jura am Obermain. Terra Nostra 00/4:98–119Google Scholar
  43. Schmid DU, Leinfelder RR, Schweigert G (2005) Stratigraphy and palaeoenvironments of the Upper Jurassic of Southern Germany – a review. Zitteliana B26:31–41Google Scholar
  44. Schweigert G (2005) Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany - First results and open questions. Zitteliana 26:22Google Scholar
  45. Seilacher A, Reif WE, Westphal F (1985) Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos Trans R Soc Lond B 311:5–23CrossRefGoogle Scholar
  46. Viohl G (1994) Fish taphonomy of the Solnhofen Plattenkalk – an approach to the reconstruction of the palaeoenvironment. Geobios 16:81–90CrossRefGoogle Scholar
  47. von Gümbel CW (1891) Geognostische Beschreibung der Fränkischen Alb (Frankenjura) mit dem anstossenden Fränkischen Keupergebiete. Theodor Fischer, KasselGoogle Scholar
  48. Weigelt J (1927) Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung, Third edition 1999. M. Weg, LeipzigGoogle Scholar
  49. Weiler W (1929) Über das Vorkommen isolierter Köpfe bei fossilen Clupeiden. Senckenbergiana 11:40–47Google Scholar
  50. Whitmore JH (2003) Experimental fish Taphonomy with a comparison to fossil fishes. Dissertation, Loma Linda UniversityGoogle Scholar
  51. Wilby PR, Briggs DEG, Bernier P, Gaillard C (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790CrossRefGoogle Scholar
  52. Wilby, PR, Briggs DEG, Viohl, G (1995) Controls on the phosphatization of soft tissues in plattenkalks. 2nd International Symposium on Lithographic Limestones, Ext Abstr: 165-166Google Scholar
  53. Woodward AS (1919) The fossil fishes of the English Wealden and Purbeck Formations, Part III. Palaeontogr Soc, Lond Monogr 1917:105–148Google Scholar
  54. Yesares-García J, Aguirre J (2004) Quantitative taphonomic analysis and taphofacies in lower Pliocene temperate carbonate-siliciclastic mixed platform deposits (Almería-Níjar basin, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 207:83–103CrossRefGoogle Scholar
  55. Zeiss A (1962) Zur Stratigraphie des Untertithon der südl. Frankenalb. Prétage, Colloque du Jurassique Luxemburg 1962 pp 619–627Google Scholar
  56. Zeiss A (1966) Biostratigraphische Auswertung von Ammonitenaufsammlungen im Profil des Malm Alpha und Beta am Feuerstein bei Ebermannstadt/ Ofr. Erlanger Geol Abh 62:104–111Google Scholar
  57. Zeiss A (1977) Jurassic stratigraphy of Franconia. Stuttg Beitr Natkd B 31:1–32Google Scholar
  58. Ziegler PA (1990) Geological atlas of Western and Central Europe. 2nd ed. Shell Intern. Petrol. Maatschappij B.V.Google Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  • Patrick Chellouche
    • 1
  • Franz T. Fürsich
    • 1
  • Matthias Mäuser
    • 1
    • 2
  1. 1.GeoZentrum Nordbayern, Fachgruppe PaläoUmweltFAU Erlangen-NürnbergErlangenGermany
  2. 2.Naturkunde-Museum BambergBambergGermany

Personalised recommendations