Palaeobiodiversity and Palaeoenvironments

, Volume 91, Issue 4, pp 325–333 | Cite as

Two-phase extinction of “Southern Hemispheric” birds in the Cenozoic of Europe and the origin of the Neotropic avifauna

Original Paper

Abstract

A considerable number of fossil birds from the Cenozoic of Europe belong to taxa whose extant representatives are only found in the Southern Hemisphere. This study presents the first detailed analysis of the stratigraphic occurrences of these groups. Two well-separated extinction phases can be distinguished: one in the Paleogene, which concerned birds with crown group representatives in South America, Madagascar and Australia, and the second in the Miocene, which involved taxa that are today found in Africa or have a pantropic distribution. It is hypothesised that this unusual pattern is the result of a successive action of biotic and abiotic factors. South America was least affected by both extinction phases and served as a refugium for bird groups, which had a more widespread distribution in the Paleogene.

Keywords

Biogeography Fossil birds Climatic cooling Grande coupure 

References

  1. Alvarenga HMF (1985) Notas sobre os Cathartidae (Aves) e descriçâo de um novo gênero do Cenozoico brasileiro. An Acad Bras Cienc 57:349–357Google Scholar
  2. Ballmann P (1969a) Les oiseaux miocènes de La Grive-Saint-Alban (Isère). Geobios 2:157–204CrossRefGoogle Scholar
  3. Ballmann P (1969b) Die Vögel aus der altburdigalen Spaltenfüllung von Wintershof (West) bei Eichstätt in Bayern. Zitteliana 1:5–60Google Scholar
  4. Ballmann P (1970) Ein neuer Vertreter der Musophagidae (Aves) aus dem Chattien von Gaimersheim bei Ingolstadt (Bayern). Mitt Bayer Staatsslg Paläontol Hist Geol 10:271–275Google Scholar
  5. Ballmann P (1972) Les oiseaux miocènes de Vieux-Collonges (Rhône). Doc Lab Géol Fac Sci Lyon 50:94–101Google Scholar
  6. Ballmann P (1983) A new species of fossil barbet (Aves: Piciformes) from the Middle Miocene of the Nördlinger Ries (Southern Germany). J Vertebr Paleontol 3:43–48CrossRefGoogle Scholar
  7. Becker JJ (1986) A fossil motmot (Aves: Momotidae) from the late Miocene of Florida. Condor 88:478–482CrossRefGoogle Scholar
  8. Blondel J, Mourer-Chauviré C (1998) Evolution and history of the western Palaearctic avifauna. Trends Ecol Evol 13:488–492CrossRefGoogle Scholar
  9. Boev Z, Kovachev D (2007) Euroceros bulgaricus gen. nov., sp. nov. from Hadzhidimovo (SW Bulgaria) (Late Miocene—the first European record of hornbills (Aves: Coraciiformes). Geobios 40:39–49CrossRefGoogle Scholar
  10. Böhme M (2003) The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401CrossRefGoogle Scholar
  11. Brodkorb P (1967) Catalogue of fossil birds. Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes). Bull Fla State Mus Biol Sci 11:99–220Google Scholar
  12. Brodkorb P (1971) Catalogue of fossil birds. Part 4 (Columbiformes through Piciformes). Bull Fla State Mus Biol Sci 15:163–266Google Scholar
  13. Brunet J (1971) Oiseaux miocènes de Beni Mellal (Maroc); un complément à leur étude. Notes Mém Serv Géol (Maroc) 31:109–111Google Scholar
  14. Cheneval J (2000) L’avifaune de Sansan. In: Ginsburg L (ed) La faune miocène de Sansan et son environnement. Mem Mus Nat Hist Nat 183:321–388Google Scholar
  15. Cracraft J (2001) Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proc Roy Soc Lond B 268:459–469CrossRefGoogle Scholar
  16. Daxner-Höck G (2004) Pseudocollimys steiningeri nov. gen. nov. spec. (Cricetidae, Rodentia, Mammalia) aus dem Ober-Miozän der Molassezone Oberösterreichs. Cour Forsch-Inst Senckenberg 246:1–13Google Scholar
  17. Dickinson EC (2003) The Howard and Moore complete checklist of the birds of the world, 3rd edn. Princeton University Press, PrincetonGoogle Scholar
  18. Feduccia A, Voorhies MR (1992) Crowned cranes (Gruidae: Balearica) in the Miocene of Nebraska. In: Campbell KE (ed) Papers in avian paleontology honoring Pierce Brodkorb. Nat Hist Mus Los Angeles Cty Sci Ser 36:239–248Google Scholar
  19. Galetti M, Bovendorp RS, Fadini RF, Gussoni COA, Rodrigues M, Alvarez AD, Guimarães PR Jr, Kaiser A (2009) Hyper abundant mesopredators and bird extinction in an Atlantic forest island. Zoologia 26:288–298Google Scholar
  20. Hawkins BA, Diniz-Filho JAF, Jaramillo CA, Soeller SA (2006) Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J Biogeogr 33:770–780CrossRefGoogle Scholar
  21. Hooker JJ (2010) The ‘Grande Coupure’ in the Hampshire Basin, UK: taxonomy and stratigraphy of the mammals on either side of this major Palaeogene faunal turnover. In: Whittaker JE, Hart MB (eds) Micropalaeontology, sedimentary environments and stratigraphy: a tribute to Dennis Curry (1912–2001). Micropalaeontol Soc Spec Publ, pp 147–215Google Scholar
  22. Ksepka D, Clarke JA (2009) Affinities of Palaeospiza bella and the phylogeny and biogeography of Mousebirds (Coliiformes). Auk 126:245–259CrossRefGoogle Scholar
  23. Ksepka D, Clarke JA (2010a) New fossil mousebird (Aves: Coliiformes) with feather preservation provides insight into the ecological diversity of an Eocene North American avifauna. Zool J Linn Soc 160:685–706CrossRefGoogle Scholar
  24. Ksepka D, Clarke JA (2010b) Primobucco mcgrewi (Aves: Coracii) from the Eocene Green River Formation: new anatomical data from the earliest constrained record of stem rollers. J Vertebr Paleontol 30:215–225CrossRefGoogle Scholar
  25. Legendre S, Lévêque F (1997) Etalonnage de l’échelle biochronologique mammalienne du Paléogène d’Europe occidentale: vers une intégration à l’échelle globale. In: Aguilar J-P, Legendre S, Michaux J (eds) Actes du Congrès BiochroM’97. Mém Trav EPHE Inst Montpellier 21:461–473Google Scholar
  26. Lindow BEK, Dyke GJ (2006) Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna. Biol Rev 81:483–499CrossRefGoogle Scholar
  27. Manegold A (2008) Passerine diversity in the late Oligocene of Germany: earliest evidence for the sympatric coexistence of Suboscines and Oscines. Ibis 150:377–387CrossRefGoogle Scholar
  28. Martin LD (2010) Paleogene avifauna of the Holarctic. Vertebr Palasiat 48:367–374Google Scholar
  29. Mayr G (2002) Avian Remains from the Middle Eocene of the Geiseltal (Sachsen-Anhalt, Germany). In: Zhou Z, Zhang F (eds) Proc 5th Symp Soc Avian Paleontology and Evolution. Science Press, Beijing, pp 77–96Google Scholar
  30. Mayr G (2005) A tiny barbet-like bird from the Lower Oligocene of Germany: the smallest species and earliest substantial fossil record of the Pici (woodpeckers and allies). Auk 122:1055–1063CrossRefGoogle Scholar
  31. Mayr G (2008) The Madagascan “cuckoo-roller” (Aves: Leptosomidae) is not a roller—notes on the phylogenetic affinities and evolutionary history of a “living fossil”. Acta Ornithol 43:226–230CrossRefGoogle Scholar
  32. Mayr G (2009a) Paleogene fossil birds. Springer, HeidelbergCrossRefGoogle Scholar
  33. Mayr G (2009b) A well-preserved second trogon skeleton (Aves, Trogonidae) from the middle Eocene of Messel, Germany. Palaeobio Palaeoenv 89:1–6CrossRefGoogle Scholar
  34. Mayr G (2010) Mousebirds (Coliiformes), parrots (Psittaciformes), and other small birds from the late Oligocene/early Miocene of the Mainz Basin, Germany. N Jb Geol Paläont Abh 258:129–144CrossRefGoogle Scholar
  35. Mayr G, Daniels M (1998) Eocene parrots from Messel (Hessen, Germany) and the London Clay of Walton-on-the-Naze (Essex, England). Senck leth 78:157–177CrossRefGoogle Scholar
  36. Mayr G, Göhlich U (2004) A new parrot from the Miocene of Germany, with comments on the variation of hypotarsus morphology in some Psittaciformes. Belg J Zool 134:47–54Google Scholar
  37. Mayr G, Manegold A (2006) A small suboscine-like passeriform bird from the early Oligocene of France. Condor 108:717–720CrossRefGoogle Scholar
  38. Mayr G, Micklich N (2010) New specimens of the avian taxa Eurotrochilus (Trochilidae) and Palaeotodus (Todidae) from the early Oligocene of Germany. Paläontol Z 84:387–395CrossRefGoogle Scholar
  39. Milne-Edwards A (1867–71) Recherches anatomiques et paléontologiques pour servir à l’histoire des oiseaux fossiles de la France. Victor Masson et fils, ParisGoogle Scholar
  40. Mlíkovský J (2002) Cenozoic birds of the world. Part 1: Europe. Ninox Press, PragueGoogle Scholar
  41. Morlo M, Schaal S, Mayr G, Seiffert C (2004) An annotated taxonomic list of the Middle Eocene (MP 11) vertebrata of Messel. Cour Forsch-Inst Senckenberg 252:95–108Google Scholar
  42. Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. Proc Natl Acad Sci USA 102:14964–14969CrossRefGoogle Scholar
  43. Mourer-Chauviré C (1982) Les oiseaux fossiles des Phosphorites du Quercy (Eocène supérieur à Oligocène supérieur): implications paléobiogéographiques. Geobios Mem Spec 6:413–426CrossRefGoogle Scholar
  44. Mourer-Chauviré C (1983) Les Gruiformes (Aves) des Phosphorites du Quercy (France). 1. Sous-ordre Cariamae (Cariamidae et Phorusrhacidae). Systématique et biostratigraphie. Palaeovertebrata 13:83–143Google Scholar
  45. Mourer-Chauviré C (1999) Les relations entre les avifaunes du Tertiaire inférieur d’Europe et d’Amérique du Sud. Bull Soc Géol France 170:85–90Google Scholar
  46. Mourer-Chauviré C (2001) The systematic position of the genus Basityto Mlikovsky, 1998 (Aves: Gruiformes: Gruidae). Proc Biol Soc Washington 114:964–971Google Scholar
  47. Mourer-Chauviré C (2002) Revision of the Cathartidae (Aves, Ciconiiformes) from the Middle Eocene to the Upper Oligocene Phosphorites du Quercy, France. In: Zhou Z, Zhang F (eds) Proc 5th Symp Soc Avian Paleontology and Evolution. Science Press, Beijing, pp 97–111Google Scholar
  48. Mourer-Chauviré C (2006) The avifauna of the Eocene and Oligocene Phosphorites du Quercy (France): an updated list. Strata sér 1 Commun 13:135–149Google Scholar
  49. Mourer-Chauviré C, Cheneval J (1983) Les Sagittariidae fossiles (Aves, Accipitriformes) de l’Oligocène des Phosphorites du Quercy et du Miocène inférieur du Saint-Gérand-le-Puy. Geobios 16:443–459CrossRefGoogle Scholar
  50. Mourer-Chauviré C, Sigé B (2006) Une nouvelle espèce de Jungornis (Aves, Apodiformes) et de nouvelles formes de Coraciiformes s.s. dans l’Éocène supérieur du Quercy. Strata ser Commun 1 13:151–159Google Scholar
  51. Mourer-Chauviré C, Senut B, Pickford M, Mein P (1996) Le plus ancien représentant du genre Struthio (Aves, Struthionidae), Struthio coppensi n. sp., du Miocène inférieur de Namibie. CR Acad Sci Paris 322:325–332Google Scholar
  52. Mourer-Chauviré C, Berthet D, Hugueney M (2004) The late Oligocene birds of the Créchy quarry (Allier, France), with a description of two new genera (Aves: Pelecaniformes: Phalacrocoracidae, and Anseriformes: Anseranatidae). Senck leth 84:303–315CrossRefGoogle Scholar
  53. Olson SL (1976) Oligocene fossils bearing on the origins of the Todidae and the Momotidae (Aves: Coraciiformes). Smiths Contrib Paleobiol 27:111–119Google Scholar
  54. Olson SL (1985) The fossil record of birds. In: Farner DS, King JR, Parkes KC (eds) Avian Biology, vol 8. Academic Press, New York, pp 79–238Google Scholar
  55. Olson SL (1987) An early Eocene oilbird from the Green River Formation of Wyoming (Caprimulgiformes: Steatornithidae). Doc Lab Géol Lyon 99:57–69Google Scholar
  56. Olson SL (1989) Aspects of global avifaunal dynamics during the Cenozoic. In: Ouellet H (ed) Acta XIX Congressus Internationalis Ornithologici. University of Ottawa Press, Ottawa, pp 2023–2029Google Scholar
  57. Olson SL (1999) The anseriform relationships of Anatalavis Olson and Parris (Anseranatidae), with a new species from the Lower Eocene London Clay. In: Olson SL (ed) Avian paleontology at the close of the 20th Century: Proc 4th Int Meeting of the Society of Avian Paleontology and Evolution. Smithson Contrib Paleobiol 89:231–243Google Scholar
  58. Olson SL (2001) Why so many kinds of passerine birds? Bioscience 51:268–269CrossRefGoogle Scholar
  59. Rasmussen DT, Olson SL, Simons EL (1987) Fossil birds from the Oligocene Jebel Qatrani Formation, Fayum Province, Egypt. Smithson Contrib Paleobiol 62:1–20Google Scholar
  60. Rose KD (2006) The beginning of the age of mammals. Johns Hopkins University Press, BaltimoreGoogle Scholar
  61. Sieving KE (1992) Nest predation and differential insular extinction among selected forest birds of Central Panama. Ecology 73:2310–2328CrossRefGoogle Scholar
  62. Smith AG, Smith DG, Funnell BM (1994) Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, CambridgeGoogle Scholar
  63. Wanless RM, Angel A, Cuthbert RJ, Hilton GM, Ryan PG (2007) Can predation by invasive mice drive seabird extinctions? Biol Lett 3:241–244CrossRefGoogle Scholar
  64. Weidig I (2010) New birds from the Lower Eocene Green River Formation, North America. In: Boles WE, Worthy TH (eds) Proc 7th Int Meet Soc Avian Paleontology and Evolution. Rec Austr Mus 62:29–44CrossRefGoogle Scholar
  65. Worthy TH, Scanlon (2009) An Oligo-Miocene Magpie Goose (Aves: Anseranatidae) from Riversleigh, Northwestern Queensland, Australia. J Vertebr Paleontol 29:205–211CrossRefGoogle Scholar
  66. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2011

Authors and Affiliations

  1. 1.Sektion OrnithologieSenckenberg Forschungsinstitut und Naturmuseum FrankfurtFrankfurt am MainGermany

Personalised recommendations