, Volume 91, Issue 3, pp 409–426 | Cite as

A new species of Paramachaerodus (Mammalia, Carnivora, Felidae) from the late Miocene of China and Bulgaria, and revision of Promegantereon Kretzoi, 1938 and Paramachaerodus Pilgrim, 1913

  • Yu Li
  • Nikolai SpassovEmail author
Research Paper


New Machairodontinae material from the late Miocene localities of Hezheng (China) and Hadjidimovo (Bulgaria) represents a new species of Paramachaerodus Pilgrim. Both localities are similar in age and suggest that the new species had a very large geographic range extending from northwestern China adjacent to the Tibetan Plateau (Gansu Province) to southeastern Europe or probably to all of southern Europe. The new species—Paramachaerodus transasiaticus sp. nov is characterized by a combination of features of “Promegantereon” and Paramachaerodus. This specific morphology, as well as the age of the Hezheng and Hadjidimovo (early Turolian, after the European Land Mammal Ages) put the new species in intermediary position between “Promegantereon” and Paramachaerodus. The new felid material give grounds to discuss and revise in a new light the systematic and evolution of the “Promegantereon”–Paramachaerodus lineage, which should represent successive stages of one and the same genus: Paramachaerodus Pilgrim.


Machairodontinae Paramachaerodus transasiaticus sp. nov. Promegantereon Late Miocene China Bulgaria 

Institutional abbreviations


Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China


Paleontological museum-Assenovgrad, branch of the National Museum of Natural History—Sofia, Bulgaria


Naturhistorisches Museum Vienna, Austria


Collection of the Evolution Museum of Uppsala University, Sweden

Anatomical abbreviations


Upper canine


Lower canine


Upper incisor


Lower incisor


Upper molar


Lower molar


Upper premolar


Lower premolar




Mesiodistal length


Bucco-lingual width


Crown height


Height of the paraconid


Length of the paraconid


Height of the protoconid


Length of the protoconid

Measurement abbreviations



Maximum length of the tympanic bullae


Length from the rostral border of the lacrimal bone to the rostral border of the premaxilla


Length from the caudal border of the foramen magnum to the rostral border of the premaxilla


Dorsal length from the caudal border of the occipital to the rostral border of the sagittal crest


Maximal dorsal length


Length from the rostral border of the sagittal crest to the caudal border of the nasals


Length from the caudal border of the nasals to the caudal border of the occipital


Length from the rostral border of the lacrimal bone to the postorbital process of the zygomatic


Length from the rostral border of the lacrimal bone to the postorbital process of the frontal bone


Length from the rostral border of the premaxilla to the caudal border of the palate


Length from the caudal border of the occipital to the rostral border of the lacrimal bone


Length from the caudal border of the palate to the caudal border of the foramen magnum


Length from the caudal border of the occipital to the rostral border of the postorbital process of the frontal bone


Length from the caudal border of the nasals to the rostral border of the premaxilla


Length of the upper dental series


Length from the postorbital process of the frontal bone to the caudal border of the occipital


Width of the nasals


Skull width across buccal margins of the upper canines


Skull width across distal buccal margins of PM4 s

Measurement abbreviations



Length from the mesial border of the lower canine to the distal border of m1


Length from the carnassial notch of m1 to the caudal border of the mandibular condyle


Depth of the mandibular symphysis distally of the lower canine


Depth of the mandible under m1 (labially)


Height of the mandibular ramus


Length from the mesial border of the incisors to the caudal border of the coronoid process


Length from the rostral border of the mandibular symphysis to the caudal border of the mandibular condyle


Length of the lower jugal series


Height from the dorsal border of the mandibular condyle to the central border of the angular process


Transverse diameter of the mandible at m1

Other abbreviations


Hadjidimovo locality, Bulgaria


Indication for localities in Linxia Basin


Neues Material von Machairodontinae aus den obermiozänen Fundstellen Hezheng (China) und Hadjidimovo (Bulgarien) repräsentiert eine neue Art, die der Gattung Paramachaerodus Pilgrim zugeordnet werden kann. Die beiden Fundstellen sind altersgleich und deuten darauf hin, dass die neue Art ein sehr ausgedehntes Areal von Nordwest-China, im benachbarten Hochland von Tibet (Provinz Gansu), bis Südost-Europa oder möglicherweise auch ganz Südeuropa besiedelt hat. Die neue Art – Paramachaerodus transasiaticus sp. nov. – wird durch eine Kombination der Merkmale von Promegantereon und Paramachaerodus charakterisiert. Sowohl die spezifische Morphologie als auch das Alter von Hezheng und Hadjidimovo (Unteres Turolium, nach der europäischen Landsäugetier-Chronologie) stellen die neue Art in eine Zwischenposition zwischen Promegantereon und Paramachaerodus. Das neue Feliden-Material bietet eine Diskussionsgrundlage und rückt die Systematik und Evolution der Abstammungsgruppe PromegantereonParamachaerodus in ein anderes Licht, die nachfolgende Stadien von ein und derselben Gattung (Paramachaerodus Pilgrim) repräsentieren soll.


Machairodontinae Paramachaerodus transasiaticus sp. nov. Promegantereon spätes Miozän China Bulgarien 



We (especially N.S.) are very grateful to Manuel Salesa for the photos and data, and to Jorge Morales for access to the collections in the National Museum of Natural Sciences, Madrid. We (especially Y. L.) are very grateful also to Zhanxiang Qiu (IVPP) for providing the Chinese specimen and for his advises in this research, to Tao Deng (IVPP) for funding support for the cooperation work, to Shiqi Wang and Qinqin Shi (IVPP) for their help in the field work, to Thomas Stidham (IVPP) for his help in English improving and his useful comments, to Guo Xiaocong (IVPP) for her help in drawing of some pictures and Gao Wei (IVPP) for photographing. We are indebted to Velizar Simeonovski (Field Museum, Chicago and National Museum of Natural History, Sofia) who agreed to prepare the reconstruction of the life appearance of the new species described. The detailed comments by the reviewers Michael Morlo, an anonymous reviewer, and the editor Mike Reich much improved our manuscript. This work was supported by the National Natural Science Foundation of China (Grant Number 41430102), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB03020104), and the Ministry of Science and Technology of China (2012CB821906).


  1. Alcalá, L., C. Sesé, E. Herráez, and R. Adrover. 1991. Mamíferos del Turoliense inferior de Puente Minero (Teruel, España). Boletín Real Sociedad Española de Historia Natural 86 (1–4): 205–251.Google Scholar
  2. Berta, A. 1987. The sabercat Smilodon gracilis from Florida and a discussion of its relationships (Mammalia, Felidae, Smilodontini). Bulletin of the Florida State Museum, Biological Science 31 (1): 1–63.Google Scholar
  3. Beaumont, G. 1975. Recherches sur les félidés (Mammifères, Carnivores) du Pliocène inférieur des sables à Dinotherium des environs d’Eppelsheim (Rheinhessen). Archives des Sciences, Genève 28: 369–405.Google Scholar
  4. Beaumont, G. 1978. Notes complémentaires sur quelques félidés (Carnivores). Archives des Sciences, Genève 31: 219–227.Google Scholar
  5. Bowdich, T.E. 1821. An analysis of the natural classifications of Mammalia, for the use of students and travellers, 1–115. Paris: J. Smith.Google Scholar
  6. Clavel, J., G. Merceron, L. Hristova, N. Spassov, D. Kovachev, and G. Escarguel. 2012. On Mesopithecus habitat: insights from late Miocene fossil vertebrate localities of Bulgaria. Journal of Human Evolution 63: 162–179.CrossRefGoogle Scholar
  7. Deng, T. 2004. Evolution of the late Cenozoic mammalian faunas in the Linxia Basin and its background relevant to the uplift of the Qinghai-Xizang Plateau. Quaternary Sciences 24 (4): 413–420. (Chinese with English abstract).Google Scholar
  8. Deng, T., X.-M. Wang, X.-J. Ni, and L.-P. Liu. 2004. Cenozoic stratigraphic sequence of the Linxia Basin in Gansu, China and its evidence from mammal fossils. Vertebrata PalAsiatica 42 (1): 45–66. (Chinese and English).Google Scholar
  9. Deng, T. 2006. Chinese Neogene mammal biochronology. Vertebrata PalAsiatica 44 (2): 143–163.Google Scholar
  10. Deng, T., W. He, and S.-Q. Chen. 2008. A new species of the Late Miocene tapirs (Perissodactyla, Tapiridae) from the Linxia Basin in Gansu, China. Vertebrata PalAsiatica 46 (3): 190–209. (Chinese and English).Google Scholar
  11. Deng, T., Z.-X. Qiu, B.-Y. Wang, X.-M. Wang, and S.-K. Hou. 2013. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China. In Fossil mammals of Asia: neogene biostratigraphy and chronology, ed. X.-M. Wang, L.J. Flynn, and M. Fortelius, 243–273. Columbia: Columbia University Press.CrossRefGoogle Scholar
  12. Fischer von Waldheim, G. 1817. Adversaria zoologica. Mémoires de la Société Impériale des Naturalistes de Moscou 5: 357–428.Google Scholar
  13. Geraads, D., and N. Spassov. 2009. Rhinocerotidae (Mammalia) from the late Miocene of Bulgaria. Palaeontographica 287: 99–122.CrossRefGoogle Scholar
  14. Gill, T. 1872. Arrangement of the families of mammals with analytical tables. Smithsonian Micellaneous Collections 11(4): 1–98.Google Scholar
  15. Ginsburg, L. 1999. Order Carnivora. In The Miocene land mammals of Europe, eds. G.E. Rössner, and K. Heißig, 109–148. München: Pfeil-Verlag.Google Scholar
  16. Goloboff, P.A., J.S. Farris, and K.C. Nixon. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786.CrossRefGoogle Scholar
  17. GSA Rock Color Chart. 1991. The Geological Society of America Rock-Color Chart with Genuine Munsell Color Chips. USA: Munsell Color.Google Scholar
  18. Hou, L.H., Z.-H. Zhou, F.-C. Zhang, and Z. Wang. 2005. A Miocene ostrich fossil from Gansu Province, northwest China. Chinese Science Bulletin 50 (16): 1808–1810.CrossRefGoogle Scholar
  19. Hristova, L., and N. Spassov. 2005. Taxonomy and Ecology of the late Miocene Hipparions of Bulgaria: Implication to the questions of the Balkans Turolian stratigraphy and environmental changes, 24. Institute of Botany, Bulgarian Academy of Sciences, Abstracts: In Annual NECLIME Meeting.Google Scholar
  20. Hristova, L., D. Geraads, G. Markov, and N. Spassov. 2013. Late Miocene mammals from Kocherinovo. Southwestern Bulgaria. Acta Zoologica Bulgarica 65 (4): 517–529.Google Scholar
  21. Kaup, J. 1832. Vier neue Arten urweltlicher Raubthiere welche im zoologischen Museum zu Darmstadt aufbewart werden. Archiv für Mineralogie 5: 150–158.Google Scholar
  22. Kittl, E. 1887. Beiträge zur Kenntnis der fossilen Säugethiere von Maragha in Persien. Annalen des Kaiserlich Königlichen Naturhistorischen Hofmuseums Wien 1: 317–338.Google Scholar
  23. Kretzoi, N. 1929. Materialien zur phylogenetischen Klassifikation der Aeluroïdeen. X Congres International de Zoologie, Budapest 2: 1293–1355.Google Scholar
  24. Kretzoi, N. 1938. Die Raubtiere von Gombaszög nebst einer Übersicht der Gesamtfauna. Annales Historico-Naturales Musei Nationalis Hungarici 31: 88–157.Google Scholar
  25. Koufos, G., N. Spassov, and D. Kovatchev. 2003. Study of Mesopithecus (Primates, Cercopithecoidea) from the Late Miocene of Bulgaria. Palaeontographica Abteilung A 269 (1–3): 39–91.Google Scholar
  26. Li, Y. 2015. Restudy of Metailurus major from Yushe Basin, Shanxi Province reported by Teilhard de Chardin and Leroy. Vertebrata PalAsiatica 52 (4): 467–485.Google Scholar
  27. Maddison, W.P., and D.R. Maddison. 2015. Mesquite: a modular system for evolutionary analysis. Version 3.04. Available:
  28. McKenna, M.C., and S.K. Bell. 1997. Classification of mammals above the species level. New York: Columbia University Press.Google Scholar
  29. Merceron, G., A. Zazzo, N. Spassov, D. Geraads, and D. Kovachev. 2006. Bovid paleoecology and paleoenvironments from the Late Miocene of Bulgaria: evidence from dental microwear and stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 241 (3–4): 637–654.CrossRefGoogle Scholar
  30. Merriam, J.C., and C. Stock. 1932. The Felidae of Rancho La Brea. Carnegie Institution of Washington 22: 1–231.Google Scholar
  31. Montoya, P. 1994. Los Macromamíferos del Mioceno superior del área de Crevillente (Alicante). Unpublished PhD thesis. Universitat de València, 421 pp.Google Scholar
  32. Morlo, M. 1997. Die Raubtiere (Mammalia, Carnivora) aus dem Turolium von Dorn-Dürkheim 1 (Rheinhessen). Teil 1: Mustelidae, Hyaenidae, Percrocutidae. Felidae. Courier Forschungs-Institut Senckenberg 197: 11–47.Google Scholar
  33. Morales, J., and D. Soria. 1977. Presencia de la asociación Machairodus-Paramachairodus en Concud (Teruel). Teruel 57–58: 1–9.Google Scholar
  34. Morales, J. 1984. Venta del Moro: su macrofauna de mamíferos y biostratigrafía continental del Mioceno terminal mediterráneo, 1–340. Madrid: Universidad Complutense.Google Scholar
  35. Nikolov, I. 1973. The Genus Hipparion in Bulgaria. Ph.D. Thesis. Institute of Geology, Bulgarian Acadamy of Sciences (Bulgarian).Google Scholar
  36. Ozansoy, F. 1965. Étude des gisements continentaux et de mammifères du Cénozoique de Turquie. Mémoire de la Societée Géologique de France (n. série) 44:1–92.Google Scholar
  37. Nikolov, I. 1985. Catalogue of the localities of tertiary Mammals in Bulgaria. Bulgarian Academy of Sciences 21: 43–62.Google Scholar
  38. Pilgrim, G. 1913. The correlation of the siwaliks with Mammal Horizons of Europe. Records of the Geological Survey of India 43: 264–326.Google Scholar
  39. Pilgrim, G. 1931. Catalogue of the Pontian Carnivora of Europe in the Department of Geology. London: British Museum of Natural History.Google Scholar
  40. Salesa, M.J., P. Montoya, L. Alcalá, and J. Morales. 2003. El género Paramachairodus Pilgrim, 1913 (Felidae, Machairodontinae) en el Mioceno superior Española. Coloquios de Paleontología, Volumen Extraordinario 1: 603–615.Google Scholar
  41. Salesa, M.J., M. Antón, A. Turner, and J. Morales. 2005a. El origen de los félidos machairodontinos: aspectos funcionales de la anatomía cráneo-cervical de Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) de Batallones-1 (Vallesiense, MN 10). Revista Española de Paleontología 20 (2): 133–141.Google Scholar
  42. Salesa, M.J., M. Antón, A. Turner, and J. Morales. 2005b. Aspects of the functional morphology in the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: implications for the origins of the machairodont killing bite. Zoological Journal of the Linnean Society 144: 363–377.CrossRefGoogle Scholar
  43. Salesa, M.J., M. Antón, A. Turner, and J. Morales. 2006. Inferred behaviour and ecology of the primitive sabre-toothed cat Paramachairodus ogygia (Felidae, Machairodontinae) from the Late Miocene of Spain. Journal of Zoology 268: 243–254.CrossRefGoogle Scholar
  44. Salesa, M.J., M. Antón, A. Turner, L. Alcalá, P. Montoya, and J. Morales. 2010. Systematic revision of the Late Miocene sabre-toothed felid Paramachaerodus in Spain. Palaeontology 53: 1369–1391.CrossRefGoogle Scholar
  45. Spassov, N. 2002. The Turolian Megafauna of West Bulgaria and the character of the Late Miocene “Pikermian biome”. Bollettino della Societa Paleontologica Italiana 41 (1): 69–81.Google Scholar
  46. Spassov, N., and D. Geraads. 2004. Tragoportax Pilgrim and Miotragocerus Stromer (Mammalia, Bovidae) from the Turolian of Hadjidimovo, Bulgaria, and a revision of the Late Miocene Mediterranean Boselaphini. Geodiversitas 26 (2): 339–370.Google Scholar
  47. Spassov, N., and D. Geraads. 2015. A new felid from the late Miocene of the Balkans and the contents of the genus Metailurus Zdsndky, 1924 (Carnivora, Felidae). Journal of Mammalian Evolution 22 (1): 45–56.CrossRefGoogle Scholar
  48. Tseng, Z.-J., X.-M. Wang, G.J. Slater, G.T. Takeuchi, Q. Li, J. Liu, and G.-P. Xie. 2014. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proceedings of the Royal Society B 281: 20132686.CrossRefGoogle Scholar
  49. Vatsev, M. 1980. Lithostratigraphy of the Neogene sedimentary rocks of the Gotse Delchev basin. Annual of the Higher Institute of Mine and Geology 25: 103–115.Google Scholar
  50. Wagner, A. 1857. Neue Beiträge zur Kenntniss der fossilen Säugthier-Ueberreste von Pikermi. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftlichen Klasse 8: 111–158.Google Scholar
  51. Weithoffer, K. 1888. Beiträge zur Kenntniss der Fauna von Pikermi bei Athen. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients 6: 225–292.Google Scholar
  52. Werdelin, L. 1981. The evolution of lynxes. Annales Zoologici Fennici 18: 37–71.Google Scholar
  53. Zdansky, O. 1924. Jungtertiäre Carnivoren Chinas. Palaeontologica Sinica 2: 1–149.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2017

Authors and Affiliations

  1. 1.Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.National Museum of Natural HistoryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations