Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 1, pp 83–98 | Cite as

Float or sink: modelling the taphonomic pathway of marine crocodiles (Mesoeucrocodylia, Thalattosuchia) during the death–burial interval

  • Susan R. Beardmore
  • Patrick J. Orr
  • Tom Manzocchi
  • Heinz Furrer
Original Paper


A taphonomic model is erected for a dataset of 19 Steneosaurus (Mesoeucrocodylia; Thalattosuchia) from the Toarcian Posidonienschiefer Formation (Lower Jurassic) of Germany. These were deposited in a quiet-water, marine, basin. Their taphonomy is compared with that of an additional seven thalattosuchians from other Jurassic localities (Peterborough and Yorkshire, UK; Nusplingen, Germany). The skeletal taphonomy of the specimens is assessed in terms of the articulation and completeness of nine skeletal units. Steneosaurus from the Posidonienschiefer Formation exhibit variable levels of articulation in the nine units. Completeness also varies but the head, neck and dorsal units are complete in all specimens. Carcasses reached the sediment–water interface shortly after death. Loss of fidelity occurred primarily as individuals lay on the sediment, and disarticulated elements tended to remain in the vicinity of the carcass. Those elements absent from specimens are the smaller, more distal, bones of the limbs and tail; these were removed preferentially by weak bottom currents. Smaller specimens are consistently less complete. Specimens from other localities broadly follow the same taphonomic pathway, suggesting a consistent pattern for the skeletal taphonomy of the carcasses of marine crocodiles. Loss of completeness in some specimens is more exacerbated, the result of stronger current activity at the sediment–water interface.


Marine crocodiles Articulation Completeness Skeletal taphonomy 



The authors thank Dr. Michael Maisch (Eberhard Karls University, Tübingen), Dr. David Eberth (Royal Tyrrell Museum, Drumheller, AB), as well as the guest editors Dr. Michael Wuttke (Generaldirektion Kulturelles Erbe Rheinland-Pfalz, Mainz) and Achim Reisdorf (University Basel) for their reviews of the manuscript. We also thank Dr. Rainer Schoch (Staatliches Museum für Naturkunde, Stuttgart), Philipe Havlik (Geologisches Institut für Palaetologisches, Tübingen) and Sandra Chapman (Natural History Museum, London, UK) for access to specimens. Thanks go to Gordon Walkden (University of Aberdeen) for providing details of the Yorkshire Steneosaurus specimen. The project was funded by the Irish Research Council for Science, Engineering and Technology (IRCSET).


  1. Beardmore SR, Orr PJ, Furrer H (2011) Morphology and environment: skeletal taphonomy of marine reptiles from Monte San Giorgio, Switzerland (Abstract). 6th International Meeting on Taphonomy and Fossilization, Tübingen, GermanyGoogle Scholar
  2. Beardmore SR, Orr PJ, Manzocchi T, Furrer H, Johnson C (in press) Death, decay and disarticulation: a method of modelling the skeletal taphonomy of marine reptiles demonstrated using Serpianosaurus (Reptilia; Sauropterygia). Palaeogeogr, Palaeoclimatol, PalaeoecolGoogle Scholar
  3. Behrensmeyer AK, Kidwell SM (1985) Taphonomy’s contribution to palaeobiology. Palaeobiology 11:105–119Google Scholar
  4. Bloos G, Dietl G, Schweigert G (2005) Der Jura Süddeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newslett Stratigr 41:263–277CrossRefGoogle Scholar
  5. Brandt DS (1989) Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. Palaios 4:303–309CrossRefGoogle Scholar
  6. Brett CE, Baird GC (1986) Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207–227CrossRefGoogle Scholar
  7. Briggs DEG (1995) Experimental taphonomy. Palaios 10:539–550CrossRefGoogle Scholar
  8. Caswell BA, Coe AL, Cohen AS (2009) New range data for marine invertebrate species across the early Toarcian (Early Jurassic) Mass extinction. J Geol Soc 162:859–872CrossRefGoogle Scholar
  9. Dietl G, Schweigert G (2001) Im Reich der Meerengel – Fossilien aus dem Nusplinger Plattenkalk. Friedrich Pfeil, MunichGoogle Scholar
  10. Efremov JA (1940) Taphonomy: a new branch of paleontology. Pan-Am Geol 74:81–93Google Scholar
  11. Etter W, Tang CM (2002) Posidonia Shale: Germany’s Jurassic marine Park. In: Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) Exceptional fossil evolution: A unique view on the evolution of marine life. Columbia University Press, New York, pp 265–291Google Scholar
  12. Forrest R (2003) Evidence for scavenging by the marine crocodile Metriorhynchus on the carcass of a plesiosaur. Proceedings of the Geologists’ association 114:363–366CrossRefGoogle Scholar
  13. Grange DR, Benton MJ (1996) Kimmeridgian Metriorhynchid crocodiles from England. Palaeontology 39:497–514Google Scholar
  14. Geyer M, Nitsch E, Simon T (2011) Geologie von Baden-Württemberg. 5., completely revised edition, Schweizerbart, StuttgartGoogle Scholar
  15. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4.
  16. Hauff RB (1997) Urwelt-Museum Hauff. Leben in Jurameer, Urwelt-Museum Hauff, HolzmadenGoogle Scholar
  17. Hofmann J (1958) Einbettung und Zerfall der Ichthyosaurier im Lias von Holzmaden. Meyniana 6:10–55Google Scholar
  18. Kauffman EG (1981) Ecolocial Reappraisal of the German Posidonienschiefer and the Stagnant Basin Model. In: Gray J, Boucot AJ, Berry WBN (eds) Communities of the Past. Hutchinson Ross, Stroudsburg, pp 311–381Google Scholar
  19. Kemp RA, Unwin DM (1997) The skeletal taphonomy of Archaeopteryx: a quantitative approach. Lethaia 30:229–238CrossRefGoogle Scholar
  20. Martill DM (1993) Soupy Substrates: A Medium for the Exceptional Preservation of Ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia. Darmstädter Beitr Naturgesch 2:77–97, DarmstadtGoogle Scholar
  21. Martill DM, Taylor MA, Duff KL, Riding JB, Brown PR (1994) The tropic structure of the biota of the Peterborough Member of the Oxford Clay Formation (Jurassic), UK. J Geol Soc Lond 151:173–194Google Scholar
  22. Massare JA (1987) Tooth morphology and prey preference of Mesozoic marine reptiles. J Vert Paleont 7:121–137CrossRefGoogle Scholar
  23. McNamara ME, Orr PJ, Kearns SL, Alcalá L, Anadón P, Peñalver Mollá E (2009) Soft-tissue preservation in Miocene frogs from Libros, Spain: insights into the genesis of decay environments. Palaios 24:104–177CrossRefGoogle Scholar
  24. Mook CC (1934) The evolution and classification of the Crocodylia. J Geol 42:295–304CrossRefGoogle Scholar
  25. Mueller-Töwe IJ (2005) Phylogenetic relationships of the Thalattosuchia. Zitteliana A 45:211–213Google Scholar
  26. Mueller-Töwe IJ (2006) Anatomy, phylogeny and palaeoecology of basal thalattosuchians (Mesoeucrocodylia) from the Liassic of Central Europe. PhD thesis, Universität Mainz, MainzGoogle Scholar
  27. Nebelsick JH, Friedrich J-P, Dynowski JF, Schweigert G, Schmid-Röhl A (2011) Taphos Excursion Guide. 6th International meeting on Taphonomy and Fossilisation, Tübingen, GermanyGoogle Scholar
  28. Pierce SE, Angielczyk KD, Rayfield EJ (2009) Shape and mechanics of thalattosuchian (Crocodylomrpha) skulls: implications for feeding behaviour and niche partitioning. J Anat 215:555–576CrossRefGoogle Scholar
  29. Rauhut OWM, Lopez-Arbarello A (2008) Archosaur evolution during the Jurassic: a southern perspective. Rev Asoc Geol Argentina 63:557–585Google Scholar
  30. Röhl HJ, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52CrossRefGoogle Scholar
  31. Röhl H-J, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the SW German Posidonia Shale. SEPM Spec Publ 82:165–189Google Scholar
  32. Sander PM (1989) The Pachypleurosaurids (Reptilia; Nothosaurier) from the Middle Triassic of Monte San Giorgio (Switzerland) with the description of a new species. Philos Trans R Soc Lond B 325:561–666CrossRefGoogle Scholar
  33. Schäfer W (1972) Ecology and palaeoecology of marine environments. University of Chicago Press, ChicagoGoogle Scholar
  34. Schmid DU, Leinfelder RR, Schweigert G (2008) Jurassic. In McCann T (eds.) The Geology of Central Europe Volume 2: Mesozoic and Cenozoic. Geol Soc of London, pp 823–922Google Scholar
  35. Schweigert G (2007) Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany - first results and open questions. N Jb Geol Paläont Abh 245:117–125CrossRefGoogle Scholar
  36. Seilacher A, Reif WE, Westphal F (1985) Sedimentological, ecological and temporal patterns of fossil Lägerstatte. Philos Trans R Soc Lond B 311:5–23CrossRefGoogle Scholar
  37. Walkden GM, Fraser NC, Muir J (1987) A new specimen of Steneosaurus (Mesosuchia, Crocodilia) from the Toarcian of the Yorkshire Coast. Proc Yorks Geol Soc 46:279–287CrossRefGoogle Scholar
  38. Wilkinson LE, Young MT, Benton MJ (2008) A new metriorhynchid crocodilian (Mesoeucrocodylia: Thalattosuchia) from the Kimmeridgian (Upper Jurassic) of Wiltshire, UK. Palaeontology 51:1307–1333CrossRefGoogle Scholar
  39. Young MT, Brusatte SL, Ruta M, Brandalese De Andrade M (2010) The evolution of Metriorhynchoidea (Mesoeucrocodylia; Thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zool J Linn Soc 158:801–859CrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  • Susan R. Beardmore
    • 1
  • Patrick J. Orr
    • 1
  • Tom Manzocchi
    • 1
  • Heinz Furrer
    • 2
  1. 1.UCD School of Geological SciencesUniversity College DublinDublin 4Ireland
  2. 2.Paläontologisches Institut und Museum der Universität, ZürichZürichSwitzerland

Personalised recommendations