Palaeobiodiversity and Palaeoenvironments

, Volume 90, Issue 3, pp 215–240 | Cite as

A high-resolution three-dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou Formation, Junggar Basin, Northwest China)

  • Juliane K HinzEmail author
  • Ian Smith
  • Hans-Ulrich Pfretzschner
  • Oliver Wings
  • Ge Sun
Original Paper


This study focuses on the three-dimensional (3D) reconstruction of an Late Jurassic fossil forest based on a fossil assemblage located in the Shishugou Formation near Jiangjunmiao, north-eastern Junggar Basin, Xinjiang Uygur Autonomous Region, Northwest China. On the basis of tree stumps found in growth position together with published data on megaplant fossils, seeds and spores, a high-resolution digital computer model, including different forest layers, was developed. In a study area of 31,500 m², 65 tree stumps with diameters between 0.2 and 2.9 m were mapped and subsequently used for the 3D reconstruction. The forest grew under moist conditions, probably close to the banks of an anastomosing river and consisted primarily of conifers, in particular Araucariaceae. Even though the tree density of the forest is only 22 trees/ha, the 3D reconstruction indicates a relatively closed canopy. Megaplant fossils and spores also show evidence for the presence of Angiopteris, Osmunda and Coniopteris, which were then used to reconstruct the understory of the forest. The trees were modelled in three different growth stages, representing young, older and mature trees, respectively. The growth parameters of individual trees and ferns were randomized in order to avoid duplications within the reconstruction. Detailed textures of leaves, fronds and bark were created to give the plants a more realistic appearance than that in previously published 3D reconstructions of fossil forest assemblages. Estimations of net biomass (approximately 9 tons/ha), annual biomass production and a calculation of nearest neighbour index (0.86) suggest an open forest with spatially distributed trees.


Araucaria Three-dimensional reconstruction Biomass estimation Junggar Basin Fossil forest 



Our thanks go to all the staff members of the Geological Survey No. 1 of Xinjiang, Urumqi, as well as to the colleagues of Nanjing, Beijing and Tübingen for their invaluable support during the field work, logistics and organization. We would also like to thank the Deutsche Forschungsgemeinschaft for financially supporting our field trip to China. Furthermore, we would like to thank the reviewers, especially Dr. D. Uhl for their comments and their constructive proposals, which helped to refine this publication. Special thanks also goes to Dr. W. Joyce for his help.


  1. Allen MB, Windley BF, Zhang C (1993) Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 220:89–115CrossRefGoogle Scholar
  2. Archibald S, Bond WJ (2003) Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102:3–14CrossRefGoogle Scholar
  3. Ashraf AR, Sun G, Wang X, Uhl D, Li C, Mosbrugger V (1999) The Triassic-Jurassic boundary in the Junggar basin (NW-China)—Preliminary palynostratigraphic results. Acta Palaeobot Suppl 2:85–91Google Scholar
  4. Ashraf RA, Sun Y-W, Sun G, Uhl D, Mosbrugger V, Li J, Herrmann M (2010) Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China - a review and additional lithological data. In: Martin T, Sun G, Mosbrugger V (eds) Triassic-Jurassic biodiversity, ecosystems, and climate in the Junggar Basin, Xinjiang, Northwest China. Palaeobio Palaeoenv 90(3). doi: 10.1007/s12549-010-0034-0
  5. Bamford MK, Philippe M (2001) Jurassic-Early Cretaceous Gondwanan homoxylous woods: a nomenclatural revision of the genera with taxonomic notes. Rev Palaeobot Palynol 113:287–297CrossRefGoogle Scholar
  6. Carder AC (1995) Forest giants of the world: past and present. Fitzhenry and Whiteside, MarkhamGoogle Scholar
  7. Collinson ME (2002) The ecology of Cainozoic ferns. Rev Palaeobot Palynol 119:51–68CrossRefGoogle Scholar
  8. Currie PJ, Zhao X-J (1993) A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Can J Earth Sci 30:2037–2081CrossRefGoogle Scholar
  9. Daviero V, Lecoustre R (2000) Computer simulation of sphenopsid architecture. Part II. Calamites multiramis Weiss, as an example of Late Paleozoic arborescent Sphenopsids. Rev Palaeobot Palynol 109:135–148CrossRefGoogle Scholar
  10. Daviero V, Meyer-Berthaud B, Lecoustre R (2000) Computer simulation of sphenopsid architecture. I. Principles and methodology. Rev Palaeobot Palynol 109:121–134CrossRefGoogle Scholar
  11. de Laubenfels DJ (1988) Coniferales. Flora Malesiana 10:337–453Google Scholar
  12. Dettmann ME, Clifford HT (2005) Biogeography of Araucariaceae. In: Dargavel J (ed) Araucarian forests. Australian Forest History Society, Kingston, pp 1–9Google Scholar
  13. Deussen O (2003) Regelbasierte Objekterzeugung. In: (ed) Computergenerierte Pflanzen—Technik und Design digitaler Pflanzenwelten. Springer, Heidelberg, pp 93–119Google Scholar
  14. Dice LR (1952) Measure of the spacing between individuals within a population. Contrib Lab Vert Biol Univ Mich 55:1–23Google Scholar
  15. Dong Z-M (1992) Dinosaurian faunas of China. Springer, Berlin and HeidelbergGoogle Scholar
  16. Eberth DA, Brinkman DB, Chen P-J, Yuan F-T, Wu S-Z, Li G, Cheng X-S (2001) Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil preservation in Jurassic-Cretaceous strata of the Junggar Basin, Xinjiang Autonomous Region, People's Republic of China. Can J Earth Sci 38:1627–1644CrossRefGoogle Scholar
  17. Ebner M (2005) Entwicklung eines Monitoringverfahrens auf pollenanalytischer Basis zur Charakterisierung ökologischer Einheiten im Bereich der südbrasilianischen Mata Atlântica und Rekonstruktion der Vegetationsgeschichte des Pró-Mata Gebietes. PhD thesis. Eberhard-Karls-Universität, TübingenGoogle Scholar
  18. Greuter W, McNeill J, Barrie FR, Burdet HM, Demoulin V, Filgueiras TS, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL (2000) International Code of Botanical Nomenclature (Saint Louis Code) adopted by the 16th Int Bot Congress. Koeltz Scientific Books, KönigsteinGoogle Scholar
  19. Hartig T (1848) Beiträge zur Geschichte der Pflanzen und zur Kenntniss der norddeutschen Braunkohlen-Flora. Bot Zeit 6:122–128, 137–141, 166–172,185–190Google Scholar
  20. Iwasa Y, Cohen D, Leon JA (1985) Tree height and crown shape, as results of competitive games. J Theor Biol 112:279–297CrossRefGoogle Scholar
  21. Keller AM, Hendrix MS (1997) Paleoclimatologic analysis of a Late Jurassic petrified forest, southeastern Mongolia. Palaios 12:282–291CrossRefGoogle Scholar
  22. Korall P, Pryer KM, Metzgar JS, Schneider H, Conant DS (2006) Tree ferns: Monophyletic groups and their relationships as revealed by four protein-coding loci. Mol Phylogenet Evol 39:830–845CrossRefGoogle Scholar
  23. Kraus G (1870) Bois Fossiles de Conifères. In: Schimper WP (ed) Traité de Paléontologie Végetale, Baillière et fils, Strasbourg, pp 363–385Google Scholar
  24. Lee KY (1985) Geology of the petroleum and coal deposits in the Junggar (Zhungaer) Basin, Xinjiang Uygur Zizhiqu, Northwest China. USGS Open-File Report. National Academy Press, Washington D.C., pp 85–230Google Scholar
  25. Ludwig F, De Kroon H, Prins H (2008) Impacts of savanna trees on forage quality for a large African herbivore. Oecologia 155:487–496CrossRefGoogle Scholar
  26. Maisch MW, Matzke AT, Grossmann F, Stöhr H, Pfretzschner H-U, Sun G (2005) The first haramiyoid mammal from Asia. Naturwissenschaften 92:40–44CrossRefGoogle Scholar
  27. Marquis RJ (1996) Plant architecture, sectoriality and plant tolerance to herbivores. Plant Ecol 127:85–97CrossRefGoogle Scholar
  28. Martin T, Averianov AO, Pfretzschner H-U (2010) Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, Northwest China. In: Martin T, Sun G, Mosbrugger V (eds) Triassic-Jurassic biodiversity, ecosystems, and climate in the Junggar Basin, Xinjiang, Northwest China. Paleobio Palaeoenv 90(3). doi: 10.1007/st12549-010-0030-4
  29. McKnight CL, Graham SA, Carroll AR, Gan Q, Dilcher DL, Zhao M, Liang Y-H (1990) Fluvial sedimentology of an Upper Jurassic petrified forest assemblage, Shishu Formation, Junggar Basin, Xinjiang, China. Palaeogeogr Palaeoclimatol Palaeoecol 79:1–9CrossRefGoogle Scholar
  30. McNaughton SJ (1976) Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191:92–94CrossRefGoogle Scholar
  31. McNaughton SJ (1979) Grazing as optimization process: grass-ungulate relationships in the Serengeti. Am Nat 113:691–703Google Scholar
  32. McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336CrossRefGoogle Scholar
  33. Miller CN (1967) Evolution of the fern genus Osmunda. Contrib Mus Pal Univ Michigan 21:139–206Google Scholar
  34. Miller CN Jr, Lapasha CA (1985) Two species of Elatocladus from the early Cretaceous Potomac Group of Virginia. Rev Palaeobot Palynol 44:183–191CrossRefGoogle Scholar
  35. Milton SJ (1991) Plant spinescence in arid southern Africa: does moisture mediate selection by mammals? Oecologia 87:279–287CrossRefGoogle Scholar
  36. Miquel SE, Ramírez R, Thomé JW (2004) Lista preliminar de los Punctoideos de Rio Grande do Sul, Brasil, con descripción de dos especies nuevas (Mollusca, Gastropoda, Stylommatophora). Rev Bras Zool 21:925–935CrossRefGoogle Scholar
  37. Morrow PA, Lamarche VCJ (1978) Tree ting evidence for chronic insect suppression of productivity in subalpine Eucalyptus. Science 201:1244–1246CrossRefGoogle Scholar
  38. Mosbrugger V (1990) The tree habit in land plants: a functional comparison of trunk constructions with a brief introduction into the biomechanics of trees. In: Mosbrugger V (ed) Lecture notes in earth sciences, vol 28: the tree habit in land plants: a functional comparison of trunk constructions with a brief introduction into the biomechanics of trees. Springer, Berlin New YorkGoogle Scholar
  39. Mosbrugger V, Gee CT, Belz G, Ashraf AR (1994) Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany- new methods in palaeovegetation analysis. Palaeogeogr Palaeoclimatol Palaeoecol 110:295–317CrossRefGoogle Scholar
  40. Niklas KJ (1994) Predicting the height of fossil plant remains: an allometric approach to an old problem. Am J Bot 81:1235–1242CrossRefGoogle Scholar
  41. NSW National Parks and Wildlife Service (2001) Recovery Plan for the Giant Fern (Angiopteris evecta). HuntsvilleGoogle Scholar
  42. Ohsawa T, Nishida H, Nishida M (1995) Yezonia, a new section of Araucaria (Araucariaceae) based on permineralized vegetative and reproductive organs of A. vulgaris comb. nov. from the upper Cretaceous of Hokkaido, Japan. J Plant Res 108:25–39CrossRefGoogle Scholar
  43. Oplustil S, Psenicka J, Libertín M, Bashforth AR, Simunek Z, Drábková J, Dasková J (2009) A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Rev Palaeobot Palynol 155:234–274CrossRefGoogle Scholar
  44. Pfretzschner H-U, Ashraf AR, Maisch MW, Sun G, Wang Y-D, Mosbrugger V (2001) Cyclic growth in dinosaur bones from the Upper Jurassic of NW China and its paleoclimatic implications. In: Sun G, Mosbrugger V, Ashraf AR, Wang Y-D (eds) The advanced study of prehistory life and geology of Junggar Basin, Xinjiang, China. Proc Sino-German Cooperation Symp Prehistory Life and Geology of Junggar Basin, Xinjiang, China. Urumqi, pp 21–39Google Scholar
  45. Pfretzschner HU, Martin T, Maisch MW, Matzke AT, Sun G (2005) A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China. Acta Palaeontol Pol 50:799–808Google Scholar
  46. Pramparo MB (1989) Las esporas de Schizaeaceae (Cicatricosisporites y Appendicisporites) del Cretácico inferior, Cuenca de San Luis, Argentina. Rev Esp Micropaleontol 21:355–372Google Scholar
  47. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–621CrossRefGoogle Scholar
  48. Rothwell GW (1996) Pteridophytic evolution: an often underappreciated phytological success story. Rev Palaeobot Palynol 90:209–222CrossRefGoogle Scholar
  49. Russell DA, Zheng Z (1993) A large mamenchisaurid from the Junggar Basin, Xinjiang, People's Republic of China. Can J Earth Sci 30:2082–2095CrossRefGoogle Scholar
  50. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553CrossRefGoogle Scholar
  51. Schölch A (2000) Relations between submarginal and marginal sori in ferns II. The sori of selected Dicksoniaceae and Hymenophyllaceae. Plant Syst Evol 220:185–198CrossRefGoogle Scholar
  52. Schromm S (2006) Vergleich der Streu-Dynamik in Araukarien- und Laubwäldern der Pró-Mata Forschungsstation. PhD thesis. Eberhard Karls Universität Tübingen, TübingenGoogle Scholar
  53. Selmeier A (1990) Anatomische Untersuchungen an verkieselten Hölzern. Holz Roh Werkst 48:111–115CrossRefGoogle Scholar
  54. Setoguchi H, Osawa TA, Pintaud J-C, Jaffré T, Veillon J-M (1998) Phylogenetic relationships within Araucariaceae based on RBCL gene sequences. Am J Bot 85:1507–1516CrossRefGoogle Scholar
  55. Sharps R, McWilliams M, Li YP, Cox A, Zhang ZK, Zhai YJ, Gao ZJ, Li YG, Li Q (1989) Lower Permian paleomagnetism of the Tarim block, northwestern China. Earth Planet Sci Lett 92:275–291CrossRefGoogle Scholar
  56. Smith I, Butler D (2002) The Bunya in Queensland's forests. Queensland Rev 9:31–39 Google Scholar
  57. Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731CrossRefGoogle Scholar
  58. Stratigraphic Group of Xinjiang (1981) Regional Stratigraphic Table (Chart) of Northwestern China. Geological Publishing House, BeijingGoogle Scholar
  59. Summit J, Sommer R (1999) Further studies of preferred tree shapes. Environ Behav 31:550–576CrossRefGoogle Scholar
  60. Taylor TN, Taylor EL, Krings M (2008) The biology and evolution of fossil plants. Academic Press, BurlingtonGoogle Scholar
  61. Taylor MP, Wedel MJ, Naish D (2009) Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontol Pol 54:213–220CrossRefGoogle Scholar
  62. Tidwell WD, Ash SR (1994) A Review of Selected Triassic to Early Cretaceous Ferns. J Plant Res 107:417–442CrossRefGoogle Scholar
  63. Tütken T, Pfretzschner H-U, Vennemann TW, Sun G, Wang Y-D (2004) Paleobiology and skeletochronology of Jurassic dinosaurs: implications for the histology and oxygen isotope compositions of bones. Palaeogeogr Palaeoclimatol Palaeoecol 206:217–238CrossRefGoogle Scholar
  64. Veblen TT, Delmastro RN (1976) The Araucaria araucana gene resource in Chile. For Genet Resour Inf 5:2–6Google Scholar
  65. Veblen TT, Armesto JJ, Burns BR, Kitzberger T, Lara A, Léon B, Young KR (2005) The coniferous forests of South America. In: Andersson F, Gessel S (eds) Ecosystems of the world: coniferous forests. Elsevier, Amsterdam, pp 701–725Google Scholar
  66. Vesey-Fitzgerald DF (1973) Animal impact on vegetation and plant succession in Lake Manyara National Park, Tanzania. Oikos 24:314–325CrossRefGoogle Scholar
  67. Wang Y-D, Zhang W, Saiki K (2000) Fossil woods from the Upper Jurassic of Qitai, Junggar Basin, Xinjiang, China. Acta Palaeontol Sinica 39:176–185Google Scholar
  68. Watson MP, Hayward AB, Parkinson DN, Zhang ZM (1987) Plate tectonic history, basin development and petroleum source rock deposition onshore China. Mar Petrol Geol 4:205–225CrossRefGoogle Scholar
  69. Whitham TG, Mopper S (1985) Chronic Herbivory: Impacts on architecture and sex expression of Pinyon Pine. Science 228:1089–1091CrossRefGoogle Scholar
  70. Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003a) Reconstruction of Tertiary Metasequoia forests. II. Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292CrossRefGoogle Scholar
  71. Williams CJ, Johnson AH, LePage BA, Vann DR, Taylor KD (2003b) Reconstruction of Tertiary Metasequoia forests. I. Test of a method for biomass determination on stem dimensions. Paleobiology 29:256–270CrossRefGoogle Scholar
  72. Williams CJ, Mendell EK, Murphy J, Court WM, Johnson AH, Richter SL (2008) Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 261:160–176CrossRefGoogle Scholar
  73. Woodwell GM, Whittaker RH (1968) Primary production in terrestrial ecosystems. Am Zool 8:19–30Google Scholar
  74. Xu X, Forster CA, Clark JM, Mo J (2006) A basal ceratopsian with transitional features from the Late Jurassic of northwestern China. Proc Roy Soc B Biol Sci 273:2135–2140CrossRefGoogle Scholar
  75. Zhao J, Liu G, Lu Z, Zhang X, Guoze Z (2003) Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. Tectonophysics 376:199–239CrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2010

Authors and Affiliations

  • Juliane K Hinz
    • 1
    Email author
  • Ian Smith
    • 2
  • Hans-Ulrich Pfretzschner
    • 1
  • Oliver Wings
    • 1
    • 3
  • Ge Sun
    • 4
    • 5
  1. 1.Institut für Geowissenschaften, Universität TübingenTübingenGermany
  2. 2.School of Biological SciencesUniversity of QueenslandBrightonAustralia
  3. 3.Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany
  4. 4.Paleontological Institute of Shenyang Normal UniversityShenyangChina
  5. 5.Key-Lab for Evolution of Past Life and Environment in NE Asia, Ministry for Education, China (Jilin University)ChangchunChina

Personalised recommendations