PalZ

, Volume 90, Issue 4, pp 649–657 | Cite as

Forbidden fruits in the Garden of Ediacara

Research Paper

Abstract

The expulsion of jellyfish from the "Garden of Ediacara", as described by Adolf Seilacher, has challenged the “gelatinous ocean” stereotype; however, not all discoidal fossils can be interpreted as holdfast structures, sandy skeletons of benthic organisms, microbial colonies, fungal fairy rings, or erosional scratch circles. Here I describe a late Ediacaran (~550 Ma) medusiform organism, Bjarmia cycloplerusa gen. et sp. nov., preserved as a composite mould in a steep crescentic erosional scour cast in fine-laminated sandstone from the Erga Formation in the Southeast White Sea area. Biostratinomic features point to an allochthonous burial of a bowl-shaped body as it trapped mud pebbles when it was suspended in a sediment-laden flow. An unprecedented range of preserved characters, including moulds of a coronal and longitudinal muscles, suggests affinities with scyphomedusae. The organism is reconstructed as a coronate-like jellyfish, with numerous pedalia separated one from another by deep radiating slits, four deep subgenital pits in the floor of the subumbrella, and a skirt of poorly differentiated tentacle-like structures surrounding the large four-cornered mouth opening. Rhopalia and marginal lappets are not preserved in the specimen. Bjarmia cycloplerusa gen. et sp. nov., if borne out by future research, can be used as evidence for a substantial branching by the late Ediacaran within-stem cnidarian lineages—a largely cryptic component of the pre-Cambrian biota—and raises questions about the nature of late Ediacaran food webs.

Keywords

Ediacaran Scyphozoa Taphonomy Palaeoecology 

Kurzfassung

Die “Vertreibung” von Quallen aus dem von Adolf Seilacher beschriebenen “Garten von Ediacara” lässt das Bild eines “gelatinösen Ozeans” fraglich erscheinen. Dennoch können nicht alle discoidalen Fossilien als Haftorgan-Strukturen, sandige Skelette benthischer Organismen, mikrobielle Kolonien, kreisförmig auftretende Pilz-Fruchtkörper (Hexenringe), oder Scharrkreise interpretiert werden. In vorliegender Arbeit wird der medusenförmige Organismus Bjarmia cycloplerusa gen. et sp. nov. aus dem späten Ediacarium (~550 Ma) beschrieben. Das Fossil ist als Abdruck in einer fein laminierten Sandsteinfazies der Erga-Formation aus der südöstlichen Weißmeer-Region erhalten. Biostratinomische Merkmale, wie beispielsweise im zentralen Bereich des Fossils befindliche Tonklasten, deuten auf eine allochthone Einbettung des ehemals schalenförmigen Körpers innerhalb eines Suspensionsstromes hin. Eine bisher nie dagewesen Fülle von erhalten gebliebenen Merkmalen, darunter z. B. Abdrücke koronaler und longitudinaler Muskeln, deuten auf eine Verwandtschaft mit Scyphomedusen hin. Der Organismus wird als Coronata-artige Qualle mit zahlreichen, jeweils durch tiefe radiale Fugen getrennten Pedalia, vier tiefen, an der Unterseite der Subumbrella gelegenen Subgenitalhöhlen, sowie schlecht differenzierten tentakelartige Strukturen, welche die große viereckige Mundöffnung saumartig umgeben, rekonstruiert. Sowohl Rhopalia als auch randliche Hautlappen sind in dem untersuchten Exemplar nicht erhalten. Sollten diese Interpretationen durch zukünftige Studien noch weiter bekräftigt werden können, dann dokumentiert Bjarmia cycloplerusa gen. et sp. nov. eine bereits im späten Ediacarium auftretende Verzweigung innerhalb der Stammlinie der Cnidaria—einem weitestgehend kryptischen Bestandteil der präkambrischen Lebewelt—wirft jedoch auch gleichzeitig Fragen bezüglich der Nahrungsnetze im späten Ediacarium auf.

Schlüsselwörter

Ediacarium Scyphozoa Taphonomie Paläoökologie 

References

  1. Brandt, A. 1871. Fossile Medusen. Mémoires de l’Académie Impériale des Sciences de St.-Pétersbourg, VII Série 16(11):1–28.Google Scholar
  2. Buss, L.W., and A. Seilacher. 1994. The phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20(1): 1–4.CrossRefGoogle Scholar
  3. Butterfield, N.J. 2007. Macroecovolution and macroecology through deep time. Palaeontology 50: 41–55.CrossRefGoogle Scholar
  4. Cartwright, P., S.L. Halgedahl, J.R. Hendricks, R.D. Jarrard, A.C. Marques, A.G. Collins, and B.S. Lieberman. 2007. Exceptionally preserved jellyfishes from the middle Cambrian. PLoS One 2(10): e1121. doi:10.1371/journal.pone.0001121.CrossRefGoogle Scholar
  5. Dong, X.-P., J.A. Cunningham, S. Bengtson, C.-W. Thomas, J. Liu, M. Stampanoni, and P.C.J. Donoghue. 2013. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proceedings of the Royal Society B 280: 20130071. doi:10.1098/rspb.2013.0071.CrossRefGoogle Scholar
  6. Erwin, D.H., M. Laflamme, S.M. Tweedt, E.A. Sperling, D. Pisani, and K.J. Peterson. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334: 1091–1097.CrossRefGoogle Scholar
  7. Fedonkin, M.A., A. Yu, Ivantsov, M.V. Leonov, E.A. Serezhnikova. 2007. Dynamics of evolution and biodiversity in the Late Vendian: a view from the White Sea. In The rise and fall of the Vendian (Ediacaran) biota. Origin of modern biosphere. Transactions of the International Conference on the IGCP Project 493. August 20–31, 2007, Moscow, ed. M.A. Semikhatov, 6–9. Moscow: GEOS (in Russian).Google Scholar
  8. Gehling, J.G. 1988. A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa 12: 299–314.CrossRefGoogle Scholar
  9. Gehling, J.G., G.M. Narbonne, and M.M. Anderson. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43: 427–456.CrossRefGoogle Scholar
  10. Gladfelter, W.B. 1972. Structure and function of the locomotory system of the Scyphomedusa Cyanea capillata. Marine Biology 14: 150–160.CrossRefGoogle Scholar
  11. Grazhdankin, D.V. 2000. The Ediacaran genus Inaria: a taphonomic/morphodynamic analysis. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 216: 1–34.Google Scholar
  12. Grazhdankin, D.V. 2003. Structure and depositional environment of the Vendian Complex in the Southeastern White Sea area. Stratigraphy and Geological Correlation 11: 313–331.Google Scholar
  13. Grazhdankin, D. 2004a. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30: 203–221.CrossRefGoogle Scholar
  14. Grazhdankin, D. 2004b. Late Neoproterozoic sedimentation in the Timan foreland. In The Neoproterozoic Timanide Orogen of Eastern Baltica, Geological Society of London, Memoir, vol. 30, eds. D.G. Gee, and V.L. Pease, 37–46.Google Scholar
  15. Grazhdankin, D. 2014. Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology 88: 269–283.CrossRefGoogle Scholar
  16. Grazhdankin, D., and G. Gerdes. 2007. Ediacaran microbial colonies. Lethaia 40: 201–210.CrossRefGoogle Scholar
  17. Grazhdankin, D.V., and A.V. Maslov. 2009. Sequence stratigraphy of the Upper Vendian of the East European Platform. Doklady Earth Sciences 426: 517–521.CrossRefGoogle Scholar
  18. Hagadorn, J.W., and E.S. Belt. 2008. Stranded in upstate New York: Cambrian scyphomedusae from the Potsdam Sandstone. Palaios 23: 424–441.CrossRefGoogle Scholar
  19. Hagadorn, J.W., R.H. Dott, and D. Damrow. 2002. Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology 30: 147–150.CrossRefGoogle Scholar
  20. Haeckel, E. 1866. Über zwei neue fossile Medusen aus der Familie der Rhizostomiden. Neues Jahrbuch für Mineralogie 1866: 257–292.Google Scholar
  21. Haeckel, E. 1874. Ueber eine sechszählige fossile Rhizostomee und eine vierzählige fossile Semaeostomee. Jenaer Zeitschrift für Naturwissenschaften 8: 308–330.Google Scholar
  22. Han, J., S. Kubota, G. Li, X. Yao, X. Yang, D. Shu, Y. Li, S. Kinoshita, O. Sasaki, T. Komiya, and G. Yan. 2013. Early Cambrian pentamerous cubozoan embryos from South China. PLoS One 8(8): e70741. doi:10.1371/journal.pone.0070741.CrossRefGoogle Scholar
  23. Harvey, T.H.P., and N.J. Butterfield. 2008. Sophisticated particle-feeding in a large Early Cambrian crustacean. Nature 452: 868–871.CrossRefGoogle Scholar
  24. Iglesia Llanos, M.P., J.A. Tait, V. Popov, and A. Abalmassova. 2005. Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the late Proterozoic—early Palaeozoic. Earth and Planetary Science Letters 240: 732–747.CrossRefGoogle Scholar
  25. Jensen, S., J.G. Gehling, M.L. Droser, and S.W.F. Grant. 2002. A scratch circle origin for the medusoid fossil Kullingia. Lethaia 35: 291–299.CrossRefGoogle Scholar
  26. Kieslinger, A. 1939. Revision der Solnhofener Medusen. Palaeontologische Zeitschrift 21: 287–296.CrossRefGoogle Scholar
  27. Laflamme, M., S.A.F. Darroch, S.M. Tweedt, K.J. Peterson, and D.H. Erwin. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23: 558–573.CrossRefGoogle Scholar
  28. Lebrato, M., J.-C. Molinero, J.E. Cartes, D. Lloris, F. Mélin, and L. Beni-Casadella. 2013. Sinking jelly-carbon unveils potential environmental variability along a continental margin. PLoS One 8: e82070. doi:10.1371/journal.pone.0082070.CrossRefGoogle Scholar
  29. Leich, H. 1995. Fossile Quallen aus den Solnhofener Plattenkalken. Archaeopteryx 13: 75–84.Google Scholar
  30. Lenton, T.M., R.A. Boyle, S.W. Poulton, G.A. Shields-Zhou, and N.J. Butterfield. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7: 257–265.CrossRefGoogle Scholar
  31. Liu, A.G., J.J. Matthews, L.R. Menon, D. McIlroy, and M.D. Brasier. 2014. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran Period (approx. 560 Ma). Proceedings of the Royal Society B 281: 20141202. doi:10.1098/rspb.2014.1202.CrossRefGoogle Scholar
  32. Maas, O. 1902. Ueber Medusen aus dem Solenhofer Schiefer und der unteren Kreide der Karpathen. Palaeontographica 48(6): 297–320.Google Scholar
  33. Martin, M.W., D.V. Grazhdankin, S.A. Bowring, D.A.D. Evans, M.A. Fedonkin, and J.L. Kirschvink. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for Metazoan evolution. Science 288: 841–845.CrossRefGoogle Scholar
  34. Maslov, A.V., D.V. Grazhdankin, V.N. Podkovyrov, YuL Ronkin, and O.P. Lepikhina. 2008. Composition of sediment provenances and patterns in geological history of the Late Vendian Mezen Basin. Lithology and Mineral Resources 43: 260–280.CrossRefGoogle Scholar
  35. Pauly, D., W. Graham, S. Libralato, L. Morissette, and M.L.D. Palomares. 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616: 67–85.CrossRefGoogle Scholar
  36. Penny, A.M., R. Wood, A. Curtis, F. Bowyer, R. Tostevin, and K.-H. Hoffman. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344: 1504–1506.CrossRefGoogle Scholar
  37. Pitt, K.A., M.J. Kingsford, D. Rissik, and K. Koop. 2007. Jellyfish modify the response of planktonic assemblages to nutrient pulses. Marine Ecology Progress Series 351: 1–13.CrossRefGoogle Scholar
  38. Polis, G.A., and D.R. Strong. 1996. Food web complexity and community dynamics. The American Naturalist 147: 813–846.CrossRefGoogle Scholar
  39. Rogov, V., V. Marusin, N. Bykova, Yu. Goy, K. Nagovitsin, B. Kochnev, G. Karlova, and D. Grazhdankin. 2012. The oldest evidence of bioturbation on Earth. Geology 40: 395–398.CrossRefGoogle Scholar
  40. Rozhnov, S.V. 1998. Results of burial experiments on the scyphomedusa Cyanea capillata L., 1758. Paleontological Journal 32: 226–228.Google Scholar
  41. Runnegar, B. 1991. Oxygen and the early evolution of the metazoa. In Metazoan life without oxygen, ed. C. Bryant, 65–87. London: Chapman & Hall.Google Scholar
  42. Savazzi, E. 2007. A new reconstruction of Protolyellia (early Cambrian psammocoral). In The rise and fall of the Ediacaran Biota. Geological Society of London Special Publication 286, ed. P. Vickers-Rich, and P. Komarower, 339–353. London: The Geological Society.Google Scholar
  43. Schmitz, M.D. 2012. Appendix 2—radiometric ages used in GTS2012. In The geologic time scale 2012, ed. F. Gradstein, J. Ogg, M.D. Schmitz, and G. Ogg, 1045–1082. Boston: Elsevier.CrossRefGoogle Scholar
  44. Seilacher, A. 1984. Late Precambrian and early Cambrian Metazoa: preservational or real extinctions? In Patterns of change in earth evolution, ed. H.D. Holland, and A.F. Trendall, 159–168. Berlin: Springer.CrossRefGoogle Scholar
  45. Seilacher, A. 1989. Vendozoa: organismic constructions in the Proterozoic biosphere. Lethaia 22: 229–239.CrossRefGoogle Scholar
  46. Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London 149: 607–613.CrossRefGoogle Scholar
  47. Seilacher, A. 1994. Early multicellular life: late Proterozoic fossils and the Cambrian explosion. In Early life on Earth. Nobel Symposium 84, ed. S Bengtson, 389–400. New York: Columbia University Press.Google Scholar
  48. Seilacher, A. 2007 The nature of vendobionts. In The rise and fall of the Ediacaran Biota. Geological Society of London Special Publication 286, eds. P Vickers-Rich, P Komarower, 387–397. London: The Geological Society.Google Scholar
  49. Seilacher, A., and R. Goldring. 1996. Class Psammocorallia (Coelenterata, Vendian–Ordovician): recognition, systematics, and distribution. GFF 118: 207–216.CrossRefGoogle Scholar
  50. Serezhnikova, E.A. 2005. Vendian Ediacaria from the Zimnii Bereg locality of the White Sea: new records and new reconstructions. Paleontological Journal 39: 386–394.Google Scholar
  51. Skikne, S.A., R.E. Sherlock, and B.H. Robison. 2009. Uptake of dissolved organic matter by ephyrae of two species of scyphomedusae. Journal of Plankton Research 31: 1563–1570.CrossRefGoogle Scholar
  52. Sprigg, R.C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 71: 212–224.Google Scholar
  53. Sprigg, R.C. 1949. Early Cambrian ‘jellyfishes’ of Ediacara, South Australia, and Mount John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia 73: 72–99.Google Scholar
  54. Strong, D.R. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754.CrossRefGoogle Scholar
  55. Van Iten, H., A.C. Marques, J.M. Leme, M.L.A.F. Pacheco, and M.G. Simões. 2014. Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57: 677–690.CrossRefGoogle Scholar
  56. von Ammon, L. 1906. Über eine coronate Qualle (Ephyropsites jurassicus) aus dem Kalkschiefer. Geognostische Jahreshefte 19: 169–186.Google Scholar
  57. Yasui, K., J.D. Reimer, Y. Liu, X. Yao, D. Kubo, D. Shu, and Y. Li. 2013. A diploblastic radiate animal at the dawn of Cambrian diversification with a simple body plan: distinct from Cnidaria? PLoS One 8(6): e65890. doi:10.1371/journal.pone.0065890.CrossRefGoogle Scholar
  58. Young, G.A., and J.W. Hagadorn. 2010. The fossil record of cnidarian medusae. Palaeoworld 19: 212–221.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2016

Authors and Affiliations

  1. 1.Trofimuk Institute of Petroleum Geology and Geophysics, Prospekt Akademika Koptyuga 3Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations