, Volume 92, Issue 4, pp 715–726 | Cite as

Exceptionally well-preserved early Eocene fossil reveals cranial and vertebral features of a stem group roller (Aves: Coraciiformes)

  • Gerald MayrEmail author
  • Stig A. Walsh
Research Paper


Three-dimensionally preserved skulls of small Paleogene land birds are very rare. Here, we describe a cranium and associated partial postcranial remains of an early Eocene stem group roller (Aves: Coraciiformes) from the London Clay of the Isle of Sheppey (England). The fossil shows features of the skull and vertebral column in great detail. It is distinguished from extant Coraciidae and Brachypteraciidae in several presumably plesiomorphic characteristics, which are likely to reflect differences in diet and/or foraging strategy between Eocene and extant rollers. Preserved stomach contents in other early Eocene fossils indicate that fruits were a regular part of the diet of stem group rollers. The extant Coraciidae and Brachypteraciidae, by contrast, almost exclusively feed on larger-sized invertebrates and small vertebrates, which are usually dispatched by beating before being swallowed. Stronger biting forces as well as the characteristic prey manipulation behavior of extant rollers may account for some of the observed differences in the cranial and vertebral morphology of the fossil and extant taxa, but the exact functional correlations remain elusive. We furthermore identify a previously undescribed cranial feature of rollers: a very large foramen for the ramus occipitalis of the arteria ophthalmica externa, which is of unknown functional significance and constitutes a potentially promising research target for future studies.


Fossil birds Ypresian Cranial osteology Functional morphology Feeding adaptations 



We are indebted to Daniel Hogburn, the collector of the fossil, for transferring the specimen into a public repository. We furthermore thank Sven Tränkner for taking the photographs. Comments by N. Zelenkov, U. Göhlich, and an anonymous referee improved the manuscript; N. Zelenkov is also acknowledged for key information on the studies of Korzun (1983, 1988).


  1. Baumel, J.J. 1993. Systema cardiovasculare. In Handbook of Avian Anatomy: Nomina Anatomica Avium, eds. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge. Publications of the Nuttall Ornithological Club 23:407–475.Google Scholar
  2. Baumel, J.J., and L.M. Witmer. 1993. Osteologia. In Handbook of Avian Anatomy: Nomina Anatomica Avium, eds. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge. Publications of the Nuttall Ornithological Club 23:45–132.Google Scholar
  3. Bock, W.J. 1964. Kinetics of the avian skull. Journal of Morphology 114: 1–41.CrossRefGoogle Scholar
  4. Bourdon, E., A.V. Kristoffersen, and N. Bonde. 2016. A roller-like bird (Coracii) from the Early Eocene of Denmark. Scientific Reports 6: 34050.CrossRefGoogle Scholar
  5. Burton, P.J.K. 1984. Anatomy and evolution of the feeding apparatus in the avian orders Coraciiformes and Piciformes. Bulletin of the British Museum (Natural History), Zoology Series 47: 331–443.Google Scholar
  6. Clarke, J.A., D.T. Ksepka, N.A. Smith, and M.A. Norell. 2009. Combined phylogenetic analysis of a new North American fossil species confirms widespread Eocene distribution for stem rollers (Aves, Coracii). Zoological Journal of the Linnean Society 157: 586–611.CrossRefGoogle Scholar
  7. Collinson, M.E., N.F. Adams, S.R. Manchester, G.W. Stull, F. Herrera, S.Y. Smith, M.J. Andrew, P. Kenrick, and D. Sykes. 2016. X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: a critical evaluation. Botany 94: 697–711.CrossRefGoogle Scholar
  8. Cracraft, J. 1971. The relationships and evolution of the rollers: families Coraciidae, Brachypteraciidae, and Leptosomatidae. The Auk 88: 723–752.CrossRefGoogle Scholar
  9. Elzanowski, A., and W.E. Boles. 2015. A coraciiform-like bird quadrate from the Early Eocene Tingamarra local fauna of Queensland, Australia. Emu 115: 110–116.CrossRefGoogle Scholar
  10. Elzanowski, A., and P.M. Galton. 1991. Braincase of Enaliornis, an early Cretaceous bird from England. Journal of Vertebrate Paleontology 11: 90–107.CrossRefGoogle Scholar
  11. Elzanowski, A., and G. Mayr. 2018. Multiple origins of secondary temporal fenestrae and orbitozygomatic junctions in birds. Journal of Zoological Systematics and Evolutionary Research 56: 248–269.CrossRefGoogle Scholar
  12. Ericson, P.G.P., C.L. Anderson, T. Britton, A. Elzanowski, U.S. Johansson, M. Källersjö, J.I. Ohlson, T.J. Parsons, D. Zuccon, and G. Mayr. 2006. Diversification of Neoaves: Integration of molecular sequence data and fossils. Biology Letters 2: 543–547.CrossRefGoogle Scholar
  13. Feduccia, A. 1977. A model for the evolution of perching birds. Systematic Biology 26: 19–31.CrossRefGoogle Scholar
  14. Forbes, H.O. 1884. Forbes’s final idea as to the classification of birds. The Ibis, Fifth Series 2: 119–120.Google Scholar
  15. Fry, C.H. 2001. Family Coraciidae (Rollers). In Handbook of the Birds of the World, Volume 6: Mousebirds to Hornbills, eds. J. del Hoyo, A. Elliott, and J. Sargatal, 342–376. Barcelona: Lynx Edicions.Google Scholar
  16. Grande, L. 2013. The Lost World of Fossil Lake. Snapshots from Deep Time. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  17. Hackett, S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E.L. Braun, M.J. Braun, J.L. Chojnowski, W.A. Cox, K.-L. Han, J. Harshman, C.J. Huddleston, B.D. Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C.C. Witt, and T. Yuri. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763–1767.CrossRefGoogle Scholar
  18. Harrison, C.J.O. 1984. Further additions to the fossil birds of Sheppey: A new falconid and three small rails. Tertiary Research 5: 179–187.Google Scholar
  19. Harrison, C.J.O., and C.A. Walker. 1972. The affinities of Halcyornis from the Lower Eocene. Bulletin of the British Museum (Natural History), Geology 21: 153–170.Google Scholar
  20. Harrison, C.J.O., and C.A. Walker. 1976a. A review of the bony-toothed birds (Odontopterygiformes): with descriptions of some new species. Tertiary Research Special Paper 2: 1–62.Google Scholar
  21. Harrison, C.J.O., and C.A. Walker. 1976b. A reappraisal of Prophaethon shrubsolei Andrews (Aves). Bulletin of the British Museum (Natural History), Geology 27: 1–30.Google Scholar
  22. Harrison, C.J.O., and C.A. Walker. 1977. Birds of the British Lower Eocene. Tertiary Research Special Paper 3: 1–52.Google Scholar
  23. Houde, P. 1988. Palaeognathous birds from the early Tertiary of the Northern Hemisphere. Publications of the Nuttall Ornithological Club 22: 1–148.Google Scholar
  24. Korzun, L.P. 1983. Adaptations of mandibular apparatus of Euristomus [sic] orientalis to seizure of flying insects. Zoologichesky Zhurnal 62: 1851–1857.Google Scholar
  25. Korzun, L.P. 1988. Trophic adaptations in wood birds. Feeding key adaptation of endemic Madagascar Coraciiformes (Brachypteraciidae and Leptosomatidae). Zoologichesky Zhurnal 67: 589–599.Google Scholar
  26. Ksepka, D.T., and J.A. Clarke. 2010. Primobucco mcgrewi (Aves: coracii) from the Eocene Green River Formation: new anatomical data from the earliest constrained record of stem rollers. Journal of Vertebrate Paleontology 30: 215–225.CrossRefGoogle Scholar
  27. Langrand, O. 2001. Family Brachypteraciidae (Ground-rollers). In Handbook of the Birds of the World, Volume 6: Mousebirds to Hornbills, eds. J. del Hoyo, A. Elliott, and J. Sargatal, 378–388. Barcelona: Lynx Edicions.Google Scholar
  28. Linnaeus, C. 1758. Systema naturae per regna tria naturae, 10th edition, 2 vols. Holmiae: L. Salmii.Google Scholar
  29. Mayr, G. 2007. New specimens of Eocene stem-group psittaciform birds may shed light on the affinities of the first named fossil bird, Halcyornis toliapicus Koenig, 1825. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 244: 207–213.CrossRefGoogle Scholar
  30. Mayr, G. 2008a. The Madagascan “cuckoo-roller” (Aves: Leptosomidae) is not a roller—notes on the phylogenetic affinities and evolutionary history of a “living fossil”. Acta Ornithologica 43: 226–230.CrossRefGoogle Scholar
  31. Mayr, G. 2008b. A skull of the giant bony-toothed bird Dasornis (Aves: Pelagornithidae) from the lower Eocene of the Isle of Sheppey. Palaeontology 51: 1107–1116.CrossRefGoogle Scholar
  32. Mayr, G. 2009. Paleogene fossil birds. Heidelberg: Springer.CrossRefGoogle Scholar
  33. Mayr, G. 2011. Metaves, Mirandornithes, Strisores, and other novelties—a critical review of the higher-level phylogeny of neornithine birds. Journal of Zoological Systematics and Evolutionary Research 49: 58–76.CrossRefGoogle Scholar
  34. Mayr, G. 2017. Avian evolution: The fossil record of birds and its paleobiological significance. Chichester: Wiley-Blackwell.Google Scholar
  35. Mayr, G. 2018. Size and number of the hypoglossal nerve foramina in the avian skull and their potential neuroanatomical significance. Journal of Morphology 279: 274–285.CrossRefGoogle Scholar
  36. Mayr, G., and C. Mourer-Chauviré. 2000. Rollers (Aves: Coraciiformes s.s.) from the Middle Eocene of Messel (Germany) and the Upper Eocene of the Quercy (France). Journal of Vertebrate Paleontology 20: 533–546.CrossRefGoogle Scholar
  37. Mayr, G., C. Mourer-Chauviré, and I. Weidig. 2004. Osteology and systematic position of the Eocene Primobucconidae (Aves, Coraciiformes sensu stricto), with first records from Europe. Journal of Systematic Palaeontology 2: 1–12.CrossRefGoogle Scholar
  38. Midtgård, U. 1983. Scaling of the brain and the eye cooling system in birds: a morphometric analysis of the rete ophthalmicum. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 225: 197–207.CrossRefGoogle Scholar
  39. Midtgård, U. 1984. The blood vascular system in the head of the herring gull (Larus argentatus). Journal of Morphology 179: 135–152.CrossRefGoogle Scholar
  40. Milner, A.C., and S.A. Walsh. 2009. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zoological Journal of the Linnean Society 155: 198–219.CrossRefGoogle Scholar
  41. Mourer-Chauviré, C., J.-B. Peyrouse, and M. Hugueney. 2013. A new roller (Aves: Coraciiformes s. s.: Coraciidae) from the Early Miocene of the Saint-Gérand-le-Puy area, Allier, France. In Paleornithological Research 2013Proceedings of the 8th International Meeting of the Society of Avian Paleontology and Evolution, eds. U.B. Göhlich, and A. Kroh, 81–92. Vienna: Natural History Museum Vienna.Google Scholar
  42. Prum, R.O., J.S. Berv, A. Dornburg, D.J. Field, J.P. Townsend, E.M. Lemmon, and A.R. Lemmon. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526: 569–573.CrossRefGoogle Scholar
  43. Rayner, D., T. Mitchell, M. Rayner, and F. Clouter. 2009. London Clay Fossils of Kent and Essex. Rochester, Kent: Medway Fossil and Mineral Society.Google Scholar
  44. Vanden Berge, J.C., and G.A. Zweers. 1993. Myologia. In Handbook of Avian Anatomy: Nomina Anatomica Avium, eds. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge, Publications of the Nuttall Ornithological Club 23: 189–247.Google Scholar
  45. Yuri, T., R.T. Kimball, J. Harshman, R.C. Bowie, M.J. Braun, J.L. Chojnowski, K.-L. Han, S.J. Hackett, C.J. Huddleston, W.S. Moore, S. Reddy, F.H. Sheldon, D.W. Steadman, C.C. Witt, and E.L. Braun. 2013. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology 2: 419–444.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2018

Authors and Affiliations

  1. 1.Ornithological SectionSenckenberg Research Institute and Natural History Museum FrankfurtFrankfurt am MainGermany
  2. 2.Department of Natural SciencesNational Museums ScotlandEdinburghUK

Personalised recommendations