pp 1–7 | Cite as

Differentiating taphonomic and paleopathological features in Vertebrate Paleontology: a study case with Quaternary mammals

  • Fernando Henrique de Souza BarbosaEmail author
  • Lucas Henrique Medeiros da Silva
  • Hermínio Ismael de Araújo-Júnior
Research Paper


The recognition of taphonomic alterations is an important step previously to any paleopathological analysis, as some taphonomic features can simulate pathological change on bones. This is a difficult task, but there are some diagnostic criteria that can be used to differentiate them. Here we demonstrate how these features can be macroscopically distinguished using skeletal remains of Quaternary mammals as a model and pointing out how some specific pathological bone changes and diseases can be misinterpreted as taphonomic features (e.g. abrasion marks, corrosion marks, incrustation, post-mortem breakages, and punctures). Although this study has been specifically conducted with Quaternary mammals, the criteria used herein can be employed to any other fossil mammal of equivalent body mass and bone size.


Paleopathology Taphonomy Ante-mortem Post-mortem Fossil mammals Pseudopaleopathology 



This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Grants: 150968/2017-5). HIAJr thanks to the financial support provided by FAPERJ (process # E-26/203.176/2017). We thank Museu Câmara Cascudo of the Universidade Federal do Rio Grande do Norte (MCC/UFRN), Museu de Ciências da Terra of the Serviço Geológico do Brasil (MCTer/CPRM) and Museu de Ciências Natural of the Pontifícia Universidade Católica of Minas Gerais (MCL/PUC-MG) that gently give us access to the material studied in this work. We also greatly appreciate the comments provide by the L.P. Bergqvist, the anonymous reviewer and editor-in-chief, Mike Reich (Munich) that improved the manuscript significantly.


  1. Araújo-Júnior, H.I., K.O. Porpino, C.L. Ximenes, and L.P. Bergqvist. 2013. Unveiling the taphonomy of elusive natural tank deposits: A study case in the Pleistocene of northeastern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 378: 52–74.CrossRefGoogle Scholar
  2. Aufderheide, A.C., and C. Rodríguez-Martín. 1998. The Cambridge encyclopedia of human paleopathology. Cambridge: Cambridge University Press.Google Scholar
  3. Barbosa, F.H.S., K.O. Porpino, L.P. Bergqvist, and B.M. Rothschild. 2017. Elucidating bone diseases in Brazilian Pleistocene sloths (Xenarthra, Pilosa, Folivora): First Cases reported for the Nothrotheriidae and Megalonychidae families. Ameghiniana 54: 331–340.CrossRefGoogle Scholar
  4. Barbosa, F.H.S., K.O. Porpino, H.I. Araújo-Júnior, L.P. Bergqvist, and B.M. Rothschild. 2019. Articular and vertebral lesions in the Pleistocene sloths (Xenarthra, Folivora) from the Brazilian Intertropical Region. Historical Biology 31(5): 544–558.CrossRefGoogle Scholar
  5. Behrensmeyer, A.K. 1988. Taphonomy and Hunting. In The Evolution of Human Hunting, eds. M.H. Nitecki, and D.V. Nitecki, 423–450. Chicago, Ill.: Field Museum of Natural History.Google Scholar
  6. Behrensmeyer, A.K. 1991. Terrestrial vertebrate accumulations. In Taphonomy: releasing the data locked in the fossil record, eds. P.A. Allison and D.E.G. Briggs, 291–335. New York: Plenum Press.CrossRefGoogle Scholar
  7. Behrensmeyer, A.K., and J.H. Miller. 2012. Building links between ecology and paleontology using taphonomic studies of recent vertebrate communities. In Paleontology in ecology and conservation, ed. J. Louys, 69–91. Berlin: Springer.CrossRefGoogle Scholar
  8. Behrensmeyer, A.K., and S.M. Kidwell. 1985. Taphonomy’s contributions to Paleobiology. Paleobiology 11: 105–119.CrossRefGoogle Scholar
  9. Behrensmeyer, A.K., S.M. Kidwell, and R.A. Gastaldo. 2000. Taphonomy and paleobiology. In Deep Time and Paleobiology’s Perspective. Supplement to Paleobiology, eds. D.H. Erwin, and S.L. Wing, 103–147. Chicago, Ill.: The Paleontological Society.CrossRefGoogle Scholar
  10. Bywaters, E. 1960. The early radiologic signs of rheumatoid arthritis. Bulletin on the Rheumatic Diseases 11: 231–234.Google Scholar
  11. Cartelle, C. 1999. Pleistocene mammals of the Cerrado and Caatinga of Brazil. In Mammals of the neotropics: the central tropics, eds. J.B. Eisenberg, and K.H. Redford, 27–46. Chicago, Ill.: University of Chicago Press.Google Scholar
  12. Eberth, D.A., R.R. Rogers, and A.R. Fiorillo. 2007. A practical approach to the study of bonebeds. In Bonebeds: Genesis, Analysis and Paleobiological Significance, eds. R.R. Rogers, D.A. Eberth, and A.R. Fiorillo, 265–332. Chicago, Ill.: The University of Chicago Press.Google Scholar
  13. Fernández-Jalvo, Y., and P. Andrews. 2016. Atlas of taphonomic identifications: 1001+ images of fossil and recent mammal bone modification. Heidelberg: Springer.CrossRefGoogle Scholar
  14. Haynes, G. 1983. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9: 164–172.CrossRefGoogle Scholar
  15. Hershkovitz, I., B.M. Rothschild, O. Dutour, and C. Greenwald. 1998. Clues to recognition of fungal origin of lytic skeletal lesions. American Journal of Physical Anthropology 106: 47–60.CrossRefGoogle Scholar
  16. Holz, M., and M.G. Simões. 2002. Elementos Fundamentais de Tafonomia. Porto Alegre: Editora da Universidade/UFRGS.Google Scholar
  17. Lyman, R.L. 1994. Vertebrate Taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Margerl, F., M. Aebi, S.D. Gertzbein, J. Harms, and S. Nazarian. 1994. A comprehensive classification of thoracic and lumbar injuries. European Spine Journal 3: 184–201.CrossRefGoogle Scholar
  19. Martel, W. 1968. Radiologic signs of rheumatoid arthritis with particular reference to the hand, wrist, and foot. Medical Clinics of North America 52: 655–665.CrossRefGoogle Scholar
  20. McEwen, C., D. Di Tata, and J. Lingg. 1971. Ankylosing spondylitis and spondylitis accompanying ulcerative colitis, regional enteritis, psoriasis and Reiter’s disease. a comparative study. Arthritis & Rheumatology 14: 291–318.CrossRefGoogle Scholar
  21. Medeiros, M.A.A. 2010. Fossildiagênese. In Paleontologia, ed. I.S. Carvalho, 65–78. Rio de Janeiro: Interciência.Google Scholar
  22. Ortner, D.J. 2003. Methods used in the analyses of skeletal lesions. In Identification of pathological conditions in human skeletal remains, ed. D.J. Ortner, 45–64. San Diego: Academic Press.CrossRefGoogle Scholar
  23. Peng, B., W. Wu, S. Hou, W. Shang, X. Wang, and Y. Yang. 2003. The pathogenesis of Schmorl’s nodes. The Journal of Bone & Joint Surgery 85-B: 879–882.CrossRefGoogle Scholar
  24. Pfirmann, C.W.A., and D. Resnick. 2001. Schmorl nodes of the thoracic and lumbar spine: Radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1650 spinal levels in 100 cadavers. Radiology 219: 368–374.CrossRefGoogle Scholar
  25. Resnick, D. 2002. Diagnosis of bone and joint disorders. Philadelphia: Saunders.Google Scholar
  26. Rothschild, B.M. 1982. Rheumatology: a primary care approach. New York: Yorke Medical Press.Google Scholar
  27. Rothschild, B.M., and L.D. Martin. 2006. Skeletal impact of disease. New Mexico Museum of Natural History and Science, Bulletin 33: 1–226.Google Scholar
  28. Ruffer, S.A.M. 1914. Studies in Palæleopathology in Egypt. Journal of Pathology and Bacteriology 18: 149–162.CrossRefGoogle Scholar
  29. Schmorl, G., and H. Junghanns. 1971. The human spine in health and disease. New York: Grune and Stratton.Google Scholar
  30. Schultz, M. 2001. Paleohistopathology of Bone: A New Approach to the Study of Ancient Diseases. Yearbook of Physical Anthropology 44: 106–147.CrossRefGoogle Scholar
  31. Smith, A.M., and C.S. Nelson. 2003. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews 63: 1–31.CrossRefGoogle Scholar
  32. Shipman, P. 1981. Life history of a fossil: an introduction to taphonomy and paleoecology. Cambridge: Harvard University Press.Google Scholar
  33. Steinbock, R.T. 1976. Palaeopathological diagnosis and interpretation. Springfield: Thomas.Google Scholar
  34. Waldron, T. 2009. Palaeopathology. New York: Cambridge University Press.Google Scholar
  35. Wells, C. 1967. Pseudopathology. In Diseases in Antiquity, eds. D. Brothwell, and A.T. Sandison, 5–19. Springfield, Ill.: Thomas.Google Scholar
  36. Wu, J.S., and M.G. Hochman. 2012. Bone tumors: a practical guide to imaging. Heidelberg: Springer Science & Business Media.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Geociências, Faculdade de GeologiaUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  2. 2.Departamento de Estratigrafia e Paleontologia, Faculdade de GeologiaUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil

Personalised recommendations