Advertisement

PalZ

pp 1–19 | Cite as

On the presence of Ichniotherium in the Coconino Sandstone (Cisuralian) of the Grand Canyon and remarks on the occupation of deserts by non-amniote tetrapods

  • Heitor FrancischiniEmail author
  • Spencer G. Lucas
  • Sebastian Voigt
  • Lorenzo Marchetti
  • Vincent L. Santucci
  • Cassandra L. Knight
  • John R. Wood
  • Paula Dentzien-Dias
  • Cesar L. Schultz
Research Paper

Abstract

The colonization of deserts by tetrapods occurred for the first time in the late Paleozoic. In spite of amniotes being the most abundant and diverse taxon in such environments, fossil tracks indicate that anamniotes also inhabited late Paleozoic deserts. In this paper, the presence of the tetrapod-footprint ichnotaxa Ichniotherium sphaerodactylum and cf. Ichniotherium is documented in the eolian Coconino Sandstone (early Permian), based on 16 trackways found at several localities in Arizona, USA. Because there is a strong association between Ichniotherium and different species of diadectomorphs, we also discuss some aspects of the ichnotaxonomy of this ichnogenus. Diadectomorpha is considered the sister taxon of Amniota and, as a consequence, the tracks described in this paper represent the oldest evidence of occupation of deserts by non-amniote tetrapods. The presence of Ichniotherium in this environmental context also sheds light on the paleobiology of Diadectomorpha and, as a result, the emergence of features typically related to Amniota. The ichnofauna of the Coconino Sandstone has been used as a model for the Chelichnus ichnofacies, which supposedly indicates a low-diversity desert fauna. On the other hand, the tracks described here demonstrate that diadectomorphs were also important faunal components of such deserts and suggests that the significance of this ichnofacies should be reconsidered.

Keywords

Leonardian Permian Arizona Ichnology Diadectomorpha Ichniotherium sphaerodactylum 

Notes

Acknowledgements

We thank Ms. Anne Miller (NPS, GRCA) and Mr. Bill Ludlow (Mesa, Arizona) for their field assistance. We are also indebted to Mrs. Coleen Hyde (NPS, GRCA), Mrs. Janet Gillette, Dr. David Gillette (both MNA), Dr. Andrew Farke, Mr. Gabriel Santos (both RAM), Dr. Patricia Holroyd (UCMP), Dr. Daniel Brinkman (YPM), Dr. Robert Emry and Amanda Millhouse (both USNM) for allowing the analysis of specimens under their care. We also thank Dr. Martin G. Lockley (UCD), Dr. Jahn J. Hornung and Dr. Mike Reich (both formerly at Georg-August-Universität Göttingen) for their comments which greatly improved the early version of this manuscript. Voltaire Paes Neto (UFRGS) is acknowledged by the artwork presented in Fig. 8. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior with grants to Heitor Francischini (Process numbers: 150623/2018-6 and 88881.133764/2016-01, respectively).

Supplementary material

12542_2019_450_MOESM1_ESM.pdf (589 kb)
Supplementary material 1 (PDF 588 kb)

References

  1. Abel, O. 1935. Vorzeitliche Lebensspuren. Jena: Gustav Fischer.Google Scholar
  2. Berman, D.S. 1971. A small skull of the Lower Permian reptile Diadectes from the Washington Formation, Dunkard Group, West Virginia. Annals of Carnegie Museum 43: 33–46.Google Scholar
  3. Berman, D.S. 2013. Diadectomorphs, amniotes or not? New Mexico Museum of Natural History and Science 60: 22–35.Google Scholar
  4. Berman, D.S., A.C. Henrici, R.A. Kissel, S.S. Sumida, and T.S. Martens. 2004. A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of Central Germany. Bulletin of the Carnegie Museum of Natural History 35: 1–36.CrossRefGoogle Scholar
  5. Berman, D.S., A.C. Henrici, and S.G. Lucas. 2015. Pennsylvanian-Permian red bed vertebrate localities of New Mexico and their assemblages. New Mexico Museum of Natural History and Science 68: 65–76.Google Scholar
  6. Berman, D.S., and S.S. Sumida. 1995. New cranial material of the rare diadectid Desmatodon hesperis (Diadectomorpha) from the late Pennsylvanian of central Colorado. Annals of Carnegie Museum 64(4): 315–336.Google Scholar
  7. Berman, D.S., S.S. Sumida, and R.E. Lombard. 1997. Biogeography of primitive amniotes. In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 85–139. San Diego, Calif.: Academic Press.CrossRefGoogle Scholar
  8. Berman, D.S., S.S. Sumida, and T. Martens. 1998. Diadectes (Diadectomorpha: Diadectidae) from the early Permian of central Germany, with description of a new species. Annals of Carnegie Museum 67(1): 53–93.Google Scholar
  9. Blakey, R.C., and R. Knepp. 1989. Pennsylvanian and Permian geology of Arizona. In Geologic evolution of Arizona, vol. 17, eds. J.P. Jerney and S.J. Reynolds, 313–347. Tucson, Ariz.: Arizona Geological Society. (= Arizona Geological Society gigest 17).Google Scholar
  10. Brand, L.R. 1979. Field and laboratory studies on the Coconino Sandstone (Permian) vertebrate footprints and their paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 28: 25–38.CrossRefGoogle Scholar
  11. Brink, K.S., J.R. Hawthorn, and D.C. Evans. 2012. New occurrences of Ichniotherium and Striatichnium from the Lower Permian Kildare Capes Formation, Prince Edward Island, Canada: palaeoenvironmental and biostratigraphic implications. Palaeontology 55(5): 1075–1090.CrossRefGoogle Scholar
  12. Buchwitz, M., and S. Voigt. 2018. On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes. PeerJ 6: e4346.  https://doi.org/10.7717/peerj.4346.CrossRefGoogle Scholar
  13. Carman, J.E. 1927. Fossil footprints from the Pennsylvanian System in Ohio. Bulletin of the Geological Society of America 38: 385–396.CrossRefGoogle Scholar
  14. Carroll, R.L. 1970. Quantitative aspects of the amphibian–reptilian transition. Forma et Functio 1970: 165–178.Google Scholar
  15. Carroll, R.L. 2009. The rise of amphibians: 365 million years of evolution. Baltimore: The Johns Hopkins University Press.Google Scholar
  16. Case, E.C. 1912. New or little known reptiles and amphibians from the Permian (?) of Texas. Bulletin of the American Museum of Natural History 28: 136–181.Google Scholar
  17. Case, E.C., and S.W. Williston. 1912. A description of the skulls of Diadectes lentus and Animasaurus carinatus. American Journal of Science 33: 339–348.CrossRefGoogle Scholar
  18. Cei, R.L., and J. Gargiulo. 1977. Icnites de tetrapodos permicos del sur de Mendoza. Ameghiniana 14: 127–132.Google Scholar
  19. Ceoloni, P., M.A. Conti, N. Mariotti, P. Mietto, and U. Nicosia. 1988. New Late Permian tetrapod footprints from Southern Alps. Memorie della Società Geologica Italiana 34: 45–65.Google Scholar
  20. Chure, D.J., G.F. Engelmann, T.R. Good, G. Haymes, and R. Hansen. 2014. The first record of vertebrate tracks from the eolian Weber Sandstone (Pennsylvanian-Permian), northeastern Utah: a preliminary report. New Mexico Museum of Natural History and Science Bulletin 62: 95–101.Google Scholar
  21. Conti, M.A., G. Leonardi, N. Mariotti, and U. Nicosia. 1977. Tetrapod footprints of the “Val Gardena Sandstone” (North Italy). Their paleontological, stratigraphic and paleoenvironmental meaning: Palaeontographia Italica 70: 1–91.Google Scholar
  22. Cope, E.D. 1880. The skull of Empedocles. The American Naturalist 14: 304.CrossRefGoogle Scholar
  23. Czyżewska, T. 1955. Tropy gadów permskich z Wambierzyc (Dolny Śląsk). Acta Geologica Polonica 5(2): 131–160.Google Scholar
  24. Dawson, J.W. 1882. On results of recent explorations of erect trees containing animal remains in the coal formation of Nova Scotia. Philosophical Transactions of the Royal Society of London 173(2): 621–659.Google Scholar
  25. Duellman, W., and L. Trueb. 1986. Biology of amphibians. Baltimore: The Johns Hopkins University Press.Google Scholar
  26. Eberth, D.A., D.S. Berman, S.S. Sumida, and H. Hopf. 2000. Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, Central Germany): the Upland Holy Grail. Palaios 15(40): 293–313.CrossRefGoogle Scholar
  27. Farmer, M.F. 1956. Tracks and trackways of Northern Arizona—a record of the past. Plateau 28(3): 54–66.Google Scholar
  28. Fichter, J. 1994. Permische Saurierfährten—Ein Diskussionsbeitrag zu der Bearbeitungsproblematik der Tetrapodenfährten des Cornberger Sandsteins (Perm, Deutschland) und des Coconino Sandsteins (Perm, USA). Philippia 7(1): 61–82.Google Scholar
  29. Francischini, H., P. Dentzien-Dias, M.A. Fernandes, and C.L. Schultz. 2015. Dinosaur ichnofauna of the Upper Jurassic/Lower Cretaceous of the Paraná Basin (Brazil and Uruguay). Journal of South American Earth Sciences 63: 180–190.CrossRefGoogle Scholar
  30. Francischini, H., P. Dentzien-Dias, S.G. Lucas, and C.L. Schultz. 2018. Tetrapod tracks in Permo-Triassic eolian beds of Southern Brazil (Paraná Basin). PeerJ.  https://doi.org/10.7717/peerj.4764.CrossRefGoogle Scholar
  31. Fritsch, A. 1887. Giant Permian tetrapod footprints. Vesmír 16: 121–122.Google Scholar
  32. Fritsch, A. 1895. Über neue Wirbeltiere aus der Permformation Böhmens nebst einer Übersicht der aus derselben bekannt gewordenen Arten. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften, Mathematisch-Naturwissenchaftliche Klasse 52: 1–17.Google Scholar
  33. Fritsch, A. 1912. Studien im Gebiete der Permformation Böhmens. Archiv für die Naturwissenschaftliche Landesdurchforschung von Böhmen 15: 1–52.Google Scholar
  34. Fröbisch, N.B., J.C. Olori, R.R. Schoch, and F. Witzmann. 2009. Amphibian development in the fossil record. Seminars in Cell & Developmental Biology 21: 424–431.CrossRefGoogle Scholar
  35. Gand, G., and M. Durand. 2006. Tetrapod footprint ichno-associations from French Permian basins. Comparisons with other Euramerican ichnofaunas. In Non-marine Permian biostratigraphy and biochronology, eds. S.G. Lucas, G. Cassinis, and J.W. Schneider, 157–177. London: Geological Society. (Geological Society, Special Publications 265).Google Scholar
  36. Gilmore, C.W. 1926. Fossil footprints from the Grand Canyon. Smithsonian Miscellaneous Collections 77(9): 1–41.Google Scholar
  37. Gilmore, C.W. 1927. Fossil footprints from the Grand Canyon: second contribution. Smithsonian Miscellaneous Collections 80(3): 1–78.Google Scholar
  38. Gilmore, C.W. 1928. Fossil footprints from the Grand Canyon: third contribution. Smithsonian Miscellaneous Collections 80(8): 1–16.Google Scholar
  39. Gilmore, C.W., and G.E. Sturdevant. 1928. Discovery of fossil tracks on the North Rim of the Grand Canyon. Science 67(1730): 216.CrossRefGoogle Scholar
  40. Goin, O.B., and C.J. Goin. 1962. Amphibian eggs and the montane environment. Evolution 16: 364–371.CrossRefGoogle Scholar
  41. Hasiotis, S.J., B.F. Platt, D.I. Hembree, and M.J. Everhart. 2007. The trace-fossil record of vertebrates. In Trace fossils. Concepts, problems, prospects, ed. W. Miller, 196–218. Amsterdam: Elsevier.Google Scholar
  42. Haubold, H. 1970. Versuch der Revision der Amphibien-Fährten des Karbon und Perm. Freiberger Forschungshefte C 260: 83–117.Google Scholar
  43. Haubold, H. 1971. Ichnia amphibiorum et reptiliorum fossilium. In Handbuch der Paläoherpetologie, ed. O. Kuhn, 1–124. Jena: Gustav Fischer Verlag.Google Scholar
  44. Haubold, H., M.G. Lockley, A.P. Hunt, and S.G. Lucas. 1995. Lacertoid footprints from Permian dune sandstones, Cornberg and De Chelly Sandstones. New Mexico Museum of Natural History and Science Bulletin 6: 235–244.Google Scholar
  45. Hay, O.P. 1902. Bibliography and catalogue of the fossil vertebrata of North America. U.S. Geological Survey Bulletin 179: 1–868.Google Scholar
  46. Hirsch, K.F. 1979. The oldest vertebrate egg? Journal of Paleontology 53(5): 1068–1084.Google Scholar
  47. Hotton, N., E.C. Olson, and R. Beerbower. 1997. Amniote origins and the discovery of herbivory. In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 207–264. San Diego, Calif.: Academic Press.Google Scholar
  48. Hunt, A.P., and S.G. Lucas. 2005a. Stratigraphic distribution of ichnofossils in the Coconino Sandstone (Permian: Leonardian) of Grand Canyon National Park and the Seligman/Ash Fork area, northern Arizona, USA. New Mexico Museum of Natural History and Science Bulletin 30: 132.Google Scholar
  49. Hunt, A.P., and S.G. Lucas. 2005b. Tetrapod ichnofacies and their utility in the Paleozoic. Alabama Paleontological Society Monograph 1: 113–119.Google Scholar
  50. Hunt, A.P., and S.G. Lucas. 2006. Permian tetrapod ichnofacies. In Non-marine biostratigraphy and biochronology, eds. S.G. Lucas, G. Cassinis, and J.W. Schneider, 137–156. London: Geological Society. (Geological Society, Special Publications 265).Google Scholar
  51. Hunt, A.P., and S.G. Lucas. 2007. Tetrapod ichnofacies: a new paradigm. Ichnos 14: 59–68.CrossRefGoogle Scholar
  52. Hunt, A.P., and S.G. Lucas. 2016. The case for archetypal vertebrate ichnofacies. Ichnos 23(3–4): 237–247.CrossRefGoogle Scholar
  53. Hunt, A.P., S.G. Lucas, and J.A. Spielmann. 2005. The Permian tetrapod ichnogenus Ichniotherium cottae from central New Mexico. New Mexico Museum of Natural History and Science Bulletin 31: 56–58.Google Scholar
  54. International Committee for Zoological Nomenclature (ICZN). 1999. International code for zoological nomenclature. London: The International Trust for Zoological Nomenclature, Natural History Museum.Google Scholar
  55. Jardine, W. 1850. Note to Mr. Harkness’s paper “On the position of the impressions of footsteps in the Bunter sandstones of Dumfries-shire”. Annals and Magazine of Natural History 6: 208–209.Google Scholar
  56. Jardine, W. 1853. The ichnology of Annandale or illustrations of footmarks impressed on the new red sandstone of Corncockle Muir. Edinburgh: W.H. Lizars.Google Scholar
  57. Kissel, R.A., and R.R. Reisz. 2004. Ambedus pusillus, new genus, new species, a small diadectid (Tetrapoda: Diadectomorpha) from the Lower Permian of Ohio, with a consideration of diadectomorph phylogeny. Annals of Carnegie Museum 73(4): 197–212.Google Scholar
  58. Kohring, R.R. 1995. Reflections on the origin of the amniote egg in the light of reproductive strategies and shell structure. Historical Biology 10: 259–275.CrossRefGoogle Scholar
  59. Korn, H. 1933. Eine für die Kenntnis der Cotylosaurier des deutschen Perms bedeutsame Schwimmfährte von Tambach. Palaeobiologica 5: 169–201.Google Scholar
  60. Krapovickas, V., A.C. Mancuso, A.B. Arcucci, and A.T. Caselli. 2010. Fluvial and eolian ichnofaunas from the Lower Permian of South America (Patquía Formation, Paganzo Basin). Geologica Acta 8(4): 449–462.Google Scholar
  61. Krapovickas, V., M.G. Mángano, L.A. Buatois, and C.A. Marsicano. 2016. Integrated ichnofacies models for deserts: recurrent patterns and megatrends. Earth-Science Reviews 157: 61–85.CrossRefGoogle Scholar
  62. Krapovickas, V., C.A. Marsicano, A.C. Mancuso, M.S. de la Fuente, and E.G. Ottone. 2015. Tetrapod and invertebrate trace fossil from aeolian deposits of the lower Permian of central-western Argentina. Historical Biology 27(7): 827–842.CrossRefGoogle Scholar
  63. Kümmel, S.B., and E. Frey. 2012. Digital arcade in the autopodia of Synapsida: standard position of the digits and dorsoventral excursion angle of digital joints in the rays II–V. Palaeobiodiversity and Palaeoenvironments 92(2): 171–196.CrossRefGoogle Scholar
  64. Kümmel, S.B., and E. Frey. 2014. Range of movement in ray I of manus and pes and the prehensility of the autopodia in the early Permian to Late Cretaceous non-anomodont Synapsida. PLoS ONE 9(12): e113911.  https://doi.org/10.1371/journal.pone.0113911.CrossRefGoogle Scholar
  65. Lagnaoui, A., S. Voigt, A. Belahmira, H. Saber, H. Klein, A. Hminna, and J.W. Schneider. 2018. Late Carboniferous tetrapod footprints from the Souss Basin, Western High Atlas Mountains, Morocco. Ichnos 25(2–3): 81–93.CrossRefGoogle Scholar
  66. Langston, W. 1963. Fossil vertebrates and the late Palaeozoic red beds of Prince Edward Island. National Museum of Canada Bulletin 187: 1–36.Google Scholar
  67. Laurin, M., and R.R. Reisz. 1995. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society 113: 165–223.CrossRefGoogle Scholar
  68. Laurin, M., and R.R. Reisz. 1997. A new perspective on tetrapod phylogeny. In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 9–59. San Diego, Calif.: Academic Press.CrossRefGoogle Scholar
  69. LeBlanc, A.R.H., and R.R. Reisz. 2013. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS ONE.  https://doi.org/10.1371/journal.pone.0074697.CrossRefGoogle Scholar
  70. Lee, M.S.Y., and P.S. Spencer. 1997. Crown clades, key characters and taxonomic stability: when is an amniote not an amniote? In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 61–84. San Diego, Calif.: Academic Press.CrossRefGoogle Scholar
  71. Leonardi, G. 1987. Glossary and manual of tetrapod footprint palaeoichnology. Brasília: Departamento Nacional de Produção Mineral.Google Scholar
  72. Leonardi, G. 1994. Annotated Atlas of South America Tetrapod footprints (Devonian to Holocene). Brasília: Companhia de Pesquisas de Recursos Minerais.Google Scholar
  73. Lewis, G.E., and P.P. Vaughn. 1965. Early Permian vertebrates from the Cutler Formation of the Placerville area Colorado. U.S. Geological Survey Professional Paper 503-C: 1–50.Google Scholar
  74. Liu, J., and G.S. Bever. 2015. The last diadectomorph sheds light on Late Palaeozoic tetrapod biogeography. Biology Letters.  https://doi.org/10.1098/rsbl.2015.0100.CrossRefGoogle Scholar
  75. Lockley, M.G., A.P. Hunt, H. Haubold, S.G. Lucas, and A.B. Heckert. 1995. Fossil footprints in the De Chelly Sandstone of Arizona: with paleoecological observations on the ichnology of dune facies. New Mexico Museum of Natural History and Science Bulletin 6: 225–233.Google Scholar
  76. Lockley, M.G., A.P. Hunt, and C. Meyer. 1994. Vertebrate tracks and the ichnofacies concept: implications for paleoecology and palichnostratigraphy. In The palaeobiology of trace fossils, ed. S.K. Donovan, 241–268. London: John Wiley.Google Scholar
  77. Louw, G.N., and M.K. Seely. 1982. Ecology of desert organisms. New York: Longman.Google Scholar
  78. Lucas, S.G. 2013. Vertebrate biostratigraphy and biochronology of the upper Paleozoic Dunkard Group, Pennsylvania-West Virginia-Ohio, USA. International Journal of Coal Geology 119: 79–87.CrossRefGoogle Scholar
  79. Lucas, S.G. 2017. Permian tetrapod biochronology, correlation and evolutionary events. In The Permian timescale, eds. S.G. Lucas and S.Z. Shen, 405–444. London: Geological Society. (Geological Society, Special Publications 450).Google Scholar
  80. Lucas, S.G., A.D. Kollar, D.S. Berman, and A.C. Henrici. 2016. Pelycosaurian-grade (Amniota: Synapsida) footprints from the lower Permian Dunkard Group of Pennsylvania and West Virginia. Annals of Carnegie Museum 38: 287–294.CrossRefGoogle Scholar
  81. Lucas, S.G., J.A. Spielmann, H. Klein, and A.J. Lerner. 2010. Ichnology of the Upper Triassic (Apachean) Redonda Formation, east-central New Mexico. New Mexico Museum of Natural History and Science Bulletin 47: 3–74.Google Scholar
  82. Lull, R.S. 1918. Fossil footprints from the Grand Canyon of the Colorado. American Journal of Sciences 45(269): 337–346.Google Scholar
  83. Marchetti, L., M. Bernardi, and M. Avanzini. 2013. Some insights on well-preserved Amphisauropus and Erpetopus trackways from the Eastern Collio Basin (Trentino-Alto Adige, NE Italy). Bolletino della Società Paleontologica Italiana 52(1): 55–62.Google Scholar
  84. Marchetti, L., E. Mujal, and M. Bernardi. 2017a. An unusual Amphisauropus trackway and its implication for understanding seymouriamorph locomotion. Lethaia 50(1): 162–174.CrossRefGoogle Scholar
  85. Marchetti, L., S. Voigt, and H. Klein. 2017b. Revision of the late Permian tetrapod tracks from the Dolomites (Trentino-Alto Adige, Italy). Historical Biology.  https://doi.org/10.1080/08912963.2017.1391806.CrossRefGoogle Scholar
  86. Marchetti, L., S. Voigt, S.G. Lucas, H. Francischini, P. Dentzien-Dias, R. Sacchi, M. Mangiacotti, S. Scali, A. Gazzola, A. Ronchi, and A. Millhouse. 2019. New hypotheses on tetrapod locomotion and ichnotaxonomy in eolian paleoenvironments (Coconino and De Chelly formations, Arizona) provide evidence of a late Cisuralian (Permian) facies-crossing sauropsid radiation. Earth-Science Reviews 190: 148–170.CrossRefGoogle Scholar
  87. Marchetti, L., S. Voigt, and G. Santi. 2018. A rare occurrence of Permian tetrapod footprints: Ichniotherium cottae and Ichniotherium sphaerodactylum on the same stratigraphic surface. Ichnos 25(2–3): 106–118.CrossRefGoogle Scholar
  88. Marsh, O.C. 1894. Footprints of vertebrate in the coal measures of Kansas. American Journal of Science 48(283): 81–84.CrossRefGoogle Scholar
  89. Matthew, G.F. 1903. New genera of batrachian footprints of the Carboniferous System in Eastern Canada. Canadian Record of Science 9(2): 100–111.Google Scholar
  90. Matthews, N., T. Noble, and B. Breithaupt. 2016. Close range photogrammetry for 3-D Ichnology: the basics of Photogrammetric Ichnology. In Dinosaur tracks: the next steps, eds. P.L. Falkingham, D. Marty, and A. Richter, 29–55. Bloomington, Ind.: Indiana University Press.Google Scholar
  91. McKee, E.D. 1931. Fossil footprints of the Coconino. Grand Canyon Nature Notes 5(5): 43–44.Google Scholar
  92. McKee, E.D. 1933. The Coconino Sandstone—its history and origin. Carnegie Institute of Washington Publication 440: 77–115.Google Scholar
  93. McKee, E.D. 1940. Three types of cross-lamination in Paleozoic rocks of northern Arizona. American Journal of Science 238(11): 811–824.CrossRefGoogle Scholar
  94. McKee, E.D. 1944. Tracks that go uphill. Plateau 16(4): 61–72.Google Scholar
  95. McKee, E.D. 1945. Small-scale structures in the Coconino Sandstone of northern Arizona. The Journal of Geology 53(5): 313–325.CrossRefGoogle Scholar
  96. McKee, E.D. 1979. Ancient sandstones considered to be eolian. In A study of global sand seas, ed. E.D. McKee, 187–238. Washington: United States Government Printing Office.Google Scholar
  97. McKeever, P.J., and H. Haubold. 1996. Reclassification of vertebrate trackways from the Permian of Scotland and related forms from Arizona and Germany. Journal of Paleontology 70(6): 1011–1022.CrossRefGoogle Scholar
  98. Meade, L.E., A.S. Jones, and R.J. Butler. 2016. A revision of tetrapod footprints from the late Carboniferous of the West Midlands. UK: PeerJ.  https://doi.org/10.7717/peerj.2718.CrossRefGoogle Scholar
  99. Middleton, L.T., D.K. Elliott, and M. Morales. 1990. Coconino sandstone. In Grand Canyon geology, eds. S.S. Beus and M. Morales, 352–368. Oxford: Oxford University Press.Google Scholar
  100. Moodie, R.L. 1929. Vertebrate footprints from the Red Beds of Texas. American Journal of Science 97: 352–368.CrossRefGoogle Scholar
  101. Morales, M., and H. Haubold. 1995. Tetrapod tracks from the Lower Permian De Chelly Sandstone of Arizona: systematic description. New Mexico Museum of Natural History and Science Bulletin 6: 251–261.Google Scholar
  102. Mujal, E., J. Fortuny, O. Oms, A. Bolet, À. Galobart, and P. Anadón. 2016. Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the NE Iberian Peninsula (Pyrenean Basin). Geological Magazine 153(4): 578–600.CrossRefGoogle Scholar
  103. Müller, A.H. 1954. Zur Ichnologie und Stratinomie des Oberrotliegenden von Tambach (Thüringen). Paläontologische Zeitschrift 28: 189–203.CrossRefGoogle Scholar
  104. Narayan, E., K. Christi, and C. Morley. 2007. Provision of egg-laying sites for captive breeding of the endangered Fijian ground frog Platymantis vitianus, University of the South Pacific, Suva, Fiji. Conservation Evidence 4: 61–65.Google Scholar
  105. Noble, G.K. 1931. The biology of amphibia. New York: McGraw-Hill Book Company.CrossRefGoogle Scholar
  106. Nyakatura, J.A., V.R. Allen, J. Lauströer, A. Andikfar, M. Danczak, H.-J. Ullrich, W. Hufenbach, T. Martens, and M.S. Fischer. 2015. A three-dimensional skeletal reconstruction of the stem amniote Orobates pabsti (Diadectidae): analyses of body mass, centre of mass position, and joint mobility. PLoS ONE.  https://doi.org/10.17880/digital-reconstruction-of-orobates-pabstimng10181.CrossRefGoogle Scholar
  107. Olson, E.C. 1947. The family Diadectidae and its bearing on the classification of reptiles. Fieldiana Geology 11(1): 3–53.Google Scholar
  108. Olson, E.C. 1967. Early Permian vertebrates of Oklahoma. Oklahoma Geological Survey Circular 74: 1–111.Google Scholar
  109. Pabst, W. 1895. Thierfährten aus dem Rothliegenden von Friedrichroda, Tambach und Kabarz in Thüringen. Zeitschrift der Deutschen Geologischen Gesellschaft 47: 570–576.Google Scholar
  110. Packard, M.J., and R.S. Seymour. 1997. Evolution of the amniote egg. In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 265–290. San Diego, Calif.: Academic Press.CrossRefGoogle Scholar
  111. Pohlig, H. 1885. Saurierfährten in dem Unteren Rotliegenden von Friedrichroda. Verhandlungen des naturhistorischen Vereins der preussichen Rheinlande und Westfalens 42: 284–287.Google Scholar
  112. Pohlig, H. 1892. Altpermische Saurierfährten, Fische und Medusen der Gegend von Friedrichroda im Thüringen. Festschrift zum 70, Geburtstag von Rudolf Leuckardt, 1–413. Leipzig: Engelmann.Google Scholar
  113. Porter, K.R. 1972. Herpetology. Philadelphia: W. B. Saunders Company.Google Scholar
  114. Reiche, P. 1938. An analysis of cross-lamination—the Coconino sandstone. Journal of Geology 46(7): 905–932.CrossRefGoogle Scholar
  115. Reisz, R.R. 1997. The origin and early evolutionary history of amniotes. Trends in Ecology & Evolution 12(6): 218–222.CrossRefGoogle Scholar
  116. Reisz, R.R. 2006. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution? Journal of Experimental Zoology 306B: 261–277.CrossRefGoogle Scholar
  117. Reisz, R.R., and H.-D. Sues. 2000. Herbivory in late Paleozoic and Triassic terrestrial vertebrate. In Evolution of herbivory in terrestrial vertebrates. Perspectives from the fossil record, ed. H.-D. Sues, 9–41. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  118. Romano, M., and P. Citton. 2015. Reliability of digit length impression as a character of tetrapod ichnotaxobase: considerations from the Carboniferous-Permian ichnogenus Ichniotherium. Geological Journal 50(6): 827–838.CrossRefGoogle Scholar
  119. Romano, M., P. Citton, and U. Nicosia. 2016. Corroborating trackmaker identification through footprint functional analysis: the case study of Ichniotherium and Dimetropus. Lethaia 49(1): 102–116.CrossRefGoogle Scholar
  120. Romer, A.S. 1957. Origin of the amniote egg. The Scientific Monthly 85: 57–63.Google Scholar
  121. Romer, A.S., and L.I. Price. 1939. The oldest vertebrate egg. American Journal of Science 237: 826–829.CrossRefGoogle Scholar
  122. Romer, A.S., and L.I. Price. 1940. Review of the Pelycosauria. Baltimore, Md.: GSA. (= Geological Society of America, Special Papers 28).CrossRefGoogle Scholar
  123. Ruta, M., M.I. Coates, and D.L.J. Quicke. 2003. Early tetrapod relationships revisited. Biological Reviews of the Cambridge Philosophical Society 78(2): 251–345.CrossRefGoogle Scholar
  124. Santi, G., and U. Nicosia. 2008. The ichnofacies concept in vertebrate ichnology. Studi Trentini di Scienze Naturali, Acta Geologica 83: 223–229.Google Scholar
  125. Schmidt, H. 1956. Die große Bochumer Oberkarbon-Fährte. Paläontologische Zeitschrift 30: 199–206.CrossRefGoogle Scholar
  126. Schmidt, H. 1959. Die Cornberger Fährten im Rahmen der Vierfüßler-Entwicklung. Abhandlungen des Hessischen Landesamtes für Bodenforschung 28: 1–137.Google Scholar
  127. Seilacher, A. 1953a. Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 96: 421–452.Google Scholar
  128. Seilacher, A. 1953b. Studien zur Palichnologie. II. Die fossilen Ruhespuren (Cubichnia). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 98: 87–124.Google Scholar
  129. Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology 5: 413–428.CrossRefGoogle Scholar
  130. Simpson, L.C. 1979. Upper Gearyan and lower Leonardian terrestrial vertebrate faunas of Oklahoma. Oklahoma Geology Notes 39: 3–21.Google Scholar
  131. Spamer, E.E. 1984. Paleontology in the Grand Canyon of Arizona: 125 years of lessons and enigmas from the late Precambrian to the present. The Mosasaur 2: 45–128.Google Scholar
  132. Steiner, W., and H.-E. Schneider. 1963. Eine neue Lauffährte mit Schwanzschleppspur aus dem Oberrotliegenden von Tambach (Thüringer Wald). Geologie 12(6): 715–731.Google Scholar
  133. Stewart, J.R. 1997. Morphology and evolution of the egg of oviparous amniotes. In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 291–326. San Diego, Calif.: Academic Press.CrossRefGoogle Scholar
  134. Sues, H.-D., and R.R. Reisz. 1998. Origins and early evolution of herbivory in tetrapods. Trends in Ecology & Evolution 13(4): 141–145.CrossRefGoogle Scholar
  135. Sumida, S.S. 1997. Locomotor features of taxa spanning the origin of amniotes. In Amniote origins, eds. S.S. Sumida and K.L.M. Martin, 353–398. San Diego, Calif.: Academic Press.CrossRefGoogle Scholar
  136. Sumida, S.S., and S.P. Modesto. 2001. A phylogenetic perspective on locomotory strategies in early amniotes. American Zoologist 41: 586–597.Google Scholar
  137. Sumida, S.S., J.B.D. Wallister, and R.E. Lombard. 1999. Late Paleozoic amphibian-grade tetrapods of Utah. Utah Geological Survey Miscellaneous Publications 99–1: 21–30.Google Scholar
  138. Tihen, J.A. 1960. Comments on the origin of the amniote egg. Evolution 14: 528–531.CrossRefGoogle Scholar
  139. Vitt, L.J., and J.P. Caldwell. 2009. Herpetology. Burlington: Elsevier.Google Scholar
  140. Voigt, S. 2005. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald—Ichnotaxonomie, Paläoökologie und Biostratigraphie. Göttingen: Cuvillier Verlag.Google Scholar
  141. Voigt, S. 2010. Tetrapodenfährten. In Stratigraphie von Deutschland X.—Rotliegend der variscischen Innenbecken, ed. Deutsche Stratigraphische Kommission, 92–106. Hannover: DGG. (= Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61).Google Scholar
  142. Voigt, S. 2015. Der Holotypus von Amphisauropus latus Haubold, 1970—ein besonderes Objekt permischer Tetrapodenfährten im Naturhistorischen Museum Schloss Bertholsburg Schleusingen. Semana 30: 39–49.Google Scholar
  143. Voigt, S., D.S. Berman, and A.C. Henrici. 2007. First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology 27(3): 553–570.CrossRefGoogle Scholar
  144. Voigt, S., and M. Ganzelewski. 2010. Toward the origin of amniotes: Diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontologica Polonica 55(1): 57–72.CrossRefGoogle Scholar
  145. Voigt, S., S.G. Lucas, and J. Fischer. 2013. Late Palaeozoic Diadectidae (Cotylosauria: Diadectomorpha) and their potential preference for inland habitats. In Palaeobiology and Geobiology of Fossil Lagerstätten through Earth History, eds. J. Reitner, Y. Qun, and M. Reich, 168. Göttingen: Universitätsverlag.Google Scholar
  146. Voigt, S., G. Niedźwiedzki, P. Raczyński, K. Mastalerz, and T. Ptaszyński. 2012. Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 313–314: 173–180.CrossRefGoogle Scholar
  147. Voigt, S., H. Saber, J.W. Schneider, D. Hmich, and A. Hminna. 2011. Late Carboniferous-Early Permian tetrapod ichnofauna from the Khenifra Basin, Central Morocco. Geobios 44: 399–407.CrossRefGoogle Scholar
  148. Ward, D. 2009. The biology of deserts. Oxford: Oxford University Press.Google Scholar
  149. Watson, D.M.S. 1917. A sketch classification of the pre-Jurassic tetrapod vertebrates. Proceedings of the Zoological Society of London 1917: 167–186.Google Scholar
  150. Woodworth, J.B. 1900. Vertebrate footprints on Carboniferous shales of Plainville, Massachusetts. Bulletin of the Geological Society of America 11: 449–454.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  • Heitor Francischini
    • 1
    Email author
  • Spencer G. Lucas
    • 2
  • Sebastian Voigt
    • 3
  • Lorenzo Marchetti
    • 3
  • Vincent L. Santucci
    • 4
  • Cassandra L. Knight
    • 5
  • John R. Wood
    • 6
  • Paula Dentzien-Dias
    • 7
  • Cesar L. Schultz
    • 1
  1. 1.Programa de Pós-Graduação em GeociênciasInstituto de Geociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.New Mexico Museum of Natural History and ScienceAlbuquerqueUSA
  3. 3.Urweltmuseum GEOSKOP. Burg Lichtenberg (Pfalz)ThallichtenbergGermany
  4. 4.Geologic Resources DivisionNational Park ServiceWashingtonUSA
  5. 5.PaleoWorks ConsultingPortlandUSA
  6. 6.Geologic Resources DivisionNational Park ServiceLakehoodUSA
  7. 7.Laboratório de Geologia e PaleontologiaInstituto de Oceanografia, Universidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations