PalZ

, Volume 90, Issue 4, pp 747–763 | Cite as

The world’s smallest owl, the earliest unambiguous charadriiform bird, and other avian remains from the early Eocene Nanjemoy Formation of Virginia (USA)

Research Paper

Abstract

New avian remains from the early Eocene Nanjemoy Formation in Virginia (USA) are described. The material stems from the Fisher/Sullivan site and consists of isolated bones. These belong to at least 13 species, most of which have not yet been reported from the Nanjemoy Formation. The fossil material includes the oldest unambiguous record of a charadriiform bird and a new species of protostrigid owl, which represents the smallest known owl species. Other specimens are tentatively assigned to the Procellariiformes, the suliform Fregatidae, the gruiform Messelornithidae, and the apodiform Eocypselidae. A complete and well-preserved tarsometatarsus of the psittacopasserine Halcyornithidae provides new data on the osteology of these enigmatic birds, and a distal tibiotarsus is tentatively assigned to the Trogoniformes. The identification of a number of fossils is uncertain, with the bones showing similarities to Threskiornithidae and extinct taxa from the early Eocene of Europe (Microena, Morsoravis). All bird fossils from the Nanjemoy Formation are three-dimensionally preserved and, therefore, allow a detailed assessment of osteological features, which complements studies of compression fossils from lagerstätten-type fossil sites.

Keywords

Fossil birds Fisher/Sullivan site Ypresian Charadriiformes Eostrix Halcyornithidae 

Kurzfassung

Neue Vogelreste werden aus der untereozänen Nanjemoy-Formation in Virginia (USA) beschrieben. Das Material stammt aus der Fisher/Sullivan-Fundstelle und besteht aus Einzelknochen. Diese gehören zu mindestens 13 Arten, von denen die meisten noch nicht aus der Nanjemoy-Formation beschrieben wurden. Das Fossilmaterial beinhaltet den ältesten unzweifelhaften Nachweis eines charadriiformen Vogels und einen neuen Vertreter der Protostrigidae, welcher zudem die kleinste bekannte Eulenart darstellt. Andere Exemplare werden unter Vorbehalt zu den Procellariiformes gestellt, sowie zu den suliformen Fregatidae, den gruiformen Messelornithidae und den apodiformen Eocypselidae. Ein vollständiger und gut erhaltener Tarsometatarsus der Halcyornithidae (Psittacopasseres) liefert neue Daten über die Osteologie dieser rätselhaften Vögel und ein distaler Tibiotarsus wird unter Vorbehalt zu den Trogoniformes gestellt. Die Identifizierung einer Reihe von Fossilien ist unsicher und die Knochen weisen Ähnlichkeiten zu Threskiornithidae und ausgestorbenen Taxa aus dem europäischen Untereozän auf (Microena, Morsoravis). Alle Vogelfossilien der Nanjemoy-Formation sind dreidimensional erhalten und erlauben damit eine detaillierte Bewertung osteologischer Merkmale, welche Untersuchungen von Kompressionsfossilien aus lagerstättenartigen Fundstellen ergänzt.

Schlüsselwörter

Fossile Vögel Fisher/Sullivan-Fundstelle Ypresium Charadriiformes Eostrix Halcyornithidae 

References

  1. American Ornithologists’ Union. 1897. The code of nomenclature and check-list of North American birds, adopted by the American Ornithologists’ Union, being the report of the Committee of the Union on Classification and Nomenclature. New York: American Ornithologists’ Union.Google Scholar
  2. Ballmann, P. 2004. Fossil Calidridinae (Aves: Charadriiformes) from the Middle Miocene of the Nördlinger Ries. Bonner Zoologische Beiträge 52: 101–114.Google Scholar
  3. Baumel, J.J., and L.M.Witmer.1993. Osteologia. In Handbook of Avian Anatomy: Nomina Anatomica Avium, ed. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge. Publications of the Nuttall Ornithological Club 23: 45–132.Google Scholar
  4. Berggren, W.A., Kent, D.V., Swisher, C.C., and Aubrey, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation, ed. W.A. Berggren, D.V. Kent, M.-P. Aubry, and J. Hardenbol. Society of Economic Paleontologists and Mineralogists Special Publication 54: 129–212.Google Scholar
  5. Bertelli, S., B.E. Lindow, G.J. Dyke, and L.M. Chiappe. 2010. A well-preserved ‘charadriiform-like’ fossil bird from the Early Eocene Fur Formation of Denmark. Palaeontology 53: 507–531.CrossRefGoogle Scholar
  6. Bertelli, S., L.M. Chiappe, and G. Mayr. 2011. A new Messel rail from the Early Eocene Fur Formation of Denmark (Aves, Messelornithidae). Journal of Systematic Palaeontology 9: 551–562.CrossRefGoogle Scholar
  7. Brasso, R.L., and S.D. Emslie. 2006. Two new late Pleistocene avifaunas from New Mexico. The Condor 108: 721–730.CrossRefGoogle Scholar
  8. Brodkorb, P. 1971. Catalogue of fossil birds: part 4 (Columbiformes through Piciformes). Bulletin of the Florida State Museum Biological Sciences 15: 163–266.Google Scholar
  9. De Pietri, V.L., C. Mourer-Chauviré, U. Menkveld-Gfeller, C.A. Meyer, and L. Costeur. 2013. An assessment of the Cenozoic avifauna of Switzerland, with a description of two fossil owls (Aves, Strigiformes). Swiss Journal of Geosciences 106: 187–197.CrossRefGoogle Scholar
  10. De Pietri, V.L., R.P. Scofield, N. Zelenkov, W.E. Boles, and T.H. Worthy. 2016. The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae. Royal Society Open Science 3(2): 150635.CrossRefGoogle Scholar
  11. Degland, C.D., and Z. Gerbe. 1867. Ornithologie européenne: ou catalogue descriptif, analytique et raisonné des oiseaux observés en Europe, vol. 2. Paris: J.B. Baillière et fils.CrossRefGoogle Scholar
  12. Dyke, G.J., and J.H. Cooper. 2000. A new psittaciform bird from the London Clay (Lower Eocene) of England. Palaeontology 43: 271–285.CrossRefGoogle Scholar
  13. Feduccia, A. 1999. The Origin and Evolution of Birds, 2nd ed. New Haven: Yale University Press.Google Scholar
  14. Fürbringer, M. 1888. Untersuchungen zur Morphologie und Systematik der Vögel, zugleich ein Beitrag zur Anatomie der Stütz- und Bewegungsorgane, vol. 2. Amsterdam: Van Holkema.CrossRefGoogle Scholar
  15. Grande, L. 2013. The Lost World of Fossil Lake. Snapshots from Deep Time. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  16. Harrison, C.J.O. 1980. A small owl from the Lower Eocene of Britain. Tertiary Research 3: 83–87.Google Scholar
  17. Harrison, C.J.O. 1984. A revision of the fossil swifts (Vertebrata, Aves, suborder Apodi), with descriptions of three new genera and two new species. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie 21: 157–177.Google Scholar
  18. Harrison, C.J.O., and C.A. Walker. 1977. Birds of the British Lower Eocene. Tertiary Research Special Paper 3: 1–52.Google Scholar
  19. Hesse, A. 1988. Die †Messelornithidae—eine neue Familie der Kranichartigen (Aves: Gruiformes: Rhynocheti) aus dem Tertiär Europas und Nordamerikas. Journal für Ornithologie 129: 83–95.CrossRefGoogle Scholar
  20. Huxley, T.H. 1867. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observable in that class. Proceedings of the Zoological Society of London 1867: 415–472.Google Scholar
  21. Ksepka, D.T., J.A. Clarke, and L. Grande. 2011. Stem parrots (Aves, Halcyornithidae) from the Green River Formation and a combined phylogeny of Pan-Psittaciformes. Journal of Paleontology 85: 835–852.CrossRefGoogle Scholar
  22. Ksepka, D.T., J.A. Clarke, S.J. Nesbitt, F.B. Kulp, and L. Grande. 2013. Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes). Proceedings of the Royal Society B Biological Sciences 280: 20130580.CrossRefGoogle Scholar
  23. Kurochkin, E.N., and G.J. Dyke. 2011. The first fossil owls (Aves: Strigiformes) from the Paleogene of Asia and a review of the fossil record of Strigiformes. Paleontological Journal 45: 445–458.CrossRefGoogle Scholar
  24. Mayr, G. 1998. A new family of Eocene zygodactyl birds. Senckenbergiana Lethaea 78: 199–209.CrossRefGoogle Scholar
  25. Mayr, G. 2002. On the osteology and phylogenetic affinities of the Pseudasturidae—Lower Eocene stem-group representatives of parrots (Aves, Psittaciformes). Zoological Journal of the Linnean Society 136: 715–729.CrossRefGoogle Scholar
  26. Mayr, G. 2007. The birds from the Paleocene fissure filling of Walbeck (Germany). Journal of Vertebrate Paleontology 27: 394–408.CrossRefGoogle Scholar
  27. Mayr, G. 2009. Paleogene fossil birds. Heidelberg: Springer.CrossRefGoogle Scholar
  28. Mayr, G. 2010. Reappraisal of Eocypselus—a stem group representative of apodiform birds from the early Eocene of Northern Europe. Palaeobiodiversity and Palaeoenvironments 90: 395–403.CrossRefGoogle Scholar
  29. Mayr, G. 2011. On the osteology and phylogenetic affinities of Morsoravis sedilis (Aves) from the early Eocene Fur Formation of Denmark. Bulletin of the Geological Society of Denmark 59: 23–35.Google Scholar
  30. Mayr, G. 2015a. A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes). Zoologica Scripta 44: 587–602.CrossRefGoogle Scholar
  31. Mayr, G. 2015b. New remains of the Eocene Prophaethon and the early evolution of tropicbirds (Phaethontiformes). Ibis 157: 54–67.CrossRefGoogle Scholar
  32. Mayr, G. 2016. Variations in the hypotarsus morphology of birds and their evolutionary significance. Acta Zoologica 97: 196–210.CrossRefGoogle Scholar
  33. Mayr, G. in press. The early Eocene birds of the Messel fossil site: a 48 million-year-old bird community adds a temporal perspective to the evolution of tropical avifaunas. Biological Reviews, doi:10.1111/brv.12274.
  34. Mayr, G., and S. Bertelli. 2011. A record of Rhynchaeites (Aves, Threskiornithidae) from the early Eocene Fur Formation of Denmark, and the affinities of the alleged parrot Mopsitta. Palaeobiodiversity and Palaeoenvironments 91: 229–236.CrossRefGoogle Scholar
  35. Mayr, G., and C. Mourer-Chauviré. 2005. A specimen of Parvicuculus Harrison and Walker 1977 (Aves: Parvicuculidae) from the early Eocene of France. Bulletin of the British Ornithologists’ Club 125: 299–304.Google Scholar
  36. Mayr, G., R.S. Rana, K.D. Rose, A. Sahni, K. Kumar, L. Singh, and T. Smith. 2010. Quercypsitta-like birds from the early Eocene of India (Aves,?Psittaciformes). Journal of Vertebrate Paleontology 30: 467–478.CrossRefGoogle Scholar
  37. Mayr, G., and R.P. Scofield. 2016. New avian remains from the Paleocene of New Zealand: the first early Cenozoic Phaethontiformes (tropicbirds) from the Southern Hemisphere. Journal of Vertebrate Paleontology 36: e1031343.CrossRefGoogle Scholar
  38. Mourer-Chauviré, C. 1983. Minerva antiqua (Aves, Strigiformes), an owl mistaken for an edentate mammal. American Museum Novitates 2773: 1–11.Google Scholar
  39. Mourer-Chauviré, C. 1995. The Messelornithidae (Aves: Gruiformes) from the Paleogene of France. Courier Forschungsinstitut Senckenberg 181: 95–105.Google Scholar
  40. Olson, S.L. 1977. A Lower Eocene frigatebird from the Green River Formation of Wyoming (Pelecaniformes: Fregatidae). Smithsonian Contributions to Paleobiology 35: 1–33.CrossRefGoogle Scholar
  41. Olson, S.L. 1999. Early Eocene birds from eastern North America: A faunule from the Nanjemoy Formation of Virginia. In Early Eocene vertebrates and plants from the Fisher/Sullivan site (Nanjemoy Formation) Stafford County, Virginia, ed. R.E. Weems, and G.J. Grimsley. Virginia Division of Mineral Resources Publication 152: 123–132.Google Scholar
  42. Olson, S.L., and H. Matsuoka. 2005. New specimens of the early Eocene frigatebird Limnofregata (Pelecaniformes: Fregatidae), with the description of a new species. Zootaxa 1046: 1–15.Google Scholar
  43. Peters, J.L. 1940. Check-list of birds of the world, vol. 4. Cambridge: Museum of Comparative Zoology.Google Scholar
  44. Rich, P.V. 1982. Tarsometatarsus of Protostrix from the mid-Eocene of Wyoming. The Auk 99: 576–579.Google Scholar
  45. Sharpe, R.B. 1891. A review of recent attempts to classify birds. Budapest: Second International Ornithological Congress.Google Scholar
  46. Smith, N.D. 2010. Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS One 5(10): e13354.CrossRefGoogle Scholar
  47. Steadman, D.W. 1981. Review of Harrison and Walker 1976c, 1977. The Auk 98: 205–207.Google Scholar
  48. Stidham, T.A. 2015. A new species of Limnofregata (Pelecaniformes: Fregatidae) from the Early Eocene Wasatch Formation of Wyoming: implications for palaeoecology and palaeobiology. Palaeontology 58: 239–249.CrossRefGoogle Scholar
  49. Suh, A., M. Paus, M. Kiefmann, G. Churakov, F.A. Franke, J. Brosius, J.O. Kriegs, and J. Schmitz. 2011. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nature Communications 2: 443.CrossRefGoogle Scholar
  50. Wagler, J.G. 1830. Natürliches System der Amphibien: mit vorangehender Classification der Säugethiere und Vögel: ein Beitrag zur vergleichenden Zoologie. München: J.G. Cotta’sche Buchhandlung.CrossRefGoogle Scholar
  51. Weems, R.E., and G.J. Grimsley. 1999. Introduction, geology, and paleogeographic setting. In Early Eocene vertebrates and plants from the Fisher/Sullivan site (Nanjemoy Formation) Stafford County, Virginia, eds. R.E. Weems, and G.J. Grimsley. Virginia Division of Mineral Resources Publication 152: 1–10.Google Scholar
  52. Wetmore, A. 1933. The status of Minerva antiqua, Aquila ferox and Aquila lydekkeri as fossil birds. American Museum Novitates 680: 1–7.Google Scholar
  53. Zvonok, E., G. Mayr, and L. Gorobets. 2015. New material of the Eocene Kievornis Averianov et al. 1990 and a reassessment of the affinities of this taxon. Vertebrata PalAsiatica 53: 238–244.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2016

Authors and Affiliations

  1. 1.Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological SectionFrankfurt am MainGermany

Personalised recommendations