Advertisement

PalZ

, Volume 90, Issue 3, pp 449–468 | Cite as

Huncalotis, an enigmatic new pectinoid genus (Bivalvia, Late Jurassic) from South America

  • Susana E. Damborenea
  • Héctor A. Leanza
Research Paper
  • 120 Downloads

Abstract

The extensive outcrops of the Late Jurassic–Early Cretaceous Vaca Muerta Formation black shales and marls in the Neuquén Basin have yielded very few bivalves, and these are not well known. The material described here was collected in central Neuquén, from late Tithonian calcareous levels within the black shales, between beds with Substeueroceras sp. and with Argentiniceras noduliferum (Steuer). The material is referred to the new genus Huncalotis and to the new species H. millaini. The strongly inequivalve shells, the ligamental area with a triangular slightly prosocline resilifer, the right valve with ctenolium and a very deep byssal notch, and the lack of radial ornamentation make the shell of this new genus strikingly similar to the Triassic pectinid Pleuronectites. This resemblance may be due to either phylogenetic relationships or convergence. Obliquipecten peruanum Rivera from central Peru is tentatively referred to Huncalotis. The Neuquén specimens are found in two main preservation types. Most of the material occurs in shell pavements, with equally abundant right and left valves and wide size range, within “beef” or “sandwich concretions”. These specimens are commonly complete but disarticulated, and show radial fractures orientated at right angles to the shell margins. A few specimens were found on the outside of large calcareous concretions within black shales; these are often articulated, complete shells, which preserve the original convexity of the valves. In some cases these articulated shells seem to be associated with large ammonite shells, suggesting an epibyssate (possibly also pseudoplanktonic) lifestyle.

Keywords

Late Tithonian Neuquén Basin Vaca Muerta Formation Argentina Peru Bivalvia Pectinoidea Pectinidae 

Kurzfassung

Die reichlich zutage tretenden Schwarzschiefer und Mergel der spätjurassisch–frühkretazischen Vaca Muerta-Formation des Neuquén-Beckens haben bisher nur sehr wenige Muscheln geliefert, die ungenügend bekannt sind. Das hier beschriebene Material wurde im Zentrum der Provinz Neuquén aufgesammelt und stammt aus kalkigen Lagen innerhalb der Schwarzschiefer des späten Tithoniums, mit den Ammoniten Substeueroceras sp. und Argentiniceras noduliferum (Steuer). Das Bivalvenmaterial wird der neuen Gattung Huncalotis mit der neuen Art H. millaini zugeordnet. Die stark ungleichklappigen Schalen ähneln aufgrund verschiedener morphologischer Charakteristika (dreieckiges leicht prosoklines Resilium im Ligamentbereich, Vorhandensein eines Ctenoliums und einer sehr tiefen byssalen Kerbe in der rechten Klappe sowie Fehlen einer radialen Ornamentierung) der triassischen pectiniden Muschelgattung Pleuronectites. Diese auffallende Ähnlichkeit kann entweder durch phylogenetische Beziehungen oder Konvergenz verursacht worden sein. Obliquipecten peruanum Rivera aus Zentral-Peru wird vorläufig ebenso der Gattung Huncalotis zugewiesen. Von den Exemplaren aus dem Neuquén-Becken wurden zwei Erhaltungstypen gefunden. Das meiste Material kommt in Muschelpflastern (mit gleichermaßen häufig vorkommenden rechten und linken Klappen sowie einem weiten Größenspektrum), in sogenannten “beef”- oder “sandwich”-Konkretionen vor. Solche Schalen sind gewöhnlich vollständig, jedoch disartikuliert und mit radial angeordneten Bruchstellen (in rechtem Winkel zum Schalenrand) versehen. Einige Exemplare wurden an der Außenseite von Kalkkonkretionen gefunden, wobei diese oft artikuliert sind und die ursprünglichen konvexen Schalen zeigen. In einigen Fällen scheinen solch artikulierte Schalen zusammen mit großen Ammonitengehäusen vorzukommen, so daß eine epibyssate (oder möglicherweise auch pseudoplanktonische) Lebensweise angenommen werden kann.

Schlüsselwörter

Bivalvia Pectinoidea Pectinidae Tithonium Neuquén-Becken Vaca Muerta-Formation Argentinien Peru 

Resumen

Huncalotis, un enigmático nuevo género de pectinoideo (Bivalvia, Jurásico Tardío) de América del Sur. Las pelitas oscuras y margas bituminosas de la espesa Formación Vaca Muerta (Jurásico Tardío - Cretácico Temprano) se hallan ampliamente distribuidas en la cuenca neuquina pero los registros de bivalvos, y de faunas bentónicas en general, son escasos en esta unidad. El material descripto proviene de niveles fosilíferos de edad tithoniana tardía, entre niveles con Substeueroceras sp. y con Argentiniceras noduliferum (Steuer), conteniendo abundantes restos de una nueva especie de bivalvo referida al nuevo género Huncalotis. La conchilla fuertemente inequivalva, las aurículas anteriores de la valva derecha limitadas por una profunda escotadura bisal con ctenolio, el área ligamentaria con resilífero triangular y levemente prosoclino y la ausencia de ornamentación radial, hacen que las conchillas de este género sean muy similares a las del pectínido Triásico Pleuronectites. Esta similitud puede deberse a relaciones filogenéticas o simplemente a convergencia. Obliquipecten peruanum Rivera, especie de las cercanías de Lima, Perú, se incluye con dudas en Huncalotis. El material de Neuquén se halla preservado de dos modos diferentes. La mayoría se presenta como pavimentos de conchillas, con valvas derechas e izquierdas igualmente abundantes y un amplio rango de tamaños, en concreciones tipo “beef”. Estos ejemplares se hallan completos pero desarticulados, y presentan fracturas radiales perpendiculares a los márgenes de las conchillas. Otros ejemplares aparecen en el exterior de grandes concreciones calcáreas dentro de pelitas negras; éstos están comúnmente articulados, preservan la convexidad original de las valvas, y en varios casos valvas articuladas muestran estrecha relación con grandes conchillas de amonites, lo que indicaría un modo de vida epibisado, incluso pseudoplanctónico.

Palabras clave

Tithoniano tardío Cuenca Neuquina Formación Vaca Muerta Argentina Perú Bivalvia Pectinoidea Pectinidae 

Notes

Acknowledgments

We especially thank Jack Grant-Mackie (New Zealand) for fruitful discussions about this taxon and its possible relationships. We appreciate C. Chacaltana and his staff at the INGEMMET (Lima, Peru) for their help to access the palaeontological collections. Vera Alleman Haeghebaert (Universidad Ricardo Palma, Lima, Peru) contributed with rich discussions and bibliography on Peruvian faunas. We greatly acknowledge thorough reviews and insightful comments by M. Hautmann and S. Schneider and the careful editing by M. Reich. We are very grateful to the Millaín Mapuche community at Huncal for their hospitality. This paper was partly financed with Grants from CONICET PIP 5635/05 and PIP 112-200801-01567.

References

  1. Aberhan, M. 1998. Early Jurassic Bivalvia from western Canada. Part I. subclasses Palaeotaxodonta, Pteriomorphia, and Isofilibranchia. Beringeria 21: 57–150.Google Scholar
  2. Aguirre-Urreta. B., D.G. Lazo, M. Griffin, V. Vennari, A.M. Parras, C. Cataldo, R. Garberoglio, and L. Luci. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. In: Geología y Recursos Naturales de la Provincia del Neuquén, eds. H.A. Leanza, C. Arregui, O. Carbone, J.C. Daniela, and J.M. Vallés, 18º Congreso Geológico Argentino, Neuquén, Relatorio, pp. 465–488.Google Scholar
  3. Alejandrino, A., L. Puslednik, and J.M. Serb. 2011. Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evolutionary Biology 11: 164–172.CrossRefGoogle Scholar
  4. Allasinaz, A. 1972. Revisione dei Pettinidi triassici. Rivista Italiana di Paleontologia 78(2): 189–428.Google Scholar
  5. Alexander, R.R., and M.A. Gibson. 1993. Paleozoic brachiopod autecology based on taphonomy: example from the Devonian Ross Formation of Tennessee (USA). In: Brachiopod and Molluscan Biogeography, Palaeoecology and Stratigraphy, ed. M.O. Manceñido, Palaeogeography, Palaeoclimatology, Palaeoecology 100(1–2): 25–35.Google Scholar
  6. Beurlen, K. 1944. Beiträge zur Stammesgeschichte der Muscheln. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München 1944(1–2): 133–145.Google Scholar
  7. Bonte, A. 1952. Réflexions sur le “beef”, à propos d’une note de M.L. David. Compte Rendu Sommaire des Séances, Societé Géologique de France 7–8: 110–112.Google Scholar
  8. Bright, R.C. 1959. A paleoecologic and biometric study of the middle Cambrian trilobite Elrathia kingii (Meek, Utah). Journal of Paleontology 33(1): 83–98.Google Scholar
  9. Brown, R. 1954. How does cone-in-cone material become emplaced? American Journal of Science 252: 372–376.CrossRefGoogle Scholar
  10. Carter, J.G., and M. Hautmann. 2011. Shell microstructure of the basal pectinid Pleuronectites laevigatus: implications for pectinoid phylogeny (Mollusca: Bivalvia: Pteriomorphia). Journal of Paleontology 85(3): 464–467.CrossRefGoogle Scholar
  11. Carter, J.G., C.R. Altaba, L.C. Anderson, R. Araujo, A.S. Biakov, A.E. Bogan, D.C. Campbell, M. Campbell, J. Chen, J.C.W. Cope, G. Delvene, H.H. Dijkstra, Z. Fang, R.N. Gardner, V.A. Gavrilova, I.A. Goncharova, P.J. Harries, J.H. Hartman, M. Hautmann, W.R. Hoeh, J. Hylleberg, B. Jiang, P. Johnston, L. Kirkendale, K. Kleemann, J. Koppka, J. Kříž, D. Machado, N. Malchus, A. Márquez-Aliaga, J.-P. Masse, C.A. McRoberts, P.U. Middelfart, S. Mitchell, L.A. Nevesskaja, S. Özer, J. Pojeta Jr, I.V. Polubotko, J.M. Pons, S. Popov, T. Sánchez, A.F. Sartori, R.W. Scott, I.I. Sey, J.H. Signorelli, V.V. Silantiev, P.W. Skelton, T. Steuber, J.B. Waterhouse, G.L. Wingard, and T. Yancey. 2011. A synoptical classification of the Bivalvia (Mollusca). University of Kansas Paleontological Contributions 4: 1–47.Google Scholar
  12. Carter, J.G., P.J. Harries, N. Malchus, A.R. Sartori, L.C. Anderson, R. Bieler, A.E. Bogan, E.V. Coan, J.C.W. Cope, S.M. Cragg. J.R. García-March, J. Hylleberg, P. Kelley, K. Kleemann, J. Kříž, C. McRoberts, P.M. Mikkelsen, J. Pojeta jr., I. Temkin, T. Yancey, and A. Zieritz. 2012. Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia. Treatise Online (Kansas University Paleontological Institute) 48: 1–209.Google Scholar
  13. Chen, J.-H., and T. Komatsu. 2002. So-called Middle Triassic “Claraia” (Bivalvia) from Guangxi. South China. Acta Palaeontologica Sinica 41(3): 434–447.Google Scholar
  14. Cobbold, P.R., and N. Rodrigues. 2007. Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’ and ‘cone-in-cone’). Geofluids 7(3): 313–322.CrossRefGoogle Scholar
  15. Cobbold, P.R., A. Zanella, N. Rodrigues, and H. Loseth. 2013. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization. Marine and Petroleum Geology 43: 1–20.CrossRefGoogle Scholar
  16. Cox, L.R. 1965. Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya. Bulletin of the British Museum (Natural History) Geology. Supplement 1: 1–213.Google Scholar
  17. Damborenea, S.E. and H.A. Leanza. 2004. Bivalvos monotoideos tithonianos de la Formación Vaca Muerta, norte de Neuquén, Argentina. Ameghiniana 41, Suplemento Resúmenes: 9R.Google Scholar
  18. David, L. 1952. Présence de la structure “beef” et “cone-incone” dans le Crétacé de l’Est-Constantinois (Algérie). Comptes Rendus de la Societé Géologique de France 3: 51–52.Google Scholar
  19. Douvillé, H. 1886. Examen des fossils rapportés du Choa par M. Aubry. Bulletin de la Societé Géologique de France, 3eme sér., 14: 223–241.Google Scholar
  20. Doyle, P. and A.G. Whitham. 1991. Palaeoenvironments of the Nordenskjöld Formation: an Antarctic Late Jurassic-Early Cretaceous black shale-tuff sequence. In: Modern and Ancient Continental Shelf Anoxia, eds. R.V. Tyson and T.H. Pearson, Geological Society of London Special Publication 58: 397–414.Google Scholar
  21. Gray, J.E. 1854. A revision of the arrangement of the families of bivalve shells (Conchifera). The Annals and Magazine of Natural History (series 2) 13(77): 408–418.Google Scholar
  22. Gulisano, C.A. and A.R. Gutiérrez-Pleimling. 1995. Field Guide. The Jurassic of the Neuquén Basin, a) Neuquén Province. Publicación Dirección Nacional del Servicio Geológico 158 (=Serie E, Asociación Geológica Argentina, 2): 1–111.Google Scholar
  23. Gulisano, C.A., A.R. Gutiérrez Pleimling, and R.E. Digregorio. 1984. Análisis estratigráfico del intervalo Tithoniano-Valanginiano (Formaciones Vaca Muerta, Quintuco y Mulichinco) en el suroeste de la provincia de Neuquén. 9 Congreso Geológico Argentino. Actas 1: 221–235.Google Scholar
  24. Hagdorn, H. 1995. Farbmuster und Pseudoskulptur bei Muschelkalkfossilien. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 195 (Seilacher Festschrift): 85-108.Google Scholar
  25. Hallam, A. 1977. Jurassic bivalve biogeography. Paleobiology 3: 58–73.CrossRefGoogle Scholar
  26. Hautmann, M. 2004. Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the “Mesozoic marine revolution”. Lethaia 37: 167–172.CrossRefGoogle Scholar
  27. Hautmann, M. 2010. The first scallop. Paläontologische Zeitschrift 84(2): 317–322.CrossRefGoogle Scholar
  28. Hayami, I. 1975. A systematic survey of the Mesozoic Bivalvia from Japan. Bulletin of the University Museum, University of Tokyo 10(1–249): 1–10.Google Scholar
  29. Hudson, J.D., and J.E. Andrews. 1987. The diagenesis of the Great Estuarine Group, Middle Jurassic, Inner Hebrides, Scotland. In: Diagenesis of Sedimentary Sequences, ed. J.D. Marshall, Geological Society of London Special Publication 36: 259–276.Google Scholar
  30. Jeletzky, J.A. 1963. Malayomaorica gen. nov. (Family Aviculopectinidae) from the Indo-Pacific Upper Jurassic; with comments on related forms. Palaeontology 6(1): 148–160.Google Scholar
  31. Johnson, A.L.A. 1984. The palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana 11: 1–235. Taf. 1–11.Google Scholar
  32. Kauffman, E.G. 1976. Deep-sea Cretaceous macrofossils: Hole 317A, Manihiki Plateau. In: Schlanger, S.O., Jackson, E.D. et al. (Eds.), Initial Reports of the Deep Sea Drilling Project, 33: 503–535.Google Scholar
  33. Kemper, E. 1982. Die Aucellinen des Apt und Unter-Alb Nordwestdeutschlands. Geologisches Jahrbuch A65: 579–595.Google Scholar
  34. Kiessling, W., D.K. Pandey, M. Schemm-Gregory, H. Mewis, and M. Aberhan. 2011. Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. Journal of African Earth Sciences 59: 195–214.CrossRefGoogle Scholar
  35. Kietzmann, D.A., and V.V. Vennari. 2013. Sedimentología y estratigrafía de la Formación Vaca Muerta (Tithoniano-Berriasiano) en el área del cerro Domuyo, norte de Neuquén, Argentina. Andean Geology 40: 41–65.CrossRefGoogle Scholar
  36. Kietzmann, D.A., J. Martín-Chivelet, R.M. Palma, J. López-Gómez, M. Lescano, and A. Concheyro. 2011. Evidence of precessional and eccentricity orbital cycles in a Tithonian source rock: the mid-outer carbonate ramp of the Vaca Muerta Formation, Northern Neuquén Basin, Argentina. AAPG Bulletin 95: 1459–1474.CrossRefGoogle Scholar
  37. Kietzmann, D.A., R.M. Palma, A.C. Riccardi, J. Martín-Chivelet, and J. López-Gómez. 2014. Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): a misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sedimentary Geology 302: 64–86.CrossRefGoogle Scholar
  38. Klug, C., and A. Lehmkuhl. 2004. Soft-tissue attachment structures and taphonomy of the Middle Triassic nautilod Germanonautilus. Acta Palaeontologica Polonica 49(2): 243–258.Google Scholar
  39. Lang, J.D., L.F. Spath, and W.A. Richardson. 1923. Shales-with-“beef”, a sequence in the Lower Lias of the Dorset coast. Quarterly Journal of the Geological Society of London 79(1): 47–99.CrossRefGoogle Scholar
  40. Leanza, H.A. 1973. Estudio sobre los cambios faciales de los estratos limítrofes Jurásico-Cretácicos entre Loncopué y Picún Leufú, provincia del Neuquén, República Argentina. Revista de la Asociación Geológica Argentina 28(2): 97–132.Google Scholar
  41. Leanza, H.A. 1975. Himalayites andinus n. sp. (Ammonitina) del Tithoniano superior del Neuquén, Argentina. 1º Congreso Argentino de Paleontología y Bioestratigrafía (San Miguel de Tucumán). Actas 1: 581–588.Google Scholar
  42. Leanza, H.A. 1981a. The Jurassic-Cretaceous boundary beds in West Central Argentina and their ammonite zones. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 161(1): 62–92.Google Scholar
  43. Leanza, H.A. 1981b. Faunas de ammonites del Jurásico y Cretácico inferior de América del Sur, con especial consideración de la Argentina. In: Cuencas Sedimentarias de América del Sur, W. Volkheimer and E. Musacchio, eds, 2: 559–597. Buenos Aires.Google Scholar
  44. Leanza, H.A., and C.A. Hugo. 1978. Sucesión de amonites y edad de la Formación Vaca Muerta y sincrónicas entre los paralelos 35º y 40 º l.s. Cuenca Neuquina-Mendocina. Revista de la Asociación Geológica Argentina 32(4): 248–264.Google Scholar
  45. Leanza, H.A., and C.A. Hugo. 2005. Hoja Geológica 3969-I. Zapala. Provincia del Neuquén. Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000. Boletín Servicio Geológico Minero Argentino 275: 1–132, 1 geological map.Google Scholar
  46. Leanza, H.A., and J. Wiedmann. 1989. Nuevos ammonites del Berriasiano/Valanginiano (Cretácico inferior) del Neuquén, Argentina. In: Cretaceous of the western Tethys. ed. J. Wiedmann, Proceedings of the 3rd International Cretaceous System Symposium (Tübingen 1987), pp. 793–810. Schweizerbart. Stuttgart.Google Scholar
  47. Leanza, H.A., H.G. Marchese, and J.C. Riggi. 1978. Estratigrafía del Grupo Mendoza con especial referencia a la Formación Vaca Muerta entre los paralelos 35º y 40º L.S., cuenca neuquina-mendocina. Revista de la Asociación Geológica Argentina, 32(3): 190–208.Google Scholar
  48. Leanza, H.A., C.A. Hugo, D. Repol, and M. Salvarredy Aranguren. 2003. Miembro Huncal (Berriasiano inferior): un episodio turbidítico en la Formación Vaca Muerta, Cuenca Neuquina, Argentina. Revista de la Asociación Geológica Argentina 58(2): 248–254.Google Scholar
  49. Leanza, H.A., D. Repol, C.A. Hugo, and P. Sruoga. 2006. Hoja Geológica 3769-31, Chorriaca, provincia del Neuquén. Programa Nacional de Cartas Geológicas de la República Argentina a escala 1: 100.000. Instituto de Geología y Recursos Minerales. SEGEMAR. Boletín 354: 1–93. Buenos Aires.Google Scholar
  50. Leanza, H.A., F. Sattler, R. Martinez, and O. Carbone. 2011. La Formación Vaca Muerta y Equivalentes (Jurásico Tardío–Cretácico Temprano) en la Cuenca. Neuquina. In: Geología y Recursos Naturales de la Provincia del Neuquén, eds. H.A. Leanza, C. Arregui, O. Carbone, J.C. Daniela, J.M. Vallés, 18º Congreso Geológico Argentino, Neuquén, Relatorio, pp. 113–129.Google Scholar
  51. Legarreta, L., and M.A. Uliana. 1991. Jurassic–Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. In: Sea Level Changes at Active Plate Margins: Process and Product, ed. D.I.M. McDonald, International Association of Sedimentologists, Special Publication 12: 429–450.Google Scholar
  52. Legarreta, L., and M.A. Uliana. 1996. The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 120(3–4): 303–330.CrossRefGoogle Scholar
  53. Legarreta, L., E. Kozlowski, and A. Boll. 1991. Esquema estratigráfico y distribución de facies del Grupo Mendoza en el ámbito surmendocino de la Cuenca Neuquina. Actas 8º Congreso Geológico Argentino 3: 389–409.Google Scholar
  54. Li, J.H., and B.L. Ding. 1981. Two new lamellibranch genera from Lower Triassic of Anhui. Acta Palaeontologica Sinica 20(4): 325–330.Google Scholar
  55. Lisson, C.I. 1907. Contribución a la geología de Lima y sus alrededores. Librería e Imprenta Gil. 124 pp., 13 pl. Lima.Google Scholar
  56. Macdonald, D.I.M. 1982. Palaeontology and ichnology of the Cumberland Bay Formation, South Georgia. Bulletin of the British Antarctic Survey 57: 1–14.Google Scholar
  57. Mann, U. 1994. An integrated approach to the study of primary petroleum migration. In: Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins, ed. J. Parnell. Geological Society of London Special Publication 78: 233–260.Google Scholar
  58. Marshall, J. 1982. Isotopic composition of displacive fibrous calcite veins: reversal in pore-water composition trends during burial diagenesis. Journal of Sedimentary Petrology 52(2): 615–630.Google Scholar
  59. Mitchum, R.M. and M.A. Uliana. 1985. Seismic stratigraphy of carbonate depositional sequences. Upper Jurassic/Lower Cretaceous. Neuquén Basin, Argentina. In: Seismic stratigraphy, II. An integrated approach to hydrocarbon analysis, eds. B.R. Berg and D.G. Woolverton. American Association of Petroleum Geologists, Memoir 39: 255–274.Google Scholar
  60. Müller, A.H. 1979. Fossilization (Taphonomy). In: Treatise on Invertebrate Paleontology. Part A. Introduction, eds. R.A. Robison, and C. Teichert, Geological Society of America and University of Kansas Press. Lawrence, Kansas, pp. A2–A78.Google Scholar
  61. Newell, N.D., and D.W. Boyd. 1995. Pectinoid bivalves of the Permian-Triassic crisis. Bulletin of the American Museum of Natural History 227: 1–95.Google Scholar
  62. Parnell, J., and P.F. Carey. 1995. Emplacement of bitumen (asphaltite) veins in the Neuquén Basin, Argentina. Bulletin American Association of Petroleum Geologists 79(12): 1798–1816.Google Scholar
  63. Parnell, J., C. Honghan, D. Middleton, T. Haggan, and P. Carey. 2000. Significance of fibrous mineral veins in hydrocarbon migration: fluid inclusion studies. Journal of Geochemical Exploration 69–70: 623–627.CrossRefGoogle Scholar
  64. Philippi, E. 1900. Beiträge zur Morphologie und Phylogenie der Lamellibranchier. II. Zur Stammesgeschichte der Pectiniden. Zeitschrift der Deutschen geologischen Gesellschaft 52(1): 64–117.Google Scholar
  65. Pompeckj, J.F. 1901. Über Aucellen und Aucellen-ähnliche Formen. Neues Jahrbuch für Mineralogie und Paläontologie, Beilage-Bände 14: 319–368.Google Scholar
  66. Rafinesque, C.S. 1815. Analyse de la Nature ou Tableau de l’University et des Corps Organisés, etc. Palermo: Jean Barravecchia. 233 pp.CrossRefGoogle Scholar
  67. Riccardi, A.C. 2008a. The marine Jurassic of Argentina: a biostratigraphic framework. Episodes 31: 326–335.Google Scholar
  68. Riccardi, A.C. 2008b. El Jurásico de Argentina y sus amonites. Revista de la Asociación Geológica Argentina 63(4): 625–643.Google Scholar
  69. Riccardi, A.C. 2015. Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina. Volumina Jurassica 13(2): 23–52.Google Scholar
  70. Riccardi, A.C., H.A. Leanza, S. Damborenea, M. Manceñido, S. Ballent, and A. Zeiss. 2000. Marine Mesozoic biostratigraphy of the Neuquén Basin. In: Geoscientific Cooperation with Latin America, eds. H. Miller, and F. Hervé, 31st International Geological Congress (Río de Janeiro). Zeitschrift für Angewandte Geologie, Sonderheft 1: 103–108.Google Scholar
  71. Riccardi, A.C., S.E. Damborenea, M.O. Manceñido, and H.A. Leanza. 2011. Megainvertebrados jurásicos y su importancia geobiológica. In: Geología y Recursos Naturales de la Provincia del Neuquén, eds. H.A. Leanza, C. Arregui, O. Carbone, J.C. Daniela, and J.M. Vallés, 18º Congreso Geológico Argentino, Neuquén, Relatorio, pp. 441–464.Google Scholar
  72. Rivera, R. 1951. La Fauna de los Estratos Puente Inga, Lima. Boletín de la Sociedad Geológica del Perú 22: 1–53, lám. 1–9.Google Scholar
  73. Rodrigues, N., P.R. Cobbold, H. Loseth, and G. Ruffet. 2009. Widespread bedding-parallel veins of fibrous calcite (‘beef’) in mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): evidence for overpressure and horizontal compression. Journal of the Geological Society, London 166: 695–709.CrossRefGoogle Scholar
  74. Romero, P.L., M.A. Aldana, C.Z. Rangel, E.R. Villavicencio, and J.A. Ramírez. 1995. Fauna y flora fósil del Perú. Instituto Geológico Minero y Metalúrgico de Perú, Serie D: Estudios Especiales, Boletín 17: 1–332.Google Scholar
  75. Ros, S., A. Márquez-Aliaga, and S. Damborenea. 2014. Comprehensive database on Induan (Early Triassic) to Sinemurian (Early Jurassic) marine bivalve genera and their paleobiogeographic record. University of Kansas Paleontological Contributions 8: 1–219.Google Scholar
  76. Rouillier, K. 1845. Untitled article proposing the genus Buchia for Avicula mosquensis. Bulletin de la Société Impériale des Naturalistes de Moscou 18: 289.Google Scholar
  77. Royo y Gómez, J. 1945. Fósiles carboníferos e infracretácicos del oriente de Cundinamarca. Compilación de los estudios geológicos oficiales en Colombia 4: 193–242.Google Scholar
  78. Salomon, W. 1900. Ueber Pseudomonotis und Pleuronectites. Zeitschrift der Deutschen Geologischen Gesellschaft 52: 348–359.Google Scholar
  79. Schlotheim, E.F.V. 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt erläutert. Gotha: Becker.Google Scholar
  80. Schlotheim, E.F.V. 1823. Nachträge zur Petrefaktenkunde, zweite Abteilung. Gotha: Becker.Google Scholar
  81. Schmid-Röhl, A., and H.J. Röhl. 2003. Overgrowth on ammonite conchs: environmental implications for the Lower Toarcian Posidonia Shale. Palaeontology 46(2): 339–352.CrossRefGoogle Scholar
  82. Seilacher, A. 2001. Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology 143: 41–57.CrossRefGoogle Scholar
  83. Sellés-Martínez, J. 1996. Concretion morphology, classification and genesis. Earth-Science Reviews 41(2): 177–210.CrossRefGoogle Scholar
  84. Serb, J.M., A. Alejandrino, E. Otárola-Castillo, and D.C. Adams. 2011. Morphological convergence of shell shape in distantly related scallop species (Mollusca: Pectinidae). Zoological Journal of the Linnean Society 2011: 1–14.Google Scholar
  85. Sha, J., and F.T. Fürsich. 1994. Bivalve faunas of eastern Heilongjiang, northeastern China. II. The Late Jurassic and Early Cretaceous buchiid fauna. Beringeria 12: 3–93.Google Scholar
  86. Sokolov, D.N. 1946. Algunos fósiles suprajurásicos de la República Argentina. Revista de la Sociedad Geológica Argentina 1(1): 7–16.Google Scholar
  87. Stefanini, G. 1939. Molluschi del Giuralias della Somalia. Palaeontographia Italica 32(Suppl. 4): 103–270.Google Scholar
  88. Stoneley, R. 1983. Fibrous calcite veins, overpressures, and primary oil migration. The American Association of Petroleum Geologists Bulletin 67: 1427–1428.Google Scholar
  89. Surlyk, F., and V.A. Zakharov. 1982. Buchiid bivalves from the Upper Jurassic and Lower Cretaceous of East Greenland. Palaeontology 25(4): 727–753.Google Scholar
  90. Tarney, J., and B.C. Schreiber. 1977. Cone-in-cone and beef-in-shale textures from DSDP Site 330, Falkland Plateau, South Atlantic. Initial Reports of the Deep Sea Drilling Project 36: 865–870.Google Scholar
  91. Waller, T.R. 1978. Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca, Bivalvia). Philosophical Transactions of the Royal Society of London B 284: 345–365.CrossRefGoogle Scholar
  92. Waller, T.R. 1984. The ctenolium of scallop shells: functional morphology and evolution of a key family-level character in the Pectinacea (Mollusca: Bivalvia). Malacologia 25(1): 203–219.Google Scholar
  93. Waller, T.R. 1986. A new genus and species of scallop (Bivalvia: Pectinidae) from off Somalia, and the definition of a new tribe Decatopectinini. The Nautilus 100(2): 39–46.Google Scholar
  94. Waller, T.R. 2006. Phylogeny of families in the Pectinoidea (Mollusca: Bivalvia): importance of the fossil record. In: Bieler, R. (Ed.), Bivalvia– a look at the Branches. Zoological Journal of the Linnean Society 148: 313–342.Google Scholar
  95. Waller, T.R., and L. Marincovich jr. 1992. New species of Camptochlamys and Chlamys (Mollusca: Bivalvia: Pectinidae) from near the Cretaceous/Tertiary boundary at Ocean Point, North Slope, Alaska. Journal of Paleontology 66(2): 215–227.CrossRefGoogle Scholar
  96. Waller, T.R., and G.D. Stanley. 2005. Middle Triassic pteriomorphian Bivalvia (Mollusca) from the New Pass Range, west-central Nevada: systematics, biostratigraphy, paleoecology, and paleobiogeography. Journal of Paleontology 79 (Supplement to no. 1). The Paleontological Society Memoir 61: 1–64.Google Scholar
  97. Wasmer, M., M. Hautmann, E. Hermann, D. Ware, G. Roohi, K. Ur-Rehman, A.- Yaseen, and H. Bucher. 2012. Olenekian (Early Triassic) bivalves from the Salt Range and Surghar Range, Pakistan. Palaeontology 55(5): 1043–1073.CrossRefGoogle Scholar
  98. Weaver, C. 1931. Paleontology of the Jurassic and Cretaceous of west central Argentina. Memoir, University of Washington 1: 1–469. Seattle.Google Scholar
  99. Zakharov, V.A. 1966. Pozdneyurskie i rannemelovye dvustvorchatye mollyuski severa Sibiri i uslovya ikh sushchestvovaniya (Otryad Anisomyaria). [Late Jurassic and Early Cretaceous bivalve molluscs of north Siberia], 189. Sibirskoe Otdelenie: Akademiya Nauk SSSR.Google Scholar
  100. Zanella, A., P.R. Cobbold, G. Ruffet, and H.A. Leanza. 2015. Geological evidence for fluid overpressure, hydraulic fracturing and strong heating during maturation and migration of hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza Province, Argentina. Journal of South American Earth Sciences 62: 229–242.CrossRefGoogle Scholar
  101. Zeiss, A., and H.A. Leanza. 2010. Upper Jurassic (Tithonian) ammonites from the lithographic limestones of the Zapala region, Neuquén Basin, Argentina. Beringeria 41: 23–74.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2016

Authors and Affiliations

  1. 1.División Paleontología InvertebradosMuseo de Ciencias Naturales La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)La PlataArgentina
  2. 2.Museo Argentino de Ciencias Naturales “B. Rivadavia”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina

Personalised recommendations