Advertisement

PalZ

, Volume 90, Issue 4, pp 701–722 | Cite as

Mass occurrence of the enigmatic gastropod Elmira in the Late Cretaceous Sada Limestone seep deposit in southwestern Shikoku, Japan

  • Takami Nobuhara
  • Daigaku Onda
  • Takuya Sato
  • Hidemi Aosawa
  • Toyoho Ishimura
  • Akira Ijiri
  • Urumu Tsunogai
  • Naoki Kikuchi
  • Yasuo Kondo
  • Steffen Kiel
Research Paper

Abstract

Elmira is a medium-to-large gastropod of uncertain systematic affinity, which has so far been reported only from a presumably Eocene methane-seep deposit in Cuba. This study reports a mass occurrence of Elmira shimantoensis Kiel and Nobuhara sp. nov. from a Late Cretaceous hydrocarbon-seep deposit in Shikoku, Japan, called the Sada Limestone. Its paleoecology is reconstructed based on its mode of occurrence, carbonate petrology, and stable carbon isotope analyses. The fauna of the Sada Limestone in general is characterized by an abundance of large chemosymbiotic bivalves of the family Thyasiridae and of “Serpula” tubes. The mass occurrence of Elmira shimantoensis was found in a lens-shaped carbonate body with a flat top and a concave base, 6.5 m in length and less than 2 m in thickness, consisting of multiple layers of shell accumulations, which were formed by shell-winnowing and the filling of a depression in slope mud. The scarcity of Elmira shimantoensis elsewhere in the Sada Limestone suggests that it formed locally from a gregarious population in the vicinity of the depression, possibly on hard ground. The matrix of the mass occurrence is rich in dolomite and ankerite, and is less depleted in 13C (δ13C values of calcite: −5.3 to −2.4 ‰; of dolomite: −8.3 ‰) than the matrix of the enclosing thyasirid-rich and tube-rich limestones. This suggests that the gastropod mass occurrence was cemented below the sulfate reduction zone and has thus undergone little anaerobic methane oxidation. Therefore, Elmira shimantoensis is reconstructed here as a bacteria grazer on a hard substrate such as exposed carbonate mounds rather than as a species that relied on chemosynthetic symbionts for nutrition.

Keywords

Cretaceous Chemosymbiosis Seep carbonate Elmira Gastropoda 

Kurzfassung

Elmira ist eine mittelgroße bis große Schnecke ungeklärter systematischer Stellung, die bisher nur aus einem vermutlich eozänen Methanquellen-Karbonat auf Kuba bekannt war. In der vorliegenden Arbeit wird ein Massenvorkommen von Elmira shimantoensis sp. nov. im Sada Limestone–Ablagerungen einer oberkretazischen Kohlenwasserstoff-Quelle in Shikoku in Japan–beschrieben und seine Paläoökologie basierend auf der Art des Fossilvorkommens, der Karbonatmikrofazies und der Analyse von stabilen Isotopen rekonstruiert. Die wichtigsten Faunenelemente des Sada Limestone sind Massenvorkommen der großen, chemosymbiontischen Muschel ‘Thyasirahataii und von Röhren von serpuliden Würmern. Das Massenvorkommen von Elmira shimantoensis befindet sich in einer etwa 6.5 m langen und fast 2 m hohen Kalklinse mit einer flachen Oberseite und einer konkaven Basis, besteht aus mehreren fossilreichen Lagen, und entstand vermutlich durch Ablagerung und Auswaschung der Schalen in einer Vertiefung im Meeresboden. Da Elmira shimantoensis außerhalb des Massenvorkommens sehr selten ist, wird vermutet, dass sie gehäuft in der Nähe des Einbettungsortes gelebt hat. Die Matrix des Massenvorkommens ist reich an Dolomit und Ankerit und ist weniger stark an 13C abgereichert (δ13C-Werte des Kalzits: –5.3 bis –2.4 ‰; des Dolomits: –8.3 ‰) als die der umgebenden Thyasiriden- und Wurmröhren-reichen Kalke. Das deutet darauf hin, dass die Zementation des Schnecken-Massenvorkommens unterhalb der Sulfatreduktionszone, und damit nur unter geringem Einfluss anaerober Methanoxidation, stattfand. Wir vermuten, dass Elmira shimantoensis Bakterienmatten von Hardgründen abweidete und nicht chemosymbiontisch lebte.

Schlüsselworte

Kreide Chemosymbiose Methanquellen-Karbonat Elmira Gastropoda 

Notes

Acknowledgments

We thank Ryuichi Majima (Yokohama National University), Kazutaka Amano (Joetsu University of Education), Yoshinori Hikida (Nakagawa Museum of Natural History), and Robert G. Jenkins (Kanazawa University) for discussions during fieldwork, and Jörn Peckmann (University of Hamburg) for discussions of carbonate petrography. A detailed topographical survey of the study area was performed by Meiji Consultant Co. Ltd. under the direction of Masato Taniguchi and Futoshi Akamatsu (In Situ Solutions Co., Ltd. at present). We are also indebted to Kenji Kusunoki (Shizuoka University) and Axel Hackmann (University of Göttingen) for thin-section preparation. Our special thanks go to Alexander Nützel (Ludwig-Maximilians-Universität München) and Andrzej Kaim (Polish Academy of Science) for their helpful comments that allowed us to improve our manuscript. The fieldwork was permitted by the Residents’ Association of Sada Village. Financial support was provided by JSPS KAKENHI (18340165 and 23540548 to T.N., 25701002 to T.I.: Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science), and also by the FWF–Der Wissenschaftsfonds, Austria, through a Lise Meitner fellowship, and by Joetsu University of Education, Japan, through a visiting scientist grant to S.K.

References

  1. Amano, K., and S. Kiel. 2007. Fossil vesicomyid bivalves from the North Pacific Region. Veliger 49: 270–293.Google Scholar
  2. Baker, P.A., and M. Kastner. 1981. Constraints on the formation of sedimentary dolomite. Science 213: 214–216.CrossRefGoogle Scholar
  3. Beesley, P.L., G.J.B. Ross, and A. Wells. 1998. Mollusca: The Southern Synthesis. Fauna of Australia. vol. 5, Part B, 565–1234. Melbourne: CSIRO Publishing.Google Scholar
  4. Both, R., K. Crook, B. Taylor, S. Brogan, B. Chappell, E. Frankel, L. Lui, J. Sinton, and D. Tiffin. 1986. Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea. EOS, Transaction American Geophysical Union 67: 489–490.CrossRefGoogle Scholar
  5. Campbell, K.A., and D.J. Bottjer. 1995. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology 23: 321–324.CrossRefGoogle Scholar
  6. Chen, C., J.T. Copley, K. Linse, A.D. Rogers, and J.D. Sigwart. 2015a. The heart of a dragon: 3D anatomical reconstruction of the scaly-foot gastropod (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system. Frontiers in Zoology 12: 13. doi: 10.1186/s12983-015-0105-1.CrossRefGoogle Scholar
  7. Chen, C., K. Linse, J.T. Copley, and A.D. Rogers. 2015b. The scaly-foot gastropod: a new genus and species of hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae) from the Indian Ocean. Journal of Molluscan Studies 81: 322–334.CrossRefGoogle Scholar
  8. Chen, C., K. Linse, C.N. Roterman, J.T. Copley, and A.D. Rogers. 2015c. A new genus of large hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae). Zoological Journal of the Linnaean Society 175: 319–335.CrossRefGoogle Scholar
  9. Cooke, C.W. 1919. Contributions to the geology and palaeontology of the West Indies IV. Tertiary mollusks from the Leeward islands and Cuba. Carnegie Institution of Washington Publications 291: 103–156.Google Scholar
  10. Cordes, E.E., S. Hourdez, and H.H. Roberts. 2010. Unusual habitats and organisms associated with the cold seeps of the Gulf of Mexico. In The Vent and Seep Biota, ed. S. Kiel, 315–332. Heidelberg: Springer.CrossRefGoogle Scholar
  11. Dando, P.R., and A.J. Southward. 1986. Chemoautotrophy in bivalve molluscs of the genus Thyasira. Journal of the Marine Biological Association of the United Kingdom 66: 915–929.CrossRefGoogle Scholar
  12. Díaz-del-Río, V., L. Somoza, J. Martínez-Frias, M.P. Mata, A. Delgado, F.J. Hernandez-Molinad, R. Lunar, J.A. Martín-Rubí, A. Maestro, M.C. Fernández-Puga, R. León, E. Llave, T. Medialdea, and J.T. Vázquez. 2003. Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cádiz. Marine Geology 195: 177–200.CrossRefGoogle Scholar
  13. Fretter, V. 1989. The anatomy of some new archaeogastropod limpets (Superfamily Peltospiracea) from hydrothermal vents. Journal of Zoology 218: 123–169.CrossRefGoogle Scholar
  14. Fujikura, K., T. Sasaki, T. Yamamoto, and T. Yoshida. 2009. Turrid whelk, Phymorhynchus buccinoides feeds on Bathymodiolus mussels at a seep site in Sagami Bay, Japan. Plankton and Benthos Research 4: 23–30.CrossRefGoogle Scholar
  15. Greinert, J., G. Bohrmann, and E. Suess. 2001. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution and origin of authigenic lithologies. In Natural Gas Hydrates: Occurrence, Distribution and Detection, AGU Geophysical Monograph 124, eds. C. K. Paull and W. K. Dillon, 99–113. Washington, DC: American Geophysical Union.Google Scholar
  16. Hedegaard, C. 1997. Shell structures of the recent Vetigastropoda. Journal of Molluscan Studies 63: 369–377.CrossRefGoogle Scholar
  17. Hikida, Y., S. Suzuki, Y. Togo, and A. Ijiri. 2003. An exceptionally well-preserved fossil seep community from the Cretaceous Yezo Group in the Nakagawa area, Hokkaido, northern Japan. Paleontological Research 7: 329–342.CrossRefGoogle Scholar
  18. Ichikawa, K., and Y. Maeda. 1958. Late Cretaceous pelecypods from the Izumi Group. Part 2. Orders Taxodontida, Prionodontida, Dysodontida, Desmodontida and Adapedontida. Journal of the Institute of Polytechnics, Osaka City University, Series G 4: 71–122.Google Scholar
  19. Ishimura, T., U. Tsunogai, and T. Gamo. 2004. Stable carbon and oxygen isotopic determination of sub-microgram quantities of CaCO3 to analyze individual foraminiferal shells. Rapid Communications in Mass Spectrometry 18: 2883–2888.CrossRefGoogle Scholar
  20. Ishimura, T., U. Tsunogai, and F. Nakagawa. 2008. Grain-scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8). Rapid Communications in Mass Spectrometry 22: 1925–1932.CrossRefGoogle Scholar
  21. Jørgensen, N.O. 1992. Methane-derived carbonate cementation of marine sediments from the Kattegat, Denmark: geochemical and geological evidence. Marine Geology 103: 1–13.Google Scholar
  22. Juniper, S.K., and M. Sibuet. 1987. Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution. Marine Ecology Progress Series 40: 115–126.Google Scholar
  23. Kaim, A., R.G. Jenkins, and Y. Hikida. 2009. Gastropods from Late Cretaceous Omagari and Yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan. Acta Palaeontologica Polonica 54: 463–490.CrossRefGoogle Scholar
  24. Kaim, A., R.G. Jenkins, K. Tanabe, and S. Kiel. 2014. Mollusks from late Mesozoic seep deposits, chiefly in California. Zootaxa 3861: 401–440.CrossRefGoogle Scholar
  25. Kaim, A., R.G. Jenkins, and A. Warén. 2008. Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zoological Journal of the Linnean Society 154: 421–436.CrossRefGoogle Scholar
  26. Kaim, A., B.E. Tucholke, and A. Warén. 2012. A new Late Pliocene large provannid gastropod associated with hydrothermal venting at Kane Megamullion, Mid-Atlantic Ridge. Journal of Systematic Palaeontology 10: 423–433.CrossRefGoogle Scholar
  27. Kano, H., K. Yamamoto, and M. Okamura. 2003. Lithostratigraphy of the Domeki Formation in the Nakamura and Sukumo Cities, Southwestern Shikoku, and its depositional setting as a slope-basin deposit. Research Reports of Kochi University, Natural Science 52: 1–24. (in Japanese with English abstract).Google Scholar
  28. Katto, J., and M. Hattori. 1964. Some Veneridae from the Shimantogawa Group in the Outer Zone of Shikoku, Japan. Research Reports of the Kochi University, Natural Science 13: 7–10.Google Scholar
  29. Kiel, S. 2004. Shell structures of selected gastropods from hydrothermal vents and seeps. Malacologia 46: 169–183.Google Scholar
  30. Kiel, S. 2015. Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems? Proceedings of the Royal Society B 282: 20142908.CrossRefGoogle Scholar
  31. Kiel, S., and K. Amano. 2013. The earliest bathymodiolin mussels: an evaluation of Eocene and Oligocene taxa from deep-sea methane seep deposits in western Washington State, USA. Journal of Paleontology 87: 589–602.CrossRefGoogle Scholar
  32. Kiel, S., K.A. Campbell, W.P. Elder, and C.T.S. Little. 2008. Jurassic and Cretaceous gastropods from hydrocarbon seeps in forearc basin and accretionary prism settings, California. Acta Palaeontologica Polonica 53: 679–703.CrossRefGoogle Scholar
  33. Kiel, S., and P.R. Dando. 2009. Chaetopterid tubes from vent and seep sites: Implications for fossil record and evolutionary history of vent and seep annelids. Acta Palaeontologica Polonica 54: 443–448.CrossRefGoogle Scholar
  34. Kiel, S., and B.T. Hansen. 2015. Cenozoic methane-seep faunas of the Caribbean region. PLoS One 10: e0140788.CrossRefGoogle Scholar
  35. Kiel, S., J. Glodny, D. Birgel, L.G. Bulot, K.A. Campbell, C. Gaillard, R. Graziano, A. Kaim, I. Lazar, M.R. Sandy, and J. Peckmann. 2014. The paleoecology, habitats, and stratigraphic range of the enigmatic cretaceous brachiopod Peregrinella. PLoS One 9: e109260.CrossRefGoogle Scholar
  36. Kiel, S., and J. Peckmann. 2007. Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40: 345–357.CrossRefGoogle Scholar
  37. Little, C.T.S., and R.C. Vrijenhoek. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution 18: 582–588.CrossRefGoogle Scholar
  38. Matsumoto, T. 1980. Cephalopods from the Shimanto Belt of Kochi Prefecture, Shikoku, Japan. In Geology and Paleontology of the Shimanto Belt: Selected Papers in Honor of Professor Jiro Katto, eds. A. Taira and M. Tashiro, 283–298. Kochi: Rinyakosaikai Press. (in Japanese).Google Scholar
  39. Martin, R.E. 1999. Taphonomy: A Process Approach. Cambridge: Cambridge University Press. 508.Google Scholar
  40. McCrea, J.M. 1950. On isotope chemistry of carbonates and paleotemperature scale. Journal of Chemical Physics 18: 849–857.CrossRefGoogle Scholar
  41. Nakamura, K., H. Watanabe, J. Miyazaki, K. Takai, S. Kawagucci, T. Noguchi, S. Nemoto, T.-O. Watsuji, T. Matsuzaki, T. Shibuya, K. Okamura, M. Mochizuki, Y. Orihashi, T. Ura, A. Asada, D. Marie, M. Koonjul, M. Singh, G. Beedessee, M. Bhikajee, and K. Tamaki. 2012. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18–20 S. PLoS One 7: e32965.CrossRefGoogle Scholar
  42. Nobuhara, T., D. Onda, N. Kikuchi, Y. Kondo, K. Matsubara, K. Amano, R.G. Jenkins, Y. Hikida, and R. Majima. 2008. Lithofacies and fossil assemblages of the Upper Cretaceous Sada Limestone, Shimanto City, Kochi Prefecture, Shikoku, Japan. Fossils 84: 47–60. (in Japanese with English abstract).Google Scholar
  43. Okutani, T., and S. Ohta. 1988. A new gastropod mollusk associated with hydrothermal vents in the Mariana Back-Arc Basin, Western Pacific. Venus 47: 1–9.Google Scholar
  44. Peckmann, J., D. Birgel, and S. Kiel. 2009. Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology 37: 847–850.CrossRefGoogle Scholar
  45. Peckmann, J., E. Gischler, W. Oschmann, and J. Reitner. 2001. An Early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29: 271–274.CrossRefGoogle Scholar
  46. Rogers, A.D., P. Tyler, D.P. Connelly, J.T. Copley, R. James, R.D. Larter, K. Linse, R.A. Mills, A.N. Garabato, R.D. Pancost, D.A. Pearce, N.V.C. Polunin, C.R. German, T. Shank, P.H. Boersch-Supan, B.J. Alker, A. Aquilina, S.A. Bennett, A. Clarke, R.J.J. Dinley, A.G.C. Graham, D.R.H. Green, J.A. Hawkes, L. Hepburn, A. Hilario, V.A.I. Huvenne, L. Marsh, E. Ramirez-Llodra, W.D.K. Reid, C.N. Roterman, C.J. Sweeting, S. Thatje, and K. Zwirglmaier. 2012. The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biology 10: 1–17.CrossRefGoogle Scholar
  47. Sasaki, T., K. Fujikura, and T. Okutani. 2007. Molluscs collected in the cruise NT06-04 of R/V Natsushima from methane-seeps off Hatsushima Island, Sagami Bay, Japan. Chiribotan 37: 197–207. (in Japanese with English abstract).Google Scholar
  48. Sasaki, T., A. Wáren, Y. Kano, T. Okutani, and K. Fujikura. 2010. Gastropods from recent hot vents and cold seeps: systematics, diversity and life strategies. In The Vent and Seep Biota, ed. S. Kiel, 169–254. Heidelberg: Springer.CrossRefGoogle Scholar
  49. Sharma, T., and R.N. Clayton. 1965. Measurement of O18/O16 ratios of total oxygen of carbonates. Geochimica Cosmochimca Acta 29: 1347–1353.CrossRefGoogle Scholar
  50. Stein, J.L., S.C. Cary, R.R. Hessler, S. Ohta, R.D. Vetter, J.J. Childress, and H. Beck. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. The Biological Bulletin 174: 373–378.CrossRefGoogle Scholar
  51. Takeuchi, R., H. Machiyama, and R. Matsumoto. 2001. Carbonate formation related to methane hydrate dissociation, an example from the cold seep carbonates on the Kuroshima Knoll. Journal of the Sedimentological Society of Japan 53: 99–101. (in Japanese with English abstract).Google Scholar
  52. Taira, A., M. Tashiro, M. Okamura, and J. Katto. 1980. The geology of the Shimanto Belt in Kochi Prefecture, Shikoku, Japan. In Geology and Paleontology of the Shimanto Belt: Selected Papers in Honor of Professor Jiro Katto, ed. A. Taira, and M. Tashiro, 319–389. Kochi: Rinyakosaikai Press. [in Japanese].Google Scholar
  53. Tashiro, M. 1980. The bivalve fossils from the Shimano Belt of Kochi Prefecture and their biostratigraphic implications. In Geology and Paleontology of the Shimanto Belt: Selected Papers in Honor of Professor Jiro Katto, ed. A. Taira, and M. Tashiro, 249–264. Kochi: Rinyakosaikai Press. (in Japanese).Google Scholar
  54. Tashiro, M. 1991. The North subbelt of Shimanto Belt in the western part of Shikoku. In Regional Geology of Japan Part 8 Shikoku, ed. K. Suyari, M. Iwasaki, and T. Suzuki, 89–91. Tokyo: Kyoritsu Shuppan Co., Ltd. (in Japanese).Google Scholar
  55. Taylor, J.D., and E.A. Glover. 2010. Chemosynbiotic bivalves. In The Vent and Seep Biota, ed. S. Kiel, 107–136. Heidelberg: Springer.CrossRefGoogle Scholar
  56. Van Dover, C.L. 2000. The Ecology of Deep-Sea Hydrothermal Vents, 412. Princeton: Princeton University Press.Google Scholar
  57. Van Dover, C.L., S.E. Humphris, D. Fornari, C.M. Cavanaugh, R. Collier, S.K. Goffredi, J. Hashimoto, M.D. Lilley, A.L. Reysenbach, T.M. Shank, K.L. Von Damm, A. Banta, R.M. Gallant, D. Götz, D. Green, J. Hall, T.L. Harmer, L.A. Hurtado, P. Johnson, Z.P. McKiness, C. Meredith, E. Olson, I.L. Pan, M. Turnipseed, Y. Won, C.R. Young III, and R.C. Vrijenhoek. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294: 818–823.CrossRefGoogle Scholar
  58. Vinn, O., E.K. Kupriyanova, and S. Kiel. 2013. Serpulids (Annelida, Polychaeta) at Cretaceous to modern hydrocarbon seeps: ecological and evolutionary patterns. Palaeogeography Palaeoclimatology Palaeoecology 390: 35–41.Google Scholar
  59. Warén, A., S. Bengston, S.K. Goffredi, and C.L. Van Dover. 2003. A hot-vent gastropod with iron sulfide dermal sclerites. Science 32: 1007.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2016

Authors and Affiliations

  1. 1.Faculty of Education (Geology)Shizuoka UniversityShizuokaJapan
  2. 2.Department of Chemistry and Material EngineeringNational Institute of Technology, Ibaraki CollegeHitachinakaJapan
  3. 3.Kochi Institute for Cores Sample ResearchJAMSTECNankokuJapan
  4. 4.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  5. 5.Museum of Nature and Human ActivitiesSandaJapan
  6. 6.Sciences Unit, Natural Sciences ClusterKochi UniversityKochiJapan
  7. 7.Department of PalaeobiologySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations