Advertisement

PalZ

, Volume 93, Issue 4, pp 679–690 | Cite as

The oldest known tetrapod (Temnospondyli) from Germany (Early Carboniferous, Viséan)

  • Ralf WerneburgEmail author
  • Florian Witzmann
  • Joerg W. Schneider
Research Paper

Abstract

A unique skull roof fragment of a relatively large-sized tetrapod of Viséan age from Chemnitz-Glösa, Saxony, is described. The specimen consists of three bones, an elongated supratemporal with a radially arranged dermal sculpture and the sulcus of the otical part of the infraorbital line, the medial portion of the squamosal which is sutured with the anterolateral supratemporal, and a small, strip-like tabular bone. A deep “otic notch” is indicated. This new tetrapod was predominantly aquatic, as indicated by the deep and relatively broad lateral line sulcus. The type of dermal sculpture and the configuration of the bones indicate that the specimen is probably an adult temnospondyl, with the course of the lateral lines resembling those of dvinosaurians. Together with Balanerpeton from Scotland, this is the geologically oldest temnospondyl and the oldest known tetrapod record in Germany up to now.

Keywords

Temnospondyli Early Carboniferous Viséan Chemnitz-Glösa Saxony 

Abbreviations

FG

Paleontological collection of the TU Bergakademie Freiberg, Saxony

ifc.ot

Otical part of the infraorbital line

it

Intertemporal

occ.l

Occipital lamella (descending flange)

p

Parietal

po

Postorbital

pp

Postparietal

sq

Squamosal

st

Supratemporal

t

Tabular

tp

Tabular process

Notes

Acknowledgements

The authors wish to thank Uwe Hofmann, Ines Jaschke, Birgit Gaitzsch, Harald Walter, and Thomas Wotte (all from Freiberg) for their help during the fieldwork at Glösa. We are grateful to Steffen Trümper for his help in preparing Figs. 1, 2, 3, 4. Research in the Hainichen basin was supported by grants DFG Schn 408/5 and 408/14 to JWS. In addition, the research work in the manuscript was supported by a subsidy to JWS from the Russian government to support the Program for Competitive Growth of Kazan Federal University among the World’s Leading Academic Centers. Jason Anderson, Claudia Marsicano and Timothy Smithson greatly improved the manuscript with their constructive reviews. This paper aims to contribute to the tasks of the “Nonmarine–Marine Correlation Working Group” of the Subcommissions on Carboniferous (SCCS), on Permian (SPS), and on Triassic Stratigraphy (STS).

References

  1. Anderson, J.S. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 40: 170–193.Google Scholar
  2. Anderson, J.S. 2002. Revision of the Genus Phlegethontia (Tetrapoda, Lepospondyli, Aistopoda). Journal of Paleontology 76: 1025–1042.Google Scholar
  3. Anderson, J.S. 2003a. A new aïstopod (Tetrapoda: Lepospondyli) from Mazon Creek, Illinois. Journal of Vertebrate Paleontology 23: 80–89.Google Scholar
  4. Anderson, J.S. 2003b. The cranial anatomy of Coloraderpeton brilli, postcranial anatomy of Oestocephalus amphiuminus, and a reconsideration of the Ophiderpetontidae (Tetrapoda; Lepospondyli; Aïstopoda). Journal of Vertebrate Paleontology 23: 532–543.Google Scholar
  5. Anderson, J.S., R.L. Carroll, and T.B. Rowe. 2003. New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda. Canadian Journal of Earth Sciences 40: 1071–1083.Google Scholar
  6. Anderson, J.S., T. Smithson, C.F. Mansky, T. Meyer, and J. Clack. 2015. A diverse tetrapod fauna at the base of “Romer’s Gap”. PLoS One 10 (4): e0125446.Google Scholar
  7. Andrews, S.M., and R.L. Carroll. 1991. The order Adelospondyli: Carboniferous lepospondyl amphibians. Transactions of the Royal Society of Edinburgh, Earth Sciences 82: 239–275.Google Scholar
  8. Beaumont, E.H. 1977. Cranial morphology of the Loxommatidae (Amphibia: Labyrinthodontia). Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 280: 29–101.Google Scholar
  9. Bolt, J.R., and R.E. Lombard. 2010. Deltaherpeton hiemstrae, a new colosteid tetrapod from the Mississippian of Iowa. Journal of Paleontology 84: 1135–1151.Google Scholar
  10. Boy, J.A. 1972. Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SW-Deutschland). Hessisches Landesamt für Bodenforschung 65: 1–137.Google Scholar
  11. Boy, J.A. 1995. Über die Micromelerpetontidae (Amphibia: Temnospondyli)1. Morphologie und Paläökologie des Micromelerpeton credneri (Unter-Perm; SW-Deutschland). Paläontologische Zeitschrift 69: 429–457.Google Scholar
  12. Boy, J.A., and K. Bandel. 1973. Bruktererpeton fiebigi n. gen. n. sp. (Amphibia, Gephyrostegida), der erste Tetrapode aus dem Rheinisch–Westfälischen Karbon (Namur B; W-Deutschland). Palaeontographica (A: Paläozoologie und Stratigraphie) 145: 9–77.Google Scholar
  13. Brauckmann, C. 1983. Ein Tetrapoden-Rest aus den Vorhalle-Schichten (Ober-Karbon, oberes Namurium B) von Hagen-Vorhalle. Dortmunder Beiträge Landeskunde: naturwissenschaftliche Mitteilungen 17: 9–17.Google Scholar
  14. Carroll, R.L. 1967. Labyrinthodonts from the Joggins Formation. Journal of Paleontology 41: 111–142.Google Scholar
  15. Carroll, R.L. 1969. A new family of Carboniferous amphibians. Palaeontology 12: 537–548.Google Scholar
  16. Carroll, R.L., and P. Gaskill. 1978. The order microsauria. American Philosophical Society Memoirs 126: 1–211.Google Scholar
  17. Clack, J.A. 1987. Pholiderpeton scutigerum Huxley, an amphibian from the Yorkshire Coal Measures. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 318: 1–107.Google Scholar
  18. Clack, J.A. 2017. The East Kirkton Lagerstätte: a window onto Early Carboniferous land ecosystems. In Terrestrial Conservation Lagerstätten: Windows into the Evolution of Life on Land, eds. N. Fraser and H.D. Sues, 39–64. Edinburgh: Dunedin Academic Press.Google Scholar
  19. Clack, J.A., and S. Finney. 2005. Pederpes finneyae, an articulated tetrapod from the Tournaisian of western Scotland. Journal of Systematic Palaeontology 2: 311–346.Google Scholar
  20. Clack, J.A., and A.R. Milner. 2015. Basal Tetrapoda. In Handbook of paleoherpetology, part 3A1, ed. H.-D. Sues, 1–93. München: Friedrich Pfeil.Google Scholar
  21. Clack, J.A., F. Witzmann, J. Müller, and D. Snyder. 2012. A colosteid-like early tetrapod from the St. Louis Limestone (Early Carboniferous, Meramecian), St. Louis, Missouri, USA. Fieldiana Life and Earth Sciences 5: 17–39.Google Scholar
  22. Clack, J.A., C.E. Bennett, D.K. Carpenter, S.J. Davies, N.C. Fraser, T.I. Kearsey, J.E. Marshall, D. Millward, B.K. Otoo, E.J. Reeves, and A.J. Ross. 2016. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology & Evolution 1: 0002.  https://doi.org/10.1038/s41559-016-0002.CrossRefGoogle Scholar
  23. Clarkson, E.N.K., A.R. Milner, and M.I. Coates. 1994. Palaeoecology of the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 84: 417–425.Google Scholar
  24. Clayton, G., R. Coquel, J. Doubinger, K.J. Gueinn, S. Loboziak, B. Owens, and M. Streel. 1977. Carboniferous miospores of western Europe: illustration and zonation. Mededelingen Rijks Geologische Dienst 29: 1–71.Google Scholar
  25. Coates, M.I. 1994. Actinopterygian and acanthodian fishes from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84: 317–327.Google Scholar
  26. Daeschler, E.B., J.A. Clack, and N.H. Shubin. 2009. Late Devonian tetrapod remains from Red Hill, Pennsylvania, USA: how much diversity? Acta Zoologica Stockholm 90(Suppl. 1): 306–317.Google Scholar
  27. Fischer, J., J.W. Schneider, S. Voigt, M.M. Joachimski, M. Tichomirowa, T. Tütken, J. Götze, and U. Berner. 2013. Oxygen and strontium isotopes from fossil shark teeth: Environmental and ecological implications for Late Palaeozoic European basins. Chemical Geology 342: 44–62.Google Scholar
  28. Fischer, J., Schneider, J.W., Rößler, R., Spindler, F., and U. Hoffmann. 2014. An Early Carboniferous mass occurrence of shark egg capsules from freshwater deposits—the oldest chondrichthyan multi-taxon nursery. In: Meeting Program and Abstracts of the 74th Annual Meeting of the Society of Vertebrate Paleontology, November 5−8, 2014, Berlin, A130.Google Scholar
  29. Gaitzsch, B., S. Egenhoff, S. Hesse, and B.C. Ehling. 2010. Variscan early molasses in the Saxo-Thuringian. In Pre-Mesozoic Geology of Saxo-Thuringia; from the Cadomian Active Margin to the Variscan Orogen, eds. U. Linnemann and R.L. Romer, 311–322. Stuttgart: Schweizerbart.Google Scholar
  30. Gehmlich, M., U. Linnemann, M. Tichomirova, B. Gaitzsch, and K. Bombach. 1998. Geochronologie invers gestapelter Deckenreste im Frankenberger Zwischengebirge. Terra Nostra 98(2): 52–54.Google Scholar
  31. Germain, D. 2008. A new phlegethontiid specimen (Lepospondyli, Aistopoda) from the Late Carboniferous of Montceau-les-Mines (Sâone-et-Loire, France). Geodiversitas 30: 669–680.Google Scholar
  32. Godfrey, S.J. 1988. Isolated tetrapod remains from the Carboniferous of West Virginia. Kirtlandia 43: 27–36.Google Scholar
  33. Godfrey, S.J. 1989. The postcranial skeletal anatomy of the Carboniferous tetrapod Greererpeton burkemorani Romer. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 323: 75–133.Google Scholar
  34. Goodrich, E.S. 1930. Studies on the structure and development of vertebrates, 1–837. London: MacMillan.Google Scholar
  35. Haug, J.T., M. Hübers, C. Haug, A. Maas, D. Waloszek, J.W. Schneider, and H. Kerp. 2014. Arthropod cuticles from the upper Viséan (Mississippian) of eastern Germany. Bulletin of Geosciences 89 (3): 541–552.Google Scholar
  36. Holmes, R. 1989. The skull and axial skeleton of the Lower Permian anthracosauroid amphibian Archeria crassidisca Cope. Palaeontographica (A: Paläozoologie und Stratigraphie) 207: 161–206.Google Scholar
  37. Holmes, R., and D. Baird. 2011. The smaller embolomerous amphibians (Anthracosauria) from the Middle Pennsylvanian (Desmoinesian) localities at Linton and five points coal mines, Ohio. Breviora 523: 1–13.Google Scholar
  38. Holmes, R.B., R.L. Carroll, and R.R. Reisz. 1998. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. Journal of Vertebrate Paleontology 18: 64–79.Google Scholar
  39. Hook, R.W. 1983. Colosteus scutellatus (Newberry), a primitive temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio. American Museum Novitates 2770: 1–41.Google Scholar
  40. Hübers, M., and H. Kerp. 2012. Oldest known mosses discovered in Mississippian (late Viséan) strata of Germany. Geology 40: 755–758.Google Scholar
  41. Hübers, M., H. Kerp, J.W. Schneider, and B. Gaitzsch. 2013. Dispersed plant mesofossils from the Middle Mississippian of eastern Germany: Bryophytes, pteridophytes and gymnosperms. Review of Palaeobotany and Palynology 17: 38–56.Google Scholar
  42. Jäger, H., and F. Wierich. 2006. Palynostratigraphie, 294–318. In Stratigraphie von Deutschland VI. Unterkarbon (Mississippium), eds A. Amler, and D. Stoppel, D. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 41: 294–318.Google Scholar
  43. Jeram, A.J. 1994. Scorpions from the Viséan of East Kirkton, West Lothian, Scotland, with a revision of the infraorder Mesoscorpionina. Transactions of the Royal Society Edinburgh, Earth Sciences 84: 283–299.Google Scholar
  44. Kerp, H., A. Kampe, S. Schultka, and H.W.J. Van Amerom. 2006. Makrofloren. In Stratigraphie von Deutschland VI. Unterkarbon (Mississippium), ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 41: 217–293.Google Scholar
  45. Linnaeus, C. von. 1758. Systema Naturae, per Regna Tria Naturae, secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Editio Decima, Reformata. 10th Edition, 1–824. Stockholm: Laurentii Salvii.Google Scholar
  46. Lombard, R.E., and J.R. Bolt. 1995. A new primitive tetrapod, Whatcheeria deltae, from the Lower Carboniferous of Iowa. Palaeontology 38: 471–494.Google Scholar
  47. Meschede, M. 2015. Geologie Deutschlands. Ein prozessorientierter Ansatz, 1–249. Berlin, Heidelberg: Springer.Google Scholar
  48. Milner, A.R. 1980. The temnospondyl amphibian Dendrerpeton from the Upper Carboniferous of Ireland. Palaeontology 23: 125–141.Google Scholar
  49. Milner, A.R. 1982. A small temnospondyl amphibian from the Lower Pennsylvanian of Nova Scotia. Journal of Paleontology 56: 1302–1305.Google Scholar
  50. Milner, A.R. 1996. A revision of the temnospondyl amphibians from the Upper Carboniferous of Joggins, Nova Scotia. In Studies on Carboniferous and Permian Vertebrates, ed. A.R. Milner. Special Papers in Palaeontology 52: 81–103.Google Scholar
  51. Milner, A.C., A.R. Milner, and S.A. Walsh. 2009. A new specimen of Baphetes from Nýřany, Czech Republic and the intrinsic relationships of the Baphetidae. Acta Zoologica (Stockholm) 90(special issue): 318–334.Google Scholar
  52. Milner, A.R., and S.E.K. Sequeira. 1994. The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84: 331–361.Google Scholar
  53. Nindel, F. 1955. Die tierischen Reste aus dem Karbon von Karl-Marx-Stadt und Hainichen i.S. Geologie 4(7/8): 673–694.Google Scholar
  54. Panchen, A.L. 1964. The cranial anatomy of two coal measure anthracosaurs. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 242: 207–281.Google Scholar
  55. Panchen, A.L. 1972. The skull and skeleton of Eogyrinus attheyi Watson (Amphibia: Labyrinthodontia). Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 263: 279–326.Google Scholar
  56. Panchen, A.L. 1970. Anthracosauria. In Encyclopedia of paleoherpetology, part 5A, ed. O. Kuhn, 1–84. Jena: Gustav Fischer.Google Scholar
  57. Panchen, A.L. 1975. A new genus and species of anthracosaurs amphibian from the Lower Carboniferous of Scotland and the status of Pholidogaster pisciformis Huxley. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 269: 581–637.Google Scholar
  58. Panchen, A.L. 1977. On Anthracosaurus russelli Huxley and the family Anthracosauridae. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 279: 447–512.Google Scholar
  59. Panchen, A.L. 1985. On the amphibian Crassigyrinus scoticus Watson from the Carboniferous of Scotland. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 309: 505–568.Google Scholar
  60. Pardo, J.D., M. Szostakiwskyj, P.E. Ahlberg, and J.S. Anderson. 2017. Hidden morphological diversity among early tetrapods. Nature 546: 642–645.Google Scholar
  61. Paton, R.L. 1994. Elasmobranch fishes from the Viséan of East Kirkton, West Lothian, Scotland. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 84: 329–330.Google Scholar
  62. Paton, R.L., T.R. Smithson, and J.A. Clack. 1999. An amniote-like skeleton from the Early Carboniferous of Scotland. Nature 398: 508–513.Google Scholar
  63. Romer, A.S. 1969. The cranial anatomy of the Permian amphibian Pantylus. Breviora 314: 1–37.Google Scholar
  64. Rößler, R., and J.W. Schneider. 1997. Eine bemerkenswerte Paläobiocoenose im Unterkarbon Mitteleuropas—Fossilführung und Paläoenvironment der Hainichen-Subgruppe (Erzgebirge-Becken). Veröffentlichungen des Museums für Naturkunde Chemnitz 20: 5–44.Google Scholar
  65. Ruta, M., M.I. Coates, and D.L.J. Quicke. 2003. Early tetrapod relationships revisited. Biological Reviews 78: 251–345.Google Scholar
  66. Ruta, M., and M.I. Coates. 2007. Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Paleontology 5: 69–122.Google Scholar
  67. Ruta, M., and J.A. Clack. 2006. A review of Silvanerpeton miripedes, a stem amniote from the Lower Carboniferous of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 97: 31–63.Google Scholar
  68. Schneider, J.W., and W. Reichel. 1989. Chondrichthyer-Eikapseln aus dem Rotliegenden (Unterperm) Mitteleuropas—Schlußfolgerungen zur Paläobiologie paläozoischer Süßwasserhaie. Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 436: 58–69.Google Scholar
  69. Schneider, J.W., K. Hoth, B.G. Gaitzsch, H.J. Berger, H. Steinborn, H. Walter, and M.K. Zeidler. 2005. Carboniferous stratigraphy and development of the Erzgebirge Basin, East Germany. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 156: 431–466.Google Scholar
  70. Schoch, R.R. 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11: 673–705.Google Scholar
  71. Schoch, R.R. 2014. Amphibian Evolution. The Life of Early Land Vertebrates, 1–264. Hoboken: Wiley.Google Scholar
  72. Schoch, R.R. 2018. Osteology of the temnospondyl Neldasaurus and the evolution of basal dvinosaurians. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 287: 1–16.Google Scholar
  73. Schoch, R.R., and A.R. Milner. 2014. Temnospondyli I. In Handbook of paleoherpetology, part 3A2, ed. H.-D. Sues, 1–150. München: Friedrich Pfeil.Google Scholar
  74. Sequeira, S.E.K. 1998. The cranial morphology and taxonomy of the saurerpetontid Isodectes obtusus comb. nov. (Amphibia: Temnospondyli) from the Lower Permian of Texas. Zoological Journal of the Linnean Society 122: 237–259.Google Scholar
  75. Shishkin, M.A. 1973. The morphology of the early Amphibia and some problems of lower tetrapod evolution. Trudy Paleontologicheskogo Instituta Akademia Nauk SSSR 137: 1–257. [In Russian].Google Scholar
  76. Smithson, T.R. 1980. A new labyrinthodont amphibian from the Carboniferous of Scotland. Palaeontology 23: 915–923.Google Scholar
  77. Smithson, T.R. 1982. The cranial morphology of Greererpeton burkemorani Romer (Amphibia: Temnospondyli). Zoological Journal of the Linnean Society 76: 29–90.Google Scholar
  78. Smithson, T.R. 1994. Eldeceeon rolfei, a new reptiliomorph from the Viséan of East Kirkton, West Lothian, Scotland. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 84: 377–382.Google Scholar
  79. Smithson, T.R., and W.I. Rolfe. 1990. Westlothiana gen. nov.: naming the earliest known reptile. Scottish Journal of Geology 26: 137–138.Google Scholar
  80. Smithson, T.R., R.L. Carroll, A.L. Panchen, and S.M. Andrews. 1994. Westlothiana lizziae from the Viséan of East Kirkton, West Lothian, Scotland, and the amniote stem. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 84: 383–412.Google Scholar
  81. Smithson, T.R., S.P. Wood, J.E.A. Marshall, and J.A. Clack. 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s gap. Proceeding of the National Academy of Sciences of the United States of America 109: 4532–4537.Google Scholar
  82. Smithson, T.R., M.A.E. Browne, S.J. Davies, J.E.A. Marshall, D. Millward, S.A. Walsh, and J.A. Clack. 2017. A new Mississippian Tetrapod from Fife, Scotland, and its Environmental Context. Papers in Palaeontology 3: 547–557.Google Scholar
  83. Ward, P., C. Labandeira, M. Laurin, and R.A. Berner. 2006. Confirmation of Romer’s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National academy of Sciences of the United States of America 2002: 16818–16822.Google Scholar
  84. Warren, A.A. 2007. New data on Ossinodus pueri, a stem tetrapod from the Early Carboniferous of Australia. Journal of Vertebrate Paleontology 27: 850–862.Google Scholar
  85. Warren, A., T.H. Rich, and P. Vickers-Rich. 1997. The last labyrinthodonts. Palaeontographica (A: Paläozoologie und Stratigraphie) 247: 1–24.Google Scholar
  86. Werneburg, R. 1989. Die Amphibienfauna der Manebacher Schichten (Unterrotliegendes, Unterperm) des Thüringer Waldes. Veröffentlichungen des Naturhistorischen Museums Schleusingen 4: 55–68.Google Scholar
  87. Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen des Naturhistorischen Museums Schleusingen 6: 75–99.Google Scholar
  88. Werneburg, R. 1996. Temnospondyle Amphibien aus dem Karbon Mitteldeutschlands. Veröffentlichungen des Naturhistorischen Museums Schleusingen 11: 23–64.Google Scholar
  89. Werneburg, R. 2012. Dissorophoide Amphibien aus dem Westphalian D (Ober-Karbon) von Nýřany in Böhmen (Tschechische Republik)—der Schlüssel zum Verständnis der frühen, Branchiosaurier’. Semana (Naturwissenschaftliche Veröffentlichungen NHM Schleusingen) 27: 3–50.Google Scholar
  90. Witzmann, F., R. Werneburg, and A.R. Milner. 2017. A partial skull roof of an embolomere from Linton, Ohio (Middle Pennsylvanian) and its phylogenetic affinities. PalZ 91: 399–408.Google Scholar
  91. Zittel, K. A. von. 1888. Handbuch der Palaeontologie. 1. Abtheilung: Palaeozoologie. Third volume Vertebrata (Pisces, Amphibia, Reptilia, Aves), 1–598. Berlin: Oldenbourg.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  1. 1.Naturhistorisches Museum Schloss Bertholdsburg SchleusingenSchleusingenGermany
  2. 2.Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
  3. 3.TU Bergakademie Freiberg, Institut für GeologieFreibergGermany
  4. 4.Institute of Geology and Petroleum TechnologiesKazan Federal UniversityKazanRussia

Personalised recommendations