, Volume 92, Issue 3, pp 395–409 | Cite as

Paleoecological and isotopic analysis of fossil continental mollusks of Sandelzhausen (Miocene, Germany)

  • Rodrigo B. Salvador
  • Thomas Tütken
  • Barbara M. Tomotani
  • Christoph Berthold
  • Michael W. Rasser
Research Paper


The fossil molluscan fauna of Sandelzhausen (Early/Middle Miocene, SE Germany) comprises a total of 44 species, mostly terrestrial pulmonate snails. Herein we present a paleoecological analysis of this fauna based on an actualistic approach and on data on stable isotopes of carbon and oxygen (assessed from specimens of the freshwater lymnaeid snail Galba dupuyiana and the terrestrial clausiliid snail Pseudidyla moersingensis). The paleoecological reconstruction achieved here is in line with previous works, with some novelties and minor modifications. The basal sediment layers point to a swampy area with ponds and/or oxbow lakes (closed system, as indicated by the covariation between oxygen and carbon isotopic signals of G. dupuyiana), prone to seasonal flooding events. This environment would then gradually transition into a perennial lake, as indicated by: the proportion of planorbids, the appearance of aquatic species intolerant to desiccation, and the decoupling of the covariation between oxygen and carbon isotopic signals of G. dupuyiana. The terrestrial habitat would have developed from a more open environment (semi-arid/sub-humid scrubland) to a sub-humid/humid denser forest afterwards. Still, species from drier and more open environments are present throughout all the layers, suggesting that these habitats persisted in the lake’s hinterland. The mean annual temperature, calculated from the oxygen isotopic composition of P. moersingensis, ranges from 18.5 to 20.5 °C, but with no significant trend of change throughout the layers.


Gastropoda MN 5 European Mammal Neogene zone Paleoenvironment Pulmonata Stable isotope analysis 


Die Molluskenfauna von Sandelzhausen (Unter-/Mittelmiozän, SE Deutschland) beinhaltet 44 Arten von vorwiegend pulmonaten Landschnecken. Wir präsentieren eine paläoökologische Analyse dieser Fauna, basierend auf einem aktualistischen Ansatz sowie auf stabilen Sauerstoff- und Kohlenstoffisotopen. Die Isotopen wurden an Schalen der lymnaeiden Süßwasserschnecke Galba dupuyiana und der terrestrischen clausiliiden Schnecke Pseudidyla moersingensis gemessen. Die paläoökologische Rekonstruktion bestätigt frühere Studien, zeigt aber auch neue Ergebnisse. Die basalen Sedimentablagerungen stellen sumpfige Bereiche mit Tümpeln und/oder Altwasserarmen mit gelegentlichen Überschwemmungen dar. Hinweise auf derartige geschlossene Systeme werden durch die parallelen Änderungen der Sauerstoff- und Kohlenstoffisotopen in Schalen von G. dupuyiana angezeigt. Die darüber folgende Fauna mit Planorbiden, das Erscheinen von aquatischen Arten die kein Trockenfallen vertragen, sowie die entkoppelten Änderungen der Sauerstoff- und Kohlenstoffisotopen-Signale von G. dupuyiana, zeigen einen Wechsel des Systems in einen mehrjährigen See an. Die terrestrischen Habitate wechselten von einem relativ offenen Lebensraum (semi-arides bis sub-humides Buschland) in einen sub-humiden bis humiden, dichteren Wald. Arten aus trockeneren und eher offenen Lebensräumen kommen in allen Schichten vor, was darauf hinweist, dass diese Habitate im Hinterland Bestand hatten. Die aus den Sauerstoffisotopen der Schalen von P. moersingensis errechnete durchschnittliche Jahrestemperatur liegt zwischen 18,5 und 20,5 °C. Im Verlaufe der Sedimentation gab es keine eindeutigen Temperaturschwankungen.


Gastropoda MN 5 European Mammal Neogene Zone Paläoenvironment-Rekonstruktion Pulmonata Stabile Isotopen 



We are deeply grateful to Alexander Nützel (SNSB-BSPG) for allowing access to the Sandelzhausen material under his care; to Markus Moser (SNSB-BSPG) for providing information about the specimens’ original labels and collection details; to Bernd Steinhilber and Heinrich Taubald (Universität Tübingen) for the oxygen and carbon isotope analyses; to Philip Herrmann (formerly Universität Bonn) for helping with preparation of the samples for Sr isotope analysis; to Carlos A.G. Marques (Universidade da Madeira) for the literature on the Madeiran biome; and to the two reviewers for the comments and suggestions to improve this work. RBS received a doctoral grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (proc. 245575/2012-0), Brazil. Measurement of stable isotopes was funded by the Staatliches Museum für Naturkunde Stuttgart, Germany.

Supplementary material

12542_2017_400_MOESM1_ESM.pdf (167 kb)
Supplementary material 1 (PDF 168 kb)


  1. Albesa, J., J.P. Calvo, L. Alcalá, and A.M. Alonso Zarza. 1997. Interpretación paleoambiental del yacimiento de La Gloria 4 (Plioceno, Fosa de Teruel) a partir del análisis de facies y de asociaciones de gasterópodos y de mamíferos. Cuadernos de Geología Ibérica 22: 239–264.Google Scholar
  2. Alonzo-Zarza, A.M. 2003. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews 60: 261–298.Google Scholar
  3. Anadón, P., R. Utrilla, A. Vázquez, M. Martı́n-Rubio, J. Rodriguez-Lázaro, and F. Robles. 2007. Paleoenvironmental evolution of the Pliocene Villarroya Lake, northern Spain, from stable isotopes and trace-element geochemistry of ostracods and molluscs. Journal of Paleolimnology 39 (3): 399–419.Google Scholar
  4. Balakrishnan, M., and C.J. Yapp. 2004. Flux balance models for the oxygen and carbon isotope compositions of land snail shells. Geochimica et Cosmochimica Acta 68 (9): 2007–2024.Google Scholar
  5. Baldini, M.L., S.E. Walzer, L.B. Railsback, J.U.L. Baldini, and D.E. Crowe. 2007. Isotopic ecology of the modern land snail Cerion, San Salvador, Bahamas: preliminary advances toward establishing a low-latitude island paleoenvironmental proxy. Palaios 22: 174–187.Google Scholar
  6. Bandel, K. 2001. The history of Theodoxus and Neritina connected with description and systematic evaluation of related Neritimorpha (Gastropoda). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 85: 65–164.Google Scholar
  7. Barker, G.M. 2001. Gastropods on land: phylogeny, diversity and adaptive morphology. In The biology of terrestrial mollusks, ed. G.M. Barker, 1–146. Wallingford: CABI Publishing.Google Scholar
  8. Barker, G.M., and M.G. Efford. 2004. Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. In Natural enemies of terrestrial molluscs, ed. G.M. Barker, 279–404. Wallingford: CABI Publishing.Google Scholar
  9. Berthold, C., A. Bjeoumikhov, and L. Brügemann. 2009. Fast XRD2 microdiffraction with focusing X-ray microlenses. Particle & Particle Systems Characterisation 26 (3): 107–111.Google Scholar
  10. Binder, H. 2008. The systematic positions of the genera Pseudochloritis C. Boettger 1909 and Joossia Pfeffer 1929. Archiv für Molluskenkunde 137 (2): 1–27.Google Scholar
  11. Blondel, C., H. Bocherens, and A. Mariotti. 1997. Stable carbon and oxygen isotope ratios in ungulate teeth from French Eocene and Oligocene localities. Bulletin de la Société Géologique de France 168: 775–781.Google Scholar
  12. Boettger, O. 1877. Clausilienstudien. Palaeontographica, Supplement 3: 1–122.Google Scholar
  13. Böhme, M. 2003. The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195: 389–401.Google Scholar
  14. Böhme, M. 2010. Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their implications for environment reconstruction and palaeoclimate. Paläontologische Zeitschrift 84: 3–41.Google Scholar
  15. Böhme, M., A.A. Bruch, and A. Selmeier. 2007. The reconstruction of Early and Middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood flora. Palaeogeography, Palaeoclimatology, Palaeoecology 253: 91–114.Google Scholar
  16. Bourguignat, M.J.R. 1857. Aménités Malacologiques, LXIV. Du genre Carychium. Revue et Magasin de Zoologie (2) 9(5): 209–232.Google Scholar
  17. Bourguignat, J.R. 1881. Histoire Malacologique de la Colline de Sansan. Annales des hautes Études, Sciences Naturelles 22: 1–175.Google Scholar
  18. Bruch, A.A., D. Uhl, and V. Mosbrugger. 2007. Miocene climate in Europe—patterns and evolution: a first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology 253: 1–7.Google Scholar
  19. Bunje, P.M.E. 2005. Pan-European phylogeography of the aquatic snail Theodoxus fluviatilis (Gastropoda: Neritidae). Molecular Ecology 14: 4323–4340.Google Scholar
  20. Cameron, R.A.D., R.M.T. Cunha, and A.M. Frias Martins. 2007. Chance and necessity: land-snail faunas of São Miguel, Azores, compared with those of Madeira. Journal of Molluscan Studies 73: 11–21.Google Scholar
  21. Capelo, J. 2004. A paisagem vegetal da Ilha da Madeira. Quercetea 6: 3–200.Google Scholar
  22. Castro, J.M., Y. Yanes, R. García, M.R. Alonso, and M. Ibáñez. 2014. A new species of Janulus (Gastropoda: Pulmonata: Gastrodontidae) from La Palma Island (Canary Archipelago). Journal of Conchology 41 (6): 743–747.Google Scholar
  23. Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997. Global vegetation change through the Miocene-Pliocene boundary. Nature 389: 153–158.Google Scholar
  24. Chapuis, E., S. Trouve, B. Facon, L. Degen, and J. Goudet. 2007. High quantitative and no molecular differentiation of a freshwater snail (Galba truncatula) between temporary and permanent water habitats. Molecular Ecology 16: 3484–3496.Google Scholar
  25. Clark, R.M.F. 2011. Hydroseral habitat requirement of the endangered Shining Ramshorn Snail Segmentina nitida. Bioscience Horizons 4 (2): 158–164.Google Scholar
  26. Clessin, S. 1877. Die tertiären Binnenconchylien von Undorf. Correspondenz-Blatt des zoologisch-mineralogischen Vereins in Regensburg 31: 34–41.Google Scholar
  27. Colonese, A.C., G. Zanchetta, A.E. Fallick, G. Manganelli, P. Lo Cascio, N. Hausmann, I. Baneschi, and E. Regattieri. 2014. Oxygen and carbon isotopic composition of modern terrestrial gastropod shells from Lipari Island, Aeolian Archipelago (Sicily). Palaeogeography, Palaeoclimatology, Palaeoecology 394: 119–127.Google Scholar
  28. Cook, A. 2001. Behavioural ecology: on doing the right thing, in the right place at the right time. In The biology of terrestrial Mollusks, ed. G.M. Barker, 447–487. Wallingford: CABI Publishing.Google Scholar
  29. Coplen, T.B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66: 273–276.Google Scholar
  30. Cossignani, T., and V. Cossignani. 1995. Atlante delle Conchiglie Terrestri e Dulciacquicole Italiane. Ancona: L'Informatore Piceno.Google Scholar
  31. Deocampo, D.M. 2010. The geochemistry of continental carbonates. Developments in Sedimentology 62: 1–59.Google Scholar
  32. Deshayes, G.P. 1851. Helix eversa. In A.E.J.P.F.A. Férussac, and G.P. Deshayes (eds.) (1819-1851) Histoire naturelle générale et particulière des mollusques terrestres et fluviatiles, tant des espèces que l'on trouve aujourd'hui vivantes, que des dépouilles fossiles de celles qui n'existent plus; classés d'après les caractères essentiels que présentent ces animaux et leurs coquilles. Vol. 1., 395–396. Paris: J.B. Bailliere.Google Scholar
  33. Desmarest, A.G. 1814. Note sur les Ancyles ou Patelles d’eau douce, et particulièrement sur deux espèces de ce genre non encore décrites, l’une fossile et l’autre vivante. Bulletin de la Société Philomatique de Paris 4: 18–20.Google Scholar
  34. Dunker, W. 1848. Ueber die in der Molasse bei Günzburg unfern Ulm vorkommenden Conchylien und Pflanzenreste. Palaeontographica 1 (4): 155–168.Google Scholar
  35. Dupuy, D. 1850. Description de quelques espèces de coquilles terrestres fossils de Sansan. Journal de Conchyliologie 1: 300–313.Google Scholar
  36. De Francesco, C.G., M.A. Zárate, and S.E. Miquel. 2007. Late Pleistocene mollusc assemblages and inferred paleoenvironments from the Andean piedmont of Mendoza, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 251: 461–469.Google Scholar
  37. Esu, D., and A. Ciangherotti. 2004. Palaeoecologic and palaeobiogeographic character of Middle Pliocene non-marine mollusc faunas from north-western Italy. Rivista Italiana di Paleontologia e Stratigrafia 110 (2): 517–530.Google Scholar
  38. Fahlbusch, V., and H. Gall. 1970. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 1. Entdeckung, Geologie, Faunenübersicht und Grabungsbericht für 1969. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 10: 365–396.Google Scholar
  39. Fahlbusch, V., H. Gall, and N. Schmidt-Kittler. 1972. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 2. Sediment und Fossilinhalt—Probleme der Genese und Ökologie. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1972(6): 331–343.Google Scholar
  40. Filippi, M.L., A. Moscariello, and J. Hunziker. 1997. Stable isotopes in Lake Geneva carbonate sediments and molIuscs: review and new data. Eclogae Geologicae Helvetiae 90: 199–210.Google Scholar
  41. Fordinál, K. 1996. Terrestrial gastropods of the Upper Pannonian in the northern part of the Danube Basin. Slovak Geological Magazine 1 (96): 5–16.Google Scholar
  42. Francey, R.J. 1983. A comment on 13C/12C in land snail shells. Earth and Planetary Science Letters 63: 142–143.Google Scholar
  43. Fritz, P., and S. Poplawski. 1974. 18O and 13C in the shells of freshwater molluscs and their environment. Earth and Planetary Science Letters 24: 91–98.Google Scholar
  44. Gerber, J. 1996. Revision der Gattung Vallonia Risso, 1826 (Mollusca: Gastropoda: Valloniidae). Schriften zur Malakozoologie 8: 1–227.Google Scholar
  45. Glöer, P. 2002. Süsswassergastropoden Nord-und Mitteleuropas: Bestimmungsschlüssel, Lebensweise, Verbreitung. Hackenheim: ConchBooks.Google Scholar
  46. Goodfriend, G.A. 1992. The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11: 665–685.Google Scholar
  47. Goodfriend, G.A., and D.G. Hood. 1983. Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25: 810–830.Google Scholar
  48. Goodfriend, G.A., and G.L. Ellis. 2002. Stable carbon and oxygen isotopic variations in modern Rabdotus land snail shells in the southern Great Plains, USA, and their relation to environment. Geochimica et Cosmochimica Acta 66 (11): 1987–2002.Google Scholar
  49. Grimes, S.T., D.P. Mattey, J.J. Hooker, and M.E. Collinson. 2003. Paleogene paleoclimate reconstruction using oxygen isotopes from land and freshwater organisms: the use of multiple paleoproxies. Geochimica et Cosmochimica Acta 67 (21): 4033–4047.Google Scholar
  50. Grossman, E.L., and T. Ku. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology 59: 59–74.Google Scholar
  51. Gottschick, F., and Wenz, W. 1919. Die Land- und Süßwassermollusken des Tertiärbeckens von Steinheim am Aalbuch. I. Die Vertiginiden. Nachrichtsblatt der Deutschen Malakozoologischen Gesellschaft 51 (1): 1–23.Google Scholar
  52. Harzhauser, M., and H. Binder. 2004. Synopsis of the Late Miocene mollusc fauna of the classical sections Richardhof and Eichkogel in the Vienna Basin (Austria, Pannonian, MN9-MN11). Archiv für Molluskenkunde 133: 1–57.Google Scholar
  53. Harzhauser, M., and P.M. Tempfer. 2004. Late Pannonian Wetland ecology of the Vienna Basin based on Molluscs and Lower Vertebrate Assemblages (Late Miocene, MN 9, Austria). Courier Forschungsinstitut Senckenberg 246: 55–68.Google Scholar
  54. Häßlein, L. 1966. Die Molluskengesellschaften des Bayerischen Waldes und des anliegenden Donautales. Bericht der Naturforschenden Gesellschaft Augsburg 20: 1–176.Google Scholar
  55. Höltke, O., and M.W. Rasser. 2013. The chondrinid land snail Granaria (Stylommatophora: Chondrinidae) in the Miocene of the Alpine Foreland: state of the art and taxonomic reassessment. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 270 (2): 181–194.Google Scholar
  56. Kerney, M.P., and R.A.D. Cameron. 1979. A field guide to the land snails of Britain and North-West Europe. London: Collins.Google Scholar
  57. Kerney, M.P., R.A.D. Cameron, and J.H. Jungbluth. 1983. Die Landschnecken Nord- und Mitteleuropas. Hamburg: Paul Parey.Google Scholar
  58. Kinzie, R.A.I.I.I. 1992. Predation by the introduced carnivorous snail Euglandina rosea on endemic aquatic lymnaeid snails in Hawaii. Biological Conservation 60: 149–155.Google Scholar
  59. Klein, A. von. 1846. Conchylien der Süsswasserkalkformationen Württembergs. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 2 (1): 60–116.Google Scholar
  60. Klein, A. von. 1853. Conchylien der Süsswasserkalkformation Württembergs. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 9 (2): 203–223.Google Scholar
  61. Latal, C., W.E. Piller, and M. Harzhauser. 2004. Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 157–169.Google Scholar
  62. Latal, C., W.E. Piller, and M. Harzhauser. 2006. Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/Middle Miocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology 231: 347–360.Google Scholar
  63. Lécolle, P. 1985. The oxygen isotope composition of land snail shells as a climatic indicator: applications to hydrogeology and paleoclimatology. Chemical Geology 58: 157–181.Google Scholar
  64. Leng, M.J., A.L. Lamb, H.F. Lamb, and R.J. Telford. 1999. Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanoides tuberculata, from lakes in the Ethiopian Rift Valley. Journal of Paleolimnology 21: 97–106.Google Scholar
  65. Li, H.-C., and T.-L. Ku. 1997. δ13C- δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 133: 69–80.Google Scholar
  66. Liberto, F., W. Renda, M.S. Colomba, S. Giglio, and I. Sparacio. 2011. New records of Testacella scutulum Sowerby, 1821 (Gastropoda, Pulmonata, Testacellidae) from Southern Italy and Sicily. Biodiversity Journal 2 (1): 27–34.Google Scholar
  67. Lueger, J.P. 1981. Die Landschnecken im Pannon und Pont des Wiener Beckens, I. Systematik. II. Fundorte, Stratigraphie, Faunenprovinzen. Denkschriften der Österreichischen Akademie der Wissenschaften 120: 1–124.Google Scholar
  68. Metref, S., D.D. Rousseau, I. Bentaleb, M. Labonne, and M. Vianey-Liaud. 2003. Study of the diet effect on δ13C of shell carbonate of the land snail Helix aspersa in experimental conditions. Earth and Planetary Science Letters 211: 381–393.Google Scholar
  69. McConnaughey, T.A., and D.P. Gillikin. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28: 287–299.Google Scholar
  70. Mienis, H.K., and S. Ashkenazi. 2011. Lentic Basommatophora molluscs and hygrophilous land snails as indicators of habitat and climate in the Early-Middle Pleistocene (0.78 Ma) at the site of Gesher Benot Ya‘aqov (GBY) Israel. Journal of Human Evolution 60: 328–340.Google Scholar
  71. Mildner, P. 1981. Zur Ökologie Kärntner Landgastropoden. Carinthia II, Sonderheft 38: 1–93.Google Scholar
  72. Miller, B.B., and M.J.S. Tevesz. 2001. Freshwater molluscs. In Tracking Environmental Change Using Lake Sediments, Volume 4: Zoological Indicators, ed. J.P. Smol, H.J.B. Birks, and W.M. Last. Dordrecht: Kluwer Academic Publishers.Google Scholar
  73. Moine, O., D.D. Rousseau, D. Jolly, and M. Vianey-Liaud. 2002. Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks. Quaternary Research 57: 162–172.Google Scholar
  74. Moser, M., G.E. Rössner, U.B. Göhlich, M. Böhme, and V. Fahlbusch. 2009a. The fossil lagerstätte Sandelzhausen (Miocene; southern Germany): history of investigation, geology, fauna, and age. Paläontologische Zeitschrift 83: 7–23.Google Scholar
  75. Moser, M., H.J. Niederhöfer, and G. Falkner. 2009b. Continental molluscs of the fossil site Sandelzhausen (Miocene; Upper Freshwater Molasse from Bavaria) and their value for paleoecological assessment. Paläontologische Zeitschrift 83: 25–54.Google Scholar
  76. Nordsieck, H. 2007. Worldwide door snails (Clausiliidae), recent and fossil. Hackenheim: ConchBooks.Google Scholar
  77. Noulet, J.B. 1854. Mémoires sur les coquilles fossiles des terrains d’eau douce du Sud-Ouest de la France. Paris: J.B. Noulet.Google Scholar
  78. Nuttall, C. 1990. A review of the Tertiary non-marine molluscan faunas of the Pebasian and other inland basins of north-western South America. Bulletin of the British Museum of Natural History (Geology) 45: 165–371.Google Scholar
  79. Pearce, T.A., and A. Örstan. 2006. Terrestrial Gastropoda. In The mollusks: a guide to their study, collection, and preservation, ed. C.F. Sturm, T.A. Pearce, and A. Valdés, 261–285. Pittsburgh: American Malacological Society.Google Scholar
  80. Pfenninger, M., M. Hrabáková, D. Steinke, and A. Dèpraz. 2005. Why do snails have hairs? A Bayesian inference of character evolution. BMC Evolutionary Biology 5: 59. Google Scholar
  81. Press, J.R., and M.J. Short. 1994. Flora of madeira. London: HMSO.Google Scholar
  82. R Core Team. 2015. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  83. Reuss, A.E. 1849. Beschreibung der fossilen Ostracoden und Mollusken der tertiären Süsswasserschichten des nördlichen Böhmens. Palaeontographica 2: 16–42.Google Scholar
  84. Rowson, B., J. Turner, R. Anderson, and B. Symondson. 2014. Slugs of Britain and Ireland: identification, understanding and control. Telford: FSC.Google Scholar
  85. Salvador, R.B. 2013a. The fossil land and freshwater mollusks of Sandelzhausen (Early/Middle Miocene, Germany): Caenogastropoda, Neritimorpha, lower Heterobranchia and Bivalvia. Strombus 20: 19–26.Google Scholar
  86. Salvador, R.B. 2013b. The fossil pulmonate snails of Sandelzhausen (Early/Middle Miocene, Germany): Succineidae, Testacelloidea and Helicoidea. Zootaxa 3721 (2): 157–171.Google Scholar
  87. Salvador, R.B. 2015. The fossil pulmonate snails of Sandelzhausen (Early/Middle Miocene, Germany): Ellobiidae, Pupilloidea, and Clausilioidea. Paläontologische Zeitschrift 89 (1): 37–50.Google Scholar
  88. Salvador, R.B., and M.W. Rasser. 2014. The fossil pulmonate snails of Sandelzhausen (Early/Middle Miocene, Germany): Hygrophila, Punctoidea and limacoids. Archiv für Molluskenkunde 143 (2): 187–202.Google Scholar
  89. Sandberger, F. von. 1870–1875. Die Land- und Süßwasserconchylien der Vorwelt. (1): 1–48, pl. 1–4 (1870); (2–3): 49–96, pl. 5–12 (1870); (4–5): 97–160, pl. 13-20 (1871); (6–8): 161– 256, pl. 21–32 (1872); (9–10): 257–352, pl. 33–36 (1873); (11– 12): 353–1000 (1875). Wiesbaden: Kreidel.Google Scholar
  90. Schmid, W. 2002. Ablagerungsmilieu, Verwitterung und Paläoböden feinklastischer Sedimente der Oberen Süßwassermolasse Bayerns. Abhandlungen der Bayerischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse 172: 1–207.Google Scholar
  91. Schlotheim, E.F. von. 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt erläutert. Gotha: Becker.Google Scholar
  92. Schnabel, T. 2007. Die känozoischen Filholiidae Wenz 1923. Teil 4: Die eo- und oligozänen Vertreter der Gattung Triptychia, nebst Bemerkungen zur Ökologie und geo- bzw stratigraphischen Verbreitung der Filholiidae sowie zur Evolution der Gattung Triptychia (Gastropoda, Pulmonata, Clausilioidea). Archiv für Molluskenkunde 136 (1): 25–57.Google Scholar
  93. Seddon, M.B. 2008. The landsnails of Madeira—an illustrated compendium of the landsnails and slugs of the Madeiran Archipelago. Biotir Reports 2: 1–204.Google Scholar
  94. Shanahan, T.M., J.S. Pigati, D.L. Dettman, and J. Quade. 2005. Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochimica et Cosmochimica Acta 69 (16): 3949–3966.Google Scholar
  95. Sparks, B.W. 1961. The ecological interpretation of Quaternary non-marine Mollusca. Proceedings of the Linnaean Society of London 172: 71–80.Google Scholar
  96. Stott, L.D. 2002. The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa. Earth and Planetary Science Letters 195: 249–259.Google Scholar
  97. Stuiver, M. 1970. Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. Journal of Geophysical Research 75 (27): 5247–5257.Google Scholar
  98. Talbot, M.R. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology 80 (4): 261–279.Google Scholar
  99. Tanner, L.H. 2010. Continental carbonates as indicators of paleoclimate. Developments in Sedimentology 62: 179–214.Google Scholar
  100. Tappert, A. 2002. Molluskenzönosen von Waldstandorten des Pfälzerwaldes und der angrenzenden Rheinebene (unter Bildung von Zönosengruppen). Schriften zur Malakozoologie 19: 1–159.Google Scholar
  101. Tevesz, M.J.S., J.E. Smith, J.P. Coakley, and M.J. Risk. 1997. Stable carbon and oxygen isotope records from Lake Erie sediment cores: mollusc aragonite 4600 BP–200 BP. Journal of Great Lakes Research 23 (3): 307–316.Google Scholar
  102. Tütken, T., and T.W. Vennemann. 2009. Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. Paläontologische Zeitschrift 83: 207–226.Google Scholar
  103. Tütken, T., T.W. Vennemann, H. Janz, and E.P.J. Heizmann. 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: a reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 457–491.Google Scholar
  104. Vonhof, H.B., F.P. Wesselingh, and G.M. Ganssen. 1998. Reconstruction of the Miocene western Amazonian aquatic system using molluscan isotopic signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 141: 85–93.Google Scholar
  105. Waldén, H.W. 1983. Systematic and biogeographical studies in the terrestrial Gastropoda of Madeira. With an annotated Check-list. Annales Zoologici Fennici 20: 255–275.Google Scholar
  106. Welter-Schultes, F. 2012. European Non-marine Molluscs, a Guide for Species Identification. Göttingen: Planet Poster Editions.Google Scholar
  107. White, R.M.P., P.F. Dennis, and T.C. Atkinson. 1999. Experimental calibration and field investigation of the oxygen isotopic fractionation between biogenic aragonite and water. Rapid Communications in Mass Spectrometry 13: 1242–1247.Google Scholar
  108. Witt, W. 1998. Die miozäne Fossil-Lagerstätte Sandelzhausen. 14. Ostracoden. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 38: 135–165.Google Scholar
  109. Yanes, Y. 2015. Stable isotope ecology of land snails from a high-latitude site near Fairbanks, interior Alaska, USA. Quaternary Research 83: 588–595.Google Scholar
  110. Yanes, Y., A. Delgado, C. Castillo, M.R. Alonso, M. Ibáñez, J. de la Nuez, and M. Kowalewski. 2008. Stable isotope (δ18O, δ13C, and δD) signatures of recent terrestrial communities from a low-latitude, oceanic setting: endemic land snails, plants, rain, and carbonate sediments from the eastern Canary Islands. Chemical Geology 249: 277–292.Google Scholar
  111. Yanes, Y., C.S. Romanek, A. Delgado, H.A. Brant, J.E. Noakes, M.R. Alonso, and M. Ibáñez. 2009. Oxygen and carbon stable isotopes of modern land snail shells as environmental indicators from a low-latitude oceanic island. Geochimica et Cosmochimica Acta 73 (14): 4077–4099.Google Scholar
  112. Yang, J., P.F. Karrow, and G.L. Mackie. 2001. Paleoecological analysis of molluscan assemblages in two marl deposits in the Waterloo region, southwestern Ontario, Canada. Journal of Paleolimnology 25: 313–328.Google Scholar
  113. Zanchetta, G., F.P. Bonadonna, and G. Leone. 1999. A 37-meter record of paleoclimatological events from stable isotope data on continental molluscs in Valle di Castiglione, near Rome, Italy. Quaternary Research 52: 293–299.Google Scholar
  114. Zanchetta, G., G. Leone, A.E. Fallick, and F.P. Bonadonna. 2005. Oxygen isotope composition of living land snail shells: Data from Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 223: 20–33.Google Scholar
  115. Zettler, M., J. Frankowski, R. Bochert, and M. Roehner. 2004. Morphological and ecological features of Theodoxus fluviatilis (Linnaeus, 1758) from Baltic brackish water and German freshwater populations. Journal of Conchology 38: 303–316.Google Scholar
  116. Zhang, N., K. Yamada, N. Suzuki, and N. Yoshida. 2014. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from laboratory culturing experiment. Biogeosciences 11: 5335–5348.Google Scholar
  117. Zieten, C. H. von. 1830–1833. Die Versteinerungen Württembergs, oder naturgetreue Abbildungen der in den vollständigsten Sammlungen, namentlich der in dem Kabinett des Oberamts-Arzt Dr. Hartmann befindlichen Petrefakten, mit Angabe der Gebirgsformationen, in welchen dieselben vorkommen und der Fundorte. 1–2: 1–16 (1830); 3–4: 17–32 (1831); 5–6: 33–48 (1832); 7–8: 49–64 (1832); 9–12: 65–96 (1833). Stuttgart: Schweizerbart.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2018

Authors and Affiliations

  • Rodrigo B. Salvador
    • 1
    • 2
  • Thomas Tütken
    • 3
  • Barbara M. Tomotani
    • 4
  • Christoph Berthold
    • 2
  • Michael W. Rasser
    • 1
  1. 1.Staatliches Museum für Naturkunde StuttgartStuttgartGermany
  2. 2.Mathematisch-Naturwissenschaftliche FakultätEberhard Karls Universität TübingenTübingenGermany
  3. 3.Department of Applied and Analytical PaleontologyJohannes Gutenberg Universität MainzMainzGermany
  4. 4.Department of Animal EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations