pp 1–33 | Cite as

Chondrichthyans from the Lower Clayton Limestone Unit of the Midway Group (Paleocene) near Malvern, Arkansas, USA, with comments on the K/Pg boundary

  • Harry M. MaischIVEmail author
  • Martin A. Becker
  • Michael L. Griffiths
Research Paper


The Lower Clayton Limestone Unit (LCLU) of the Midway Group (Paleocene) near Malvern, Arkansas, USA contains an assemblage of chondrichthyans recently exposed by excavation for highway stabilization. Chondrichthyan teeth in this assemblage belong to at least 12 taxa including: Ginglymostoma subafricanum, Carcharias cf. whitei, Carcharias sp., Odontaspis winkleri, Palaeohypotodus rutori, Palaeogaleus vincenti, Dasyatis cf. hexagonalis, Dasyatis sp., Hypolophites sp., Myliobatis sp., Rhinoptera sp., and an indeterminate chimaerid. Locally, these chondrichthyans occur within a stratigraphic section directly above the Cretaceous–Paleogene (K/Pg) boundary that also contains chondrichthyans. This occurrence is uncommon in the global fossil record and provides an opportunity to (1) assess chondrichthyan diversity across the K/Pg boundary in the Malvern region and Gulf Coastal Plain of southwestern Arkansas and (2) evaluate the timing of marginal to shallow marine chondrichthyan faunal turnover and extinction at a proximal location ≈ 1500 km from the Chicxulub, Mexico, K/Pg impact site. Observed patterns within this K/Pg stratigraphic section indicate that changes in chondrichthyan assemblages are primarily the result of sea-level cyclicity and habitat losses that occurred across several million years.


Paleocene Chondrichthyans K/Pg boundary Arkansas 



We would like to thank R. Scimeca, C. Kline, T. Nixon, S. Foster, and M. Gardiner for assistance with fieldwork and manuscript preparation, as well as R. Farmer and C. Sloan for introducing us to additional Arkadelphia Formation and Midway Group outcrop exposures in the Malvern Arkansas region. In addition, we gratefully acknowledge T. Daeschler and E. Gilmore for creating a repository for specimens at ANSP. Lastly, we appreciate the review and comments of T. Cook, C. Underwood, J. Kriwet, and M. Reich, which improved an earlier version of this manuscript. This research was supported in part by an NSF Sedimentary Geology and Paleobiology Award-1830581 to Griffiths and Becker.


  1. Adatte, T., G. Keller, and G. Baum. 2011. Age and origin of the Chicxulub impact and sandstone complex, Brazos River, Texas: evidence from lithostratigraphy, sedimentology and sequence stratigraphy. In The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas. Society for Sedimentary Geology (SEPM), Special Publication 100: 43–80.Google Scholar
  2. Adolfssen, J., and D. Ward. 2014. Crossing the boundary: an elasmobranch fauna from Stevns Klint, Denmark. Palaeontology 57: 591–629.CrossRefGoogle Scholar
  3. Adolfssen, J., and D. Ward. 2015. Neoselachians from the Danian (early Paleocene) of Denmark. Acta Palaeontologica Polonica 60: 313–339.Google Scholar
  4. Agassiz, L. 1833–1844. Recherches sur les Poissons fossiles Vol. 15. Neuchâtel and Soleure: Imprimerie de Petitpierre.Google Scholar
  5. Albertão, G., E. Koutsoukos, M. Regali, M. Attrep, and P. Martins. 1994. The Cretaceous–Tertiary boundary in southern low-latitude regions: preliminary study in Pernambuco, northeastern Brazil. Terra Nova 6: 366–375.CrossRefGoogle Scholar
  6. Alvarez, L., W. Alvarez, F. Asaro, and H. Michel. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108.CrossRefGoogle Scholar
  7. Ankhelyi, M.V., D.K. Wainwright, and G. Lauder. 2018. Diversity of dermal denticle structure in sharks: skin surface roughness and three-dimensional morphology. Journal of Morphology 279: 1132–1154.CrossRefGoogle Scholar
  8. Applegate, S. 1965. Tooth terminology and variation in sharks with special reference to the sand shark, Carcharias taurus Rafinesque. Los Angeles County Museum Contributions in Science 86: 1–18.Google Scholar
  9. Applegate, S. 1972. A revision of the higher species of orectoloboids. Journal of the Marine Biological Association of India 14: 743–751.Google Scholar
  10. Arambourg, C. 1952. Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie). Notes et Mémoires du Service Géologique du Maroc 92: 1–372.Google Scholar
  11. Archibald, J., W. Clemens, K. Padian, T. Rowe, N. Macleod, P.M. Barrett, A. Gale, et al. 2010. Cretaceous extinctions: multiple causes. Science 328(5981): 973.CrossRefGoogle Scholar
  12. Baut, J., and B. Genault. 1995. Contribution à l’étude des élasmobranches du Thanétien (Paléocène) du Bassin de Paris. 1. Découverte d’une faune d’Elasmobranches dans la partie supérieure des Sables de Bracheux (Thanétien, Paléocène du Bassin de Paris) des régions de Compiègne (Oise) et de Montdidier (Somme). Belgian Geological Survey Professional Paper 278: 185–259.Google Scholar
  13. Bazzi, M., B. Kear, H. Blom, P. Ahlberg, and N. Campione. 2018. Static Dental Disparity and Morphological Turnover in Sharks across the End-Cretaceous Mass Extinction. Current Biology 28: 2607–2615.CrossRefGoogle Scholar
  14. Becker, M., W. Slattery, and J. Chamberlain Jr. 1996. Reworked Campanian and Maastrichtian macrofossils in a sequence bounding transgressive lag deposit, Monmouth County, New Jersey. Northeastern Geology and Environmental Science 18: 234–252.Google Scholar
  15. Becker, M., W. Slattery, and J. Chamberlain Jr. 1998. Mixing of Santonian and Campanian chondrichthyan and ammonite macrofossils along a transgressive lag deposit, Greene County, western Alabama. Southeastern Geology 37: 205–216.Google Scholar
  16. Becker, M., J. Chamberlain Jr., and G. Wolf. 2006. Chondrichthyans from the Arkadelphia Formation (Upper Cretaceous: late Maastrichtian) of Hot Spring County, Arkansas. Journal of Paleontology 80: 700–716.CrossRefGoogle Scholar
  17. Becker, M., R. Chamberlain, and J. Chamberlain Jr. 2007. The paradox of large carcharhinoid-type shark vertebrae in the Upper Cretaceous of New Jersey. In Contributions to the Paleontology of New Jersey (II) Field Guide and Proceedings, Geological Association of New Jersey Annual Meeting XXIV, ed. E. Rainforth, 69–84. East Stroudsburg: East Stroudsburg University.Google Scholar
  18. Becker, M., C. Mallery, and J. Chamberlain Jr. 2010a. Osteichthyans from the Arkadelphia Formation (Late Maastrichtian) of Hot Spring County, Arkansas, USA. Journal of Vertebrate Paleontology 30: 1019–1036.CrossRefGoogle Scholar
  19. Becker, M., R. Wellner, C. Mallery, and J. Chamberlain Jr. 2010b. Chondrichthyans from the Lower Ferron Sandstone Member of the Mancos Shale (Upper Cretaceous: Middle Turonian) of Emery and Carbon Counties Utah, USA. Journal of Paleontology 84: 248–266.CrossRefGoogle Scholar
  20. Becker, M., L. Smith, and J. Chamberlain Jr. 2011. Chondrichthyans from the Clayton Limestone Unit of the Midway Group (Paleogene: Paleocene) of Hot Spring County, Arkansas, USA. Cainozoic Research 8: 13–28.Google Scholar
  21. Becker, M., and J. Chamberlain Jr. 2012. Osteichthyans from the Paleocene Clayton Limestone of the Midway Group, Hot Spring County, Arkansas, USA: Bony fish evolution across the Cretaceous-Paleogene Boundary. Paludicola 4: 194–207.Google Scholar
  22. Becker, M., H. Maisch IV, and J. Chamberlain Jr. 2013. Plesiosaurian Remains from the Arkadelphia Formation-Midway Group Contact (Maastrichtian-Paleocene) Hot Spring County, Near Malvern, Arkansas, USA. Paludicola 9: 131–143.Google Scholar
  23. Becker, M., H. Maisch IV, and J. Chamberlain Jr. 2016. Turtles from an Arkadelphia Formation–Midway Group Lag Deposit (Maastrichtian–Paleocene) Hot Spring, County, Arkansas, USA. Geosciences 6: 1–14.CrossRefGoogle Scholar
  24. Belben, R., C. Underwood, Z. Johanson, and R. Twitchett. 2017. Ecological impact of the end-Cretaceous extinction on lamniform sharks. PLoS One 12: e0178294.CrossRefGoogle Scholar
  25. Bendix-Almgreen, S. 1969. Notes on the Upper Cretaceous and Lower Tertiary fish faunas of northern West Greenland. Meddelelser fra Dansk Geologisk Forening 19: 204–217.Google Scholar
  26. Berg, L. 1958. System der rezenten und fossilen Fischartigen und Fische. Hochschulbücher für Biologie, vol. 4, 1–310. Berlin: Deutscher Verlag der Wissenschaften.Google Scholar
  27. Blanco Piñón, A., K. Shimada, and G. González Barba. 2005. Lamnoid vertebrae from the Agua Nueva Formation (Upper Cretaceous: Lower Turonian), northeastern Mexico. Revista Mexicana de Ciencias Geológicas 22: 19–23.Google Scholar
  28. Boessenecker, R., F. Perry, and J. Schmitt. 2014. Comparative Taphonomy, Taphofacies, and Bonebeds of the Mio-Pliocene Purisima Formation, Central California: strong physical control on marine vertebrate preservation in shallow marine settings. PLoS One 9: e91419.CrossRefGoogle Scholar
  29. Bonaparte, C. 1832–1841. Iconografia della fauna Italica per le quattro classi degli animali vertebrati 3. Rome: Tipographia Salviucci.Google Scholar
  30. Bor, T., T. Reinecke, and S. Verschueren. 2012. Miocene Chondrichthyes from Winterswijk-Miste, the Netherlands. Palaeontos 21: 1–136.Google Scholar
  31. Boulila, S., B. Galbrun, K. Miller, S. Pekar, J. Browning, J. Laskar, and J. Wright. 2011. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth-Science Reviews 109: 94–112.CrossRefGoogle Scholar
  32. Campbell, C., F. Oboh-Ikuenobe, T. Eifert, K. Evans, J. Horton, D. King, and J. Morrow. 2008. Megatsunami deposit in Cretaceous-Paleogene boundary interval of southeastern Missouri. In The Sedimentary Record of Meteorite Impacts. Geological Society of America, Special Paper 437: 189–198.Google Scholar
  33. Campbell, C., and N. Landman. 2010. Microtektite morphology and affinities at the Cretaceous-Paleogene boundary interval in southeast Missouri. Geological Society of America Abstracts with Programs 42: 91.Google Scholar
  34. Cappetta, H. 1972. Les poissons crétacés et tertiaires du bassin des Iullemmeden (République du Niger). Palaeovertebrata 5: 179–251.Google Scholar
  35. Cappetta, H. 1987. Handbook of paleoichthyology. Chondrichthyes II: Mesozoic and Cenozoic Elasmobranchii, 1–193. New York: Gustav Fischer.Google Scholar
  36. Cappetta, H. 1992. Nouveaux Rhinobatoidei (Neoselachii, Rajiformes) à denture spécialisée du Maastrichtien du Maroc. Remarques sur l’évolution dentaire des Rajiformes et des Myliobatiformes. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 187: 31–52.Google Scholar
  37. Cappetta, H. 1993. Sélaciens nouveaux (Chondrichthyes, Neoselachii) du Paléocène supérieur de la région d’Ouarzazate, Maroc. Paläontologische Zeitschrift 67: 109–122.CrossRefGoogle Scholar
  38. Cappetta, H. 2012. Chondrichthyes (Mesozoic and Cenozoic Elasmobranchii: Teeth). In Handbook of Paleoichthyology, vol. 3E, ed. H. Schultze, 1–512. München: F. Pfeil.Google Scholar
  39. Cappetta, H., and G. Case. 1975. Contribution à l’étude des Sélaciens du groupe Monmouth (Campanien-Maestrichtien) du New Jersey. Palaeontographica (A: Paläozoologie–Stratigraphie) 151: 1–46.Google Scholar
  40. Cappetta, H., and D. Nolf. 2005. Révision de quelques Odontaspidae (Neoselachii: Lamniformes) du Paleocene et de l’Eocene du Bassin de la mer du Nord. Bulletin de l’institut Royal des Sciences Naturelles de Belgique Sciences de la Terre 75: 237–266.Google Scholar
  41. Case, G. 1978. Ischyodus bifurcatus, a new species of chimaeroid fish from the upper cretaceous of New Jersey. Géobios 11: 21–29.CrossRefGoogle Scholar
  42. Case, G. 1981. Late Eocene selachians from South-central Georgia. Palaeontographica (A: Paläozoologie–Stratigraphie) 176: 52–79.Google Scholar
  43. Case, G. 1994. Fossil fish remains from the Late Paleocene Tuscahoma and Early Eocene Bashi Formations of Meridian, Lauderdale County, Mississippi. Palaeontographica (A: Paläozoologie–Stratigraphie) 230: 97–138.Google Scholar
  44. Case, G. 1996. A new selachian fauna from the Lower Hornerstown formation (Early Paleocene/Montian) of Monmouth County, New Jersey. Palaeontographica (A: Paläozoologie–Stratigraphie) 242: 1–14.Google Scholar
  45. Case, G., and D. Schwimmer. 1988. Late Cretaceous fish from the Blufftown Formation (Campanian) in western Georgia. Journal of Paleontology 62: 290–301.CrossRefGoogle Scholar
  46. Case, G., and D. Schwimmer. 1992. Occurrence of the chimaeroid Ischyodus bifurcatus Case in the Cusseta Formation (Upper Cretaceous, Campanian) of western Georgia and its distribution. Journal of Paleontology 66: 347–350.CrossRefGoogle Scholar
  47. Case, G., and H. Cappetta. 1997. A new selachian fauna from the late Maastrichtian of Texas (Upper Cretaceous/Navarroan; Kemp formation). Münchner Geowissenschaftliche Abhandlungen 34: 131–189.Google Scholar
  48. Case, G., P. Borodin, and J. Leggett. 2001. Fossil selachians from the New Egypt Formation (Upper Cretaceous, Late Maastrichtian) of Arneytown, Monmouth County, New Jersey. Palaeontographica (A: Paläozoologie–Stratigraphie) 261: 113–124.Google Scholar
  49. Casier, E. 1946. La faune ichthyologique de l’Yprésien de la Belgique. Mémoire du Musée royale d’histoire naturelle de Belgique 104: 1–267.Google Scholar
  50. Casier, E. 1967. Le Landénien de Dormaal (Brabant) et sa faune ichthyologique. Mémoires de l’Institut Royal des Sciences Naturelles de Belgique 156: 1–66.Google Scholar
  51. Chumakov, N., M. Zharkov, A. German, M. Doludenko, N. Kalandadze, Y. Lebedev, A. Ponomarenko, and A. Rautian. 1995. Climatic zones in the middle of the Cretaceous Period. Stratigraphy and Geologic Correlation 3: 3–14.Google Scholar
  52. Cicimurri, D., D. Parris, and M. Everhart. 2008. Partial dentition of a chimaeroid fish (Chondrichthyes, Holocephali) from the Upper Cretaceous Niobrara Chalk of Kansas, USA. Journal of Vertebrate Paleontology 28: 34–40.CrossRefGoogle Scholar
  53. Compagno, L. 1973. Interrelationships of living elasmobranchs. Journal of the Linnaean Society (Zoology) 53: 63–98.Google Scholar
  54. Compagno, L. 1977. Phyletic relationships of living sharks and rays. American Zoologist 17: 303–322.CrossRefGoogle Scholar
  55. Cope, E. 1886. A contribution to the vertebrate paleontology of Brazil. Proceedings of the American Philosophical Society 23: 1–21.Google Scholar
  56. Cushman, J. 1949. The foraminiferal fauna of the Upper Cretaceous Arkadelphia Marl of Arkansas. U.S. Geological Survey Professional Paper 221: 1–19.Google Scholar
  57. Cuvier, G. 1816. Le Règne Animal distribué d’après son organisation pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Les reptiles, les poissons, les mollusques et les annélides, 1–532. Paris: Deterville.Google Scholar
  58. Cuvier, G. 1829. Le Règne Animal, distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Règne Animal 2: 1–406.Google Scholar
  59. Daimeries, A. 1888. Notes ichthyologiques (Système Landénien). I. Annales de la Société royale malacologique de Belgique, Bulletin des des Séances 23: 42–43.Google Scholar
  60. Dames, W. 1881. Über Fischzähne aus der obersenonen Tuffkreide von Maastricht für welcher den Gattungsnamen Rhombodus vorschlug. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 1881: 1–3.Google Scholar
  61. Dartville, E., and E. Casier. 1943. Les poissons fossiles du Bas-Congo et des régions voisines. Annales du Musée du Congo Belge (Sér. A: Minéralogie Géologie, Paléontologie) 3(2): 1–200.Google Scholar
  62. Dastas, N., J. Chamberlain Jr., and M. Becker. 2010. Palynomorphs of the Arkadelphia Formation and Midway Group transition (Maastrichtian–Danian), Hot Spring County, Arkansas. Geological Society of America, Abstracts with Programs 42: 185.Google Scholar
  63. Dastas, N., J. Chamberlain Jr., and M. Garb. 2014. Cretaceous-Paleogene Dinoflagellate Biostratigraphy and the Age of the Clayton Formation, Southeastern Missouri, USA. Geosciences 4: 1–29.CrossRefGoogle Scholar
  64. Davis, J. 1890. On the fossil fish of the Cretaceous formations of Scandinavia. Scientific Transactions of the Royal Dublin Society 2: 363–434.Google Scholar
  65. D’Hondt, S. 2005. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annual Review of Ecology Evolution and Systematics 36: 295–317.CrossRefGoogle Scholar
  66. Dillon, E., R. Norris, and A. Dea. 2017. Dermal denticles as a tool to reconstruct shark communities. Marine Ecology Progress Series 566: 117–134.CrossRefGoogle Scholar
  67. Gale, A. 2006. The Cretaceous-Palaeogene Boundary on the Brazos River, Falls County, Texas: Is there evidence for Impact Induced Tsunami Sedimentation? Proceeding of the Geologists Association 117: 173–185.CrossRefGoogle Scholar
  68. Gallo, V., F. Figueiredo, L. de Carvalho, and S. de Azevedo. 2001. Vertebrate assemblage from the Maria Farinha Formation after the K-T boundary. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 219(3): 261–284.CrossRefGoogle Scholar
  69. Geyn, W. 1937. Les élasmobranches du Crétacé marin du Limbourg Hollandais. Natuurhistorisch Maandblad Maestricht 26: 16–69.Google Scholar
  70. Gill, T. 1862. Analytical synopsis of the Order of Squali and revision of the nomenclature of the genera. Annals of the Lyceum of Natural History of New York 7: 367–408.CrossRefGoogle Scholar
  71. Glickman, L. 1964. Sharks of Paleogene and their stratigraphic significance, 1–229. Moskva: Nauka Press.Google Scholar
  72. Gray, J. 1851. List of the specimens of fish in the collection of the British Museum. Part I. Chondropterygii, 1–160. London: British Museum (Natural History).Google Scholar
  73. Gurr, P. 1962. A new fish fauna from the Woolwich Bottom Beds (Sparnacian) of Herne Bay, Kent. Proceedings of the Geologists’ Association 73: 419–447.CrossRefGoogle Scholar
  74. Haley, B., E. Glick, W. Bush, B. Clardy, C. Stone, M. Woodward, and D. Zachry. 1993. Geologic map of Arkansas. 1:500,000 scale. Arkansas Geologic Commission 1.Google Scholar
  75. Haley, B., C. Stone, B. Clardy, and W. Hanson. 2009. Geologic Map of the Arkadelphia, Quadrangle, Clark, Garland, Hempstead, Hot Spring, Howard, Montgomery, Pike, and Polk Counties, Arkansas 1:100,000 Scale. Little Rock: DGM-AR-01100; Arkansas Geologic Commission.Google Scholar
  76. Hallam, A., and P. Wignall. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48: 217–250.CrossRefGoogle Scholar
  77. Halter, M. 1989. Additions to the fish fauna of N.W. Europe. A new dasyatid genus from the Early Palaeocene (Danian) of the Limburg area, Belgium. Tertiary Research 10: 179–191.Google Scholar
  78. Haq, B. 2014. Cretaceous eustasy revisited. Global and Planetary Change 113: 44–58.CrossRefGoogle Scholar
  79. Haq, B., J. Hardenbol, and P. Vail. 1988, Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. In Sea Level Changes: An Integrated Approach, eds. C. Wilgus, H. Posamentier, C. Ross, and C. Kendall. SEPM Special Publication 42: 71–104.Google Scholar
  80. Hart, B. 2017. Paleoecological Analysis of the Clayton Formation (Paleocene) near Malvern, Arkansas. University of Southern Mississippi Honors Thesis, 1–26.Google Scholar
  81. Hart, M., T. Yancey, A. Leighton, B. Miller, C. Liu, C. Smart, and R. Twitchett. 2012. The Cretaceous-Paleogene boundary on the Brazos River, Texas: New stratigraphic sections and revised interpretations. Gulf Coast Association of Geological Societies Journal 1: 69–80.Google Scholar
  82. Hay, O. 1902. On a collection of Upper Cretaceous fishes from Mount Lebanon, Syria, with descriptions of four new genera and nineteen new species. Bulletin of the American Museum of Natural History 19: 395–452.Google Scholar
  83. Herman, J. 1973. Contribution à la connaissance de la faune ichthyologique des phosphates du Maroc. Annales de la Société Géologique de Belgique 95: 271–284.Google Scholar
  84. Herman, J. 1977. Les Sélaciens des terrains néocrétacés et paléocènes de Belgique et des contrées limitrophes. Eléments d’une biostratigraphie intercontinentale. Mémoires pour servir à l’explication des Cartes géologiques et minières de la Belgique 15: 1–401.Google Scholar
  85. Herman, J., M. Hovestadt-Euler, D. Hovestadt, and M. Stehmann. 1998. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supra-specific species of Chondrichthyan fishes. Part B: Batomorphii No. 4a: Order Rajiformes-Suborder Myliobatoidei-Superfamily Dasyatoidea-Family Dasyatidae-Subfamily Dasyatinae-Genera: Amphotistius, Dasyatis, Himantura, Pastinachus, Pteroplatytrygon, Taeniura, Urogymnus and Urolophoides (incl. Supraspecific species of uncertain status and validity), Superfamily Myliobatoidea-Family Gymnuridae-Genera: Aetoplatea and Gymnura, Superfamily Plesiobatoidea-Family Hexatrygonidae-Genus: Hexatrygon. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie 68: 145–197.Google Scholar
  86. Herman, J., M. Hovestadt-Euler, D. Hovestadt, and M. Stehmann. 1999. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supraspecific species of chondrichthyan fishes. Part B: Batomorphii. No.4b: Order Rajiformes-Suborder Myliobatoidei-Superfamily Dasyatoidea-Family Dasyatididae-Subfamily Dasyatinae-Genus: Taeniura, Urogymnus, Urolophoides-Subfamily Potamotrygoninae-Genera: Disceus, Pleisiotrygon, and Potamotrygon (incl. Supraspecific species of uncertain status and validity), Family Urolophidae-Trygonoptera, Urolophus and Urotrygon-Superfamily Myliobatidea-Family: Gymnuridae-Genus: Aetoplatea. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. Biologie 69: 161–200.Google Scholar
  87. Herman, J., M. Hovestadt-Euler, D. Hovestadt, and M. Stehmann. 2000. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living superaspecific species of Chondrichthyan fishes. Part B: Batomorphii 4c: Order: Rajiformes-Suborder Myliobatoidei-Superfamily Dasyatoidea-Family Dasyatididae-Subfamily Dasyatinae-Genus: Urobatis, Subfamily Potamotrygoninae-Genus: Pomatotrygon, Superfamily Plesiobatoidea-Family Plesiobatidae-Genus: Plesiobatis, Superfamily Myliobatoidea-Family Myliobatidae Subfamily Myliobatinae-Genera: Aetobatus, Aetomylaeus, Myliobatis, and Pteromylaeus, Subfamily Rhinopterinae-Genus: Rhinoptera and Subfamily Mobulinae-Genera: Manta and Mobula. Addendum 1 to 4a: erratum to Genus Pteroplatytrygon. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. Biologie 70: 5–67.Google Scholar
  88. Hildebrand, A., G. Penfield, D. Kring, M. Pilkington, A.Z. Camargo, S. Jacobsen, and W. Boynton. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19: 867–871.CrossRefGoogle Scholar
  89. Hooks, G., D. Schwimmer, and G. Williams. 1999. Synonymy of the pycnodont Phacodus punctatus Dixon, 1850, and its occurrence in the Late Cretaceous of the southeastern United States. Journal of Vertebrate Paleontology 19: 588–590.CrossRefGoogle Scholar
  90. Hovestadt, D., and M. Hovestadt-Euler. 2013. Generic Assessment and Reallocation of Cenozoic Myliobatinae based on new information of tooth, tooth plate and caudal spine morphology of extant species. Palaeontos 24: 1–66.Google Scholar
  91. Huxley, T. 1880. On the application on the laws of evolution to the arrangement of the vertebrata and more particularly of the Mammalia. Zoological Society of London Scientific Memoirs 4: 457–472.Google Scholar
  92. Jaekel, O. 1895. Unter-Tertiäre Selachier aus Südrussland. Mémoirs du Comité Geologique de St Petersburg 9: 1–35. (in Russian and German).Google Scholar
  93. Johnson-Ransom, E., E. Popov, T. Deméré, and K. Shimada. 2018. The Late Cretaceous chimaeroid fish, Ischyodus bifurcatus Case (Chondrichthyes: Holocephali), from California, USA, and its Paleobiogeographical Significance. Paleontological Research 22: 364–373.CrossRefGoogle Scholar
  94. Jones, E. 1962. Palynology of the Midway-Wilcox boundary in south-central Arkansas. Gulf Coast Association of Geological Societies Transactions 12: 285–294.Google Scholar
  95. Jordan, D. 1888. A manual of the vertebrate animals of the northern United States, including the district north and east of the Ozark mountains, south of the Laurentian hills, north of the southern boundary of Virginia, and east of the Missouri river, inclusive of marine species. New York: World Book Co.Google Scholar
  96. Jordan, D., and B. Evermann. 1896. The fishes of North and middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America, north of the Isthmus of Panama. Bulletin of U.S. National Museum 5: 1–1240.Google Scholar
  97. Kajiura, S., and T. Tricas. 1996. Seasonal dynamics of dental sexual dimorphism in the Atlantic stingray Dasyatis sabina. Journal of Experimental Biology 199: 2297–2306.Google Scholar
  98. Kajiura, S., A. Sebastian, and T. Tricas. 2000. Dermal bite wounds as indicators of reproductive seasonality and behaviour in the Atlantic stingray, Dasyatis sabina. Environmental Biology of Fishes 58: 23–31.CrossRefGoogle Scholar
  99. Keller, G., H. Khozyem, T. Adatte, N. Malarkodi, J. Spangenberg, and W. Stinnesbeck. 2013. Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus. Geological Magazine 150: 885–907.CrossRefGoogle Scholar
  100. Kennedy, W., N. Landman, W. Christensen, W. Cobban, and J. Hancock. 1998. Marine connections in North America during the late Maastrichtian: palaeogeographic and palaeobiologic significance of Jeletzkytes Nebrascensis Zone Cephalopod Fauna from the Butte Member of the Pierre Shale, southeastern South Dakota and northeastern Nebraska. Cretaceous Research 19: 745–775.CrossRefGoogle Scholar
  101. Kent, B. 1994. Fossil Sharks of the Chesapeake Bay Region, 1–146. Baltimore: Egan Rees and Boyer Publishers.Google Scholar
  102. Korbar, T., A. Montanari, V.P. Fućek, L. Fuček, R. Coccioni, I. McDonald, P. Claeys, T. Schulz, and Christian Koeberl. 2015. Potential Cretaceous-Paleogene boundary Tsunami Deposit in the Intra-Tethyan Adriatic carbonate platform section of Hvar (Croatia). Geological Society of America Bulletin 127: 1666–1680.CrossRefGoogle Scholar
  103. Kring, D. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255: 4–21.CrossRefGoogle Scholar
  104. Kriwet, J., and M. Benton. 2004. Neoselachian (Chondrichthyes, Elasmobranchii) Diversity Across the Cretaceous-Tertiary Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214: 181–194.CrossRefGoogle Scholar
  105. Landman, N., R. Johnson, and L. Edwards. 2004. Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 2. Northeastern Monmouth County, New Jersey. Bulletin of the American Museum of Natural History 33: 1–107.CrossRefGoogle Scholar
  106. Landman, N., M. Garb, R. Rovelli, D. Ebel, and L. Edwards. 2012. Short-term survival of ammonites in New Jersey after the end-Cretaceous bolide impact. Acta Palaeontologica Polonica 57: 703–715.CrossRefGoogle Scholar
  107. Larina, E., M. Garb, N. Landman, N. Dastas, N. Thibault, L. Edwards, G. Phillips, R. Rovelli, C. Myers, and J. Naujokaityte. 2016. Upper Maastrichtian Ammonite biostratigraphy of the Gulf Coastal Plain (Mississippi Embayment, southern USA). Cretaceous Research 60: 128–151.CrossRefGoogle Scholar
  108. Leriche, M. 1905. Les poisons tértiaires de la Belgique. II. Les poissons eocénes. Mémoires du Musee Royal d’Histoire Naturelle Beligique 11: 49–228.Google Scholar
  109. Leriche, M. 1913. Les poissons paléocènes de Landana (Congo). Les gisements de poissons paléocènes et éocènes de la côte occidentale d’Afrique. Annales du Musée du Congo Belge 1: 67–91.Google Scholar
  110. Leriche, M. 1938. Contribution à l’étude des poissons fossiles des pays riverains de la Méditerranée américaine (Venezuela, Trinité, Antilles, Mexique). Mémoires de la Société Paléontologique Suisse 61: 1–42.Google Scholar
  111. Li, L., G. Keller, T. Adatte, and W. Stinnesbeck. 2000. Late Cretaceous Sea Level Changes in Tunisia: A Multi-Disciplinary approach. Journal of the Geological Society 157: 447–458.CrossRefGoogle Scholar
  112. Liddicoat, J., J. Hazel, and E. Brouwers. 1981. Magnetostratigraphy of Upper Cretaceous deposits in southwestern Arkansas and northeastern Texas. American Association of Petroleum Geologists 65: 764–765.Google Scholar
  113. MacLeod, K., P. Quinton, J. Sepúlveda, and M. Negra. 2018. Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science 360: 1467–1469.CrossRefGoogle Scholar
  114. Maisch IV, H., M. Becker, B. Raines, and J. Chamberlain Jr. 2014. Chondrichthyans from the Tallahatta-Lisbon Formation Contact (Middle Eocene) Silas, Choctaw County, Alabama. Paludicola 9: 183–209.Google Scholar
  115. Maisch IV, H., M. Becker, and J. Chamberlain Jr. 2015. Chondrichthyans from a lag deposit between the Shark River Formation (Middle Eocene) and Kirkwood Formation (Early Miocene), Monmouth County, New Jersey. Paludicola 10: 149–183.Google Scholar
  116. Maisch IV, H., M. Becker, and J. Chamberlain Jr. 2018a. Lamniform and Carcharhiniform Sharks from the Pungo River and Yorktown Formations (Miocene–Pliocene) of the Submerged Continental Shelf, Onslow Bay, North Carolina, USA. Copeia 106: 353–374.CrossRefGoogle Scholar
  117. Maisch, H., IV, M. Becker, and J. Chamberlain Jr. 2018b. Bioerosion of megatoothed shark teeth: Implications for timing vertebrate fossil lag deposits (Onslow Bay, North Carolina, USA). Society of Vertebrate Paleontology Annual Conference. B-82.Google Scholar
  118. Mancini, E., B. Tew, and C. Smith. 1989. Cretaceous-Tertiary contact, Mississippi and Alabama. The Journal of Foraminiferal Research 19: 93–104.CrossRefGoogle Scholar
  119. Mancini, E., T. Puckett, B. Tew, and C. Smith. 1995. Upper Cretaceous sequence stratigraphy of the Mississippi—Alabama Area. Gulf Coast Association of Geological Societies, Transactions. 45: 377–384.Google Scholar
  120. Mancini, E., and T. Puckett. 2005. Jurassic and Cretaceous transgressive-regressive (TR) cycles Northern Gulf of Mexico, USA. Stratigraphy 2: 31–48.Google Scholar
  121. Mannering, A., and N. Hiller. 2008. An Early Cenozoic Neoselachian Shark Fauna from the Southwest Pacific. Palaeontology 51: 1341–1365.CrossRefGoogle Scholar
  122. Manning, E., and D. Dockery. 1992. A guide to the Frankstown vertebrate fossil locality (Upper Cretaceous), Prentiss County, Mississippi. Mississippi Department of Environmental Quality, Office of Geology Circular 4: 1–43.Google Scholar
  123. Marmi, J., B. Vila, O. Oms, A. Galobart, and H. Cappetta. 2010. Oldest records of stingray spines (Chondrichthyes, Myliobatiformes). Journal of Vertebrate Paleontology 30: 970–974.CrossRefGoogle Scholar
  124. McFarland, J. 2004. Stratigraphic Summary of Arkansas; Information Circular. Arkansas Geological Commission: Little Rock, Arkansas, USA 36: 1–44.Google Scholar
  125. Miller, K., R. Sherrell, J. Browning, M. Field, W. Gallagher, Richard K. Olsson, P. Sugarman, S. Tuorto, and H. Wahyudi. 2010. Relationship Between Mass Extinction and Iridium Across the Cretaceous-Paleogene Boundary in New Jersey. Geology 38: 867–870.CrossRefGoogle Scholar
  126. Moody, R., and P. Sutcliffe. 1993. The sedimentology and palaeontology of the Upper Cretaceous-Tertiary deposits of central West Africa. Modern Geology 18: 539–554.Google Scholar
  127. Moreau, F., and S. Mathis. 2000. Les élasmobranches du Thanétien (Paléocène) du Nord de la France, des carrières de Templeuve et de Leforest. Cossmanniana 7: 1–4.Google Scholar
  128. Müller, J., and J. Henle. 1837. On the generic characters of cartilaginous fishes with descriptions of new genera. Magazine of Natural History 2: 1–91.Google Scholar
  129. Müller, J. and J. Henle. 1838–1841 [1838]. Systematische Beschreibung der Plagiostomen, xxii + 1–200. Berlin: Veit.Google Scholar
  130. Nishida, K. 1990. Phylogeny of the suborder Myliobatoidei. Memoirs of the Faculty of Fisheries Hokkaido University 37: 1–108.Google Scholar
  131. Noubhani, A. 2010. The Selachian Faunas of the Moroccan phosphate deposits and the KT mass extinctions. Historical Biology 22: 71–77.CrossRefGoogle Scholar
  132. Noubhani, A., and H. Cappetta. 1997. Les Orectolobiformes, Carcharhiniformes et Myliobatiformes (Elasmobranchii, Neoselachii) des Bassins à phosphate du Maroc (Maastrichtien-Lutétien basal). Systématique, biostratigraphie, évolution et dynamique des faunes. Palaeo Ichthyologica 8: 1–327.Google Scholar
  133. Oboh-Ikuenobe, F., M. Spencer, C. Campbell, and R. Haselwander. 2012. A Portrait of Late Maastrichtian and Paleocene palynoflora and paleoenvironment in the northern Mississippi Embayment, southeastern Missouri. Palynology 36: 63–79.CrossRefGoogle Scholar
  134. Obruchev, D. 1953. Izuchenie edestid y raboty A. P. Karpinskogo. Trudy Paleontologičeskogo Instituta Akademija Nauk SSSR 45: 1–85.Google Scholar
  135. Otero, R., J. Oyarzún, S. Soto-Acuña, R. Yury-Yáñez, N. Gutierrez, J. Le Roux, T. Torres, and F. Hervé. 2013. Neoselachians and Chimaeriformes (Chondrichthyes) from the latest Cretaceous– Paleogene of Sierra Baguales, southernmost Chile. Chronostratigraphic, Paleobiogeographic and Paleoenvironmental Implications. Journal of South American Earth Sciences 48: 13–30.CrossRefGoogle Scholar
  136. Parmley, D., and D. Cicimurri. 2005. First Record of a Chimaeroid Fish from the Eocene of the Southeastern United States. Journal of Paleontology 79: 1219–1221.CrossRefGoogle Scholar
  137. Phillips, G., C. Sloan, and D. Linck. 2015. Early Paleocene beds at the I-30 slide locality near Rockport. Southeastern Association of Vertebrate Paleontology eighth Annual Research Conference. (n.v., n.p.).Google Scholar
  138. Phillips, G. and G. Case. 2019. An elasmobranch assemblage from the Danian (Early Paleocene) of Mississippi. Geologic Society of America Abstracts with Programs 33-3.Google Scholar
  139. Pitakpaivan, P., and J. Hazel. 1994. Ostracods and Chronostratigraphic Position of the Upper Cretaceous Arkadelphia Formation of Arkansas. Paleontology 68: 111–122.CrossRefGoogle Scholar
  140. Purdy, R. 1998. Chondrichthyan Fishes from the Paleocene of South Carolina. Transactions of the American Philosophical Society, New Series 88: 122–146.CrossRefGoogle Scholar
  141. Rafinesque, C. 1810. Caraterri di alcuni nuovi generi e nuove specie di animali piante Della Sicilia, 1–105. Palermo: Sanfilippo.Google Scholar
  142. Rangel, B., S. Rodrigues, P. Favaron, A. Amorim, and R. Rici. 2014. Structure and dental sexual dimorphism in Dasyatis hypostigma (Santos & Carvalho, 2004) (Myliobatiformes, Dasyadae). In Microscopy: advances in scientific research and education, ed. A. Méndez-Vilas, 89–94.Google Scholar
  143. Ribeiro de Santana, F., D. Cicimurri, and J. Barbosa. 2011. New material of Apocopodon sericeus Cope 1886 (Myliobatiformes, Myliobatidae) from the Paraíba basin (northeastern Brazil), and South Carolina (USA) with a reanalysis of the species. PalArch’s Journal of Vertebrate Paleontology 8: 1–20.Google Scholar
  144. Roemer, C. 1849. Mit besonderer Rücksicht auf deutsche Auswanderung und die physischen Verhältnisse des Landes. Mit einem naturwissenschaftlichen Anhange und einer topographisch-geognostischen Karte von Texas. Index Specierum et generum 1: 1–464.Google Scholar
  145. Romer, A. 1942. Notes on certain American Paleozoic fishes. American Journal of Science 240: 216–228.CrossRefGoogle Scholar
  146. Rovelli, R., M. Garb, E. Larina, J. Sloan, N. Landman, J. Naujokaityte, and G. Phillips. 2014. Evidence of Chicxulub Impact Record for the First Time in Arkansas. Geologic Society of America Abstracts with Programs 320-6.Google Scholar
  147. Savrda, C. 1993. Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous Tertiary boundary sands in Alabama. Geology 21: 1075–1078.CrossRefGoogle Scholar
  148. Schoene, B., M. Eddy, K. Samperton, C. Keller, G. Keller, T. Adatte, and S. Khadri. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363: 862–866.CrossRefGoogle Scholar
  149. Schulte, P., L. Alegret, I. Arenillas, J. Arz, P. Barton, P. Bown, T. Bralower, et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327: 1214–1218.CrossRefGoogle Scholar
  150. Scotese, C. 2014. Atlas of Late Cretaceous Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 1622, Mollweide Projection. Evanston, Ill.: PALEOMAP Project.Google Scholar
  151. Shimada, K. 1997. Skeletal anatomy of the Late Cretaceous lamniform shark, Cretoxyrhina mantelli from the Niobrara Chalk in Kansas. Journal of Vertebrate Paleontology 17: 642–652.CrossRefGoogle Scholar
  152. Shimada, K., and D. Cicimurri. 2005. Skeletal anatomy of the Late Cretaceous shark, Squalicorax (Neoselachii: Anacoracidae). Paläontologische Zeitschrift 79: 241–261.CrossRefGoogle Scholar
  153. Shimada, K., B. Schumacher, J. Parkin, and J. Palermo. 2006. Fossil marine vertebrates from the lowermost Greenhorn Limestone (Upper Cretaceous: Middle Cenomanian) in southeastern Colorado. Journal of Paleontology 63: 1–45.CrossRefGoogle Scholar
  154. Sibert, E., P. Hull, and R. Norris. 2014. Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nature Geoscience 7: 667–670.CrossRefGoogle Scholar
  155. Sibert, E., and R. Norris. 2015. New Age of Fishes initiated by the Cretaceous–Paleogene mass extinction. Proceedings of the National Academy of Sciences 112: 8537–8542.CrossRefGoogle Scholar
  156. Sibert, E., R. Norris, J. Cuevas, and L. Graves. 2016. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proceedings of the Royal Society B: Biological Sciences 283: 20160189. Scholar
  157. Silva, V. 1994. Chondrichthyes das formações Gramame e Maria Farinha: aspectos evolutivos e paleoecológicos. I. Superordem Batomorphii. Acta Geologica Leopoldensia 17: 315–328.Google Scholar
  158. Siverson, M. 1995. Revision of the Danian cow sharks, sand tiger sharks, and goblin sharks (Hexanchidae, Odontaspididae, and Mitsukurinidae) from southern Sweden. Journal of Vertebrate Paleontology 15: 1–12.CrossRefGoogle Scholar
  159. Smit, J., T. Roep, W. Alvarez, A. Montanari, P. Claeys, J. Grajales-Nishimura, and J. Bermudez. 1996. Coarse-grained clastic sandstone complex at the K/T boundary around the Gulf of Mexico: deposition by tsunami waves induced by the Chicxulub impact. Geological Society of America Special Paper 307: 151–182.Google Scholar
  160. Sprain, C., P. Renne, L. Vanderkluysen, K. Pande, S. Self, and M. Tushar. 2019. The Eruptive tempo of Deccan volcanism in Relation to the Cretaceous-Paleogene boundary. Science 363: 866–870.CrossRefGoogle Scholar
  161. Stahl, B., and D. Parris. 2004. The complete dentition of Edaphodon mirificus (Chondrichthyes: Holocephali) from a single individual. Journal of Paleontology 78: 388–392.CrossRefGoogle Scholar
  162. Stinnesbeck, W., and G. Keller. 1995. The Cretaceous-Tertiary boundary in southern low-latitude regions: preliminary study in Pernambuco, northeastern Brazil—Comments and Reply. Terra Nova 7: 375–378.CrossRefGoogle Scholar
  163. Stringer, G. and J. Sloan. 2018. Significance of Early Paleocene Fish Otoliths from two Clayton Formation (Danian) Sites in Central Arkansas. Geologic Society of America Abstracts with Programs, P. 2-11.Google Scholar
  164. Stromer, E. 1910. Reptilien und Fischreste aus dem marinen Alttertiär von Südtogo (Westafrika). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 52: 478–505.Google Scholar
  165. Underwood, C., Z. Johanson, M. Welten, B. Metscher, L. Rasch, G. Fraser, and M. Smith. 2015. Development and evolution of dentition pattern and tooth order in the skates and rays (Batoidea; Chondrichthyes). PLoS One 10: e0122553.CrossRefGoogle Scholar
  166. Ward, D. 1988. Hypotodus verticalis (Agassiz 1843), Hypotodus robustus (Leriche 1921) and Hypodus heinzelini (Casier 1967), Chondrichthyes, Lamniformes, junior synonyms of Carcharias hopei (Agassiz 1843). Tertiary Research 10: 1–12.Google Scholar
  167. Ward, D., and R. Wiest. 1990. A checklist of Paleocene and Eocene sharks and rays (Chondrichthyes) from the Pamunkey Group, Maryland and Virginia, USA. Tertiary Research 12: 81–88.Google Scholar
  168. Welton, B. 1974. Preliminary note on the Paleocene elasmobranchs of the Lodo Formation, Fresno County, California. In Pacific Section, S.E.P.M., Fall Guidebook for the Paleogene of the Panoche CreekCantua Creek area, Central California, 91–97.Google Scholar
  169. Welton, B., and R. Farish. 1993. The Collector’s Guide to Fossil sharks and rays from the Cretaceous of Texas, 1–204. Lewisville: Before Time Publishers.Google Scholar
  170. White, E. 1931. The vertebrate faunas of the English Eocene. I. From the Thanet Sands to the Basement Bed of the London Clay, 1–121. London: British Museum (Natural History).Google Scholar
  171. Winkler, T. 1876. Deuxième Mémoire sur des dents de poisons du terrain Bruxellien. Archives du Musée Teyler 4: 16–48.Google Scholar
  172. Witts, J., R. Whittle, P. Wignall, J. Crame, J. Francis, R. Newton, and V. Bowman. 2016. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica. Nature communications 7: 11738.CrossRefGoogle Scholar
  173. Witts, J., N. Landman, M. Garb, C. Boas, E. Larina, R. Rovelli, L. Edwards, R. Sherrell, and J. Kirk Cochran. 2018. A fossiliferous spherule-rich bed at the Cretaceous-Paleogene (K–Pg) boundary in Mississippi, USA: Implications for the K-Pg mass extinction event in the Mississippi Embayment and Eastern Gulf Coastal Plain. Cretaceous Research 91: 147–167.CrossRefGoogle Scholar
  174. Woodward, A. 1907. Notes on some Upper Cretaceous fish-remains from the Provinces of Sergipe and Pernambuco, Brazil. Geological Magazine 4: 193–197.CrossRefGoogle Scholar
  175. Zakharov, Y., A. Popov, Y. Shigeta, O. Smyshlyaeva, E. Sokolova, R. Nagendra, T. Velivetskaya, and T. Afanasyeva. 2006. New Maastrichtian oxygen and carbon isotope record: Additional evidence for warm low latitudes. Geosciences Journal 10: 347.CrossRefGoogle Scholar
  176. Zinsmeister, W. 1998. Discovery of fish mortality horizon at the K/T boundary on Seymour Island: re-evaluation of events at the end of the Cretaceous. Journal of Paleontology 72: 556–571.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  • Harry M. MaischIV
    • 1
    Email author
  • Martin A. Becker
    • 1
  • Michael L. Griffiths
    • 1
  1. 1.Department of Environmental ScienceWilliam Paterson University of New JerseyWayneUSA

Personalised recommendations