Advertisement

Paläontologische Zeitschrift

, Volume 89, Issue 4, pp 925–941 | Cite as

A new durophagous scincomorphan lizard genus from the Late Cretaceous Iharkút locality (Hungary, Bakony Mts)

  • László Makádi
  • Randall L. Nydam
Research Paper

Abstract

The Upper Cretaceous (Santonian) Iharkút terrestrial vertebrate locality in Hungary has already yielded scincomorphan taxa such as the polyglyphanodontines Bicuspidon and Distortodon and the chamopsiid Pelsochamops. Besides these, more lacertilian material is available, including a single right mandible, different from both the abovementioned genera from Iharkút and from other previously known taxa. This specimen is described here as Chromatogenys tiliquoides gen. nov. sp. nov. The open Meckelian canal, the wide subdental shelf with deep sulcus dentalis, and the pleurodont teeth support the referral of the specimen to Scincomorpha. Within that, Chromatogenys differs from groups known from Iharkút, such as polyglyphanodontines and chamopsiids, and is also distinct from other contemporary scincomorphs from Europe, North America, and Asia. It exhibits a combination of mixed characters, some of which are shared by scincids, cordylids, and contogeniids. Chromatogenys might be a representative of a new family within Scincomorpha, but its familiar relationships should be considered to be uncertain (familia incertae sedis) until more material is found. Chromatogenys had a durophagous dentition similar to those of extant skinks such as Tiliqua, and most probably had a similar diet too, composed of molluscs, eggs, insects, small vertebrates, and fruits.

Keywords

Squamata Scincomorpha Durophagous Iharkút Csehbánya Formation Late Cretaceous 

Kurzfassung

Die terrestrische Wirbeltier-Fundstelle aus der Oberkreide (Santon) in Iharkút, Ungarn hat bereits skinkartige Taxa geliefert, wie die Polyglyphanodontinen Bicuspidon und Distortodon und den Chamopsiiden Pelsochamops. Daneben sind weitere Überreste von Eidechsen vorhanden, einschließlich eines einzigen rechten Unterkiefers, der sich von denen der oben genannten Gattungen aus Iharkút unterscheidet. Dieses Exemplar wird hier als Chromatogenys tiliquoides gen. nov. sp. nov beschrieben. Der offene Meckelsche Kanal, der breite subdentale Schelf mit tiefem Sulcus dentalis und die pleurodonten Zähne unterstützen eine Zuordnung des neuen Taxon zu den Skinkartigen. Innerhalb der Scincomorpha unterscheidet Chromatogenys sich von schon bekannten Gruppen aus Iharkút wie den Polyglyphanodontinen und Chamopsiiden und ist auch von anderen zeitgleichen Scincomorphen aus Europa, Nordamerika und Asien verschieden. Er zeigt eine Kombination von Merkmalen, von denen einige mit den Scinciden, Cordyliden und Contogeniiden geteilt werden. Chromatogenys könnte ein Vertreter einer noch unbekannter Familie von Scincomorpha sein, aber derzeit ist die phylogenetische Stellung aufgrund von fehlendem Material noch unsicher (familia incertae sedis). Chromatogenys hatte eine durophage Bezahnung, ähnlich wie rezente Skinke, z. B. Tiliqua, und wahrscheinlich hatte er auch eine vergleichbare Ernährung in Form von Mollusken, Eiern, Insekten, kleinen Wirbeltieren und Früchten.

Schlüsselwörter

Squamata Skinkartige Durophagie Iharkút Csehbánya Formation Oberkreide 

Notes

Acknowledgments

The authors wish to thank A. Ősi and the other members of the Iharkút Research Group, as well as the staff of the Geological and Geophysical Collections, Geological and Geophysical Institute of Hungary, of the Dept. of Paleontology, Eötvös University, and of the Dept. of Geology and Paleontology, Hungarian Natural History Museum for their help provided. Reviewers Jack L. Conrad and Johannes Müller are gratefully acknowledged for critically reading the manuscript and making useful suggestions that greatly improved our work. The authors are grateful to Salvador Bailon from the Muséum National d’Histoire Naturelle for providing access to recent comparative material. The help of Christoph Wißing and Márton Rabi with the German version of the abstract is highly appreciated. The fieldwork and the work of LM were supported by the Hungarian Scientific Research Fund (OTKA) grant NF-84193, as well as a Hungarian Academy of Sciences (MTA) “Lendület” grant (MTA-ELTE Dinosaur Research Group, grant no. 95102). Previously, research at Iharkút was supported by OTKA T-39045 and PD-73021 grants; the National Geographic Society; the Jurassic Foundation; the Hungarian Oil and Gas Company Plc (MOL Nyrt); and the Hantken Foundation. Fieldwork was also supported by Bakonyi Bauxitbánya Ltd., Geovol Ltd., and Céltrans 97 Ltd., as well as many others.

References

  1. Alifanov, V.R. 2000. Macrocephalosaurs and the early evolution of lizards of Central Asia. Moscow: GEOS (in Russian).Google Scholar
  2. Blain, H.-A., J.-I. Canudo, G. Cuenca-Bescós, and N. López-Martínez. 2010. Amphibians and squamate reptiles from the latest Maastrichtian (Upper Cretaceous) of Blasi 2 (Huesca, Spain). Cretaceous Research 31(4): 433–446.CrossRefGoogle Scholar
  3. Bodor, E.R. 2011. Plant mesofossils of the Upper Cretaceous Iharkút vertebrate fossil site (Bakony Mts., Hungary). The 8th Romanian Symposium of Paleontology Abstract Book, 4–5. Bucharest: Ars Docendi.Google Scholar
  4. Bodor, E.R., and V. Baranyi. 2012. Palynomorphs of the Normapolles group and related plant mesofossils from the Iharkút vertebrate site, Bakony Mountains (Hungary). Central European Geology 55(3): 259–292.CrossRefGoogle Scholar
  5. Bodor, E.R., V. Baranyi, and Z. Heřmanová. 2012. The earliest Sabiaceae fruit remains of Hungary. Hantkeniana 7(Monostori Jubilee Volume): 11–18.Google Scholar
  6. Bolet, A., and S.E. Evans. 2010. A new lizard from the Early Cretaceous of Catalonia (Spain), and the Mesozoic lizards of the Iberian Peninsula. Cretaceous Research 31(4): 447–457.CrossRefGoogle Scholar
  7. Bolet, A., and S.E. Evans. 2011. New material of the enigmatic Scandensia, an Early Cretaceous lizard from the Iberian Peninsula. Special Papers in Palaeontology 86: 99–108.Google Scholar
  8. Borsuk-Białynicka, M. 1988. Globaura venusta gen. et sp. n. and Eoxanta lacertifrons gen. et sp. n.—non-teiid lacertoids from the Late Cretaceous of Mongolia. Acta Palaeontologica Polonica 33(3): 211–248.Google Scholar
  9. Botfalvai, G., A. Ősi, and A. Mindszenty. 2015. Taphonomic and paleoecologic investigations of the Late Cretaceous (Santonian) Iharkút vertebrate assemblage (Bakony Mts, Northwestern Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 417: 379–405. doi: 10.1016/j.palaeo.2014.09.032.
  10. Buffetaut, E. 2005. Late Cretaceous Vertebrates from the Saint-Chinian area (Southern France): a review of previous research and an update on recent finds. Acta Palaeontologica Romaniae 5: 39–48.Google Scholar
  11. Buffetaut, E., G. Costa, J. Le Loeuff, M. Martin, J.-C. Rage, X. Valentin, and H. Tong. 1996. An Early Campanian vertebrate fauna from the Villeveyrac Basin (Hérault, southern France). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1996: 1–16.Google Scholar
  12. Buffetaut, E., J. Le Loeuff, H. Tong, S. Duffaud, L. Cavin, G. Garcia, and D. Ward. 1999. Un nouveau gisement de vertébrés du Crétacé supérieur à Cruzy (Hérault, Sud de la France). Comptes Rendus de l’Académie des Sciences, Sciences de la Terre 328(3): 203–208.Google Scholar
  13. Buffetaut, E., J. Le Loeuff, L. Cavin, S. Duffaud, E. Gheerbrant, Y. Laurent, M. Martin, J.-C. Rage, H. Tong, and D. Vasse. 1997. Late Cretaceous non-marine vertebrates from southern France: a review of recent finds. Geobios 20: 101–108.CrossRefGoogle Scholar
  14. Camp, C. 1923. Classification of the lizards. Bulletin American Museum of Natural History 48: 289–481.Google Scholar
  15. Codrea, V., O. Barbu, and C. Jipa-Murzea. 2010a. Upper Cretaceous (Maastrichtian) land vertebrate diversity in Alba District (Romania). Bulletin of the Geological Society of Greece 43(2): 594–601.Google Scholar
  16. Codrea, V., M. Venczel, and A.I. Solomon. 2012. Squamate diversity of the Late Cretaceous ‘Haţeg Island’, Romania—Gondwanan links. Geologica Belgica 16(4): 154.Google Scholar
  17. Codrea, V., T. Smith, P. Dica, A. Folie, G. Garcia, P. Godefroit, and J. van Itterbeeck. 2002. Dinosaur egg nests, mammals, and other vertebrates from a new Maastrichtian site of the Haţeg Basin (Romania). Comptes Rendus Palevol 1(3): 173–180.CrossRefGoogle Scholar
  18. Codrea, V., M. Vremir, C. Jipa, P. Godefroit, Z. Csiki, T. Smith, and C. Fărcaş. 2010b. More than just Nopcsa’s Transylvanian dinosaurs: a look outside the Haţeg Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 391–405.CrossRefGoogle Scholar
  19. Company, J.R. 2004. Vertebrados continentales del Cretácico Superior (CampanienseMaastrichtiense) de Valencia. PhD thesis, Valencia: Universitat de València (in Spanish).Google Scholar
  20. Conrad, J.L. 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History 310: 1–182.CrossRefGoogle Scholar
  21. Csiki, Z., A. Ionescu, and D. Grigorescu. 2008. The Budurone microvertebrate site from the Maastrichtian of the Haţeg Basin—flora, fauna, taphonomy and paleoenvironment. Acta Palaeontologica Romaniae 6: 49–66.Google Scholar
  22. Denton, R.K., and R.C. O’Neil. 1995. Prototeius stageri, gen. et sp. nov., a new teiid lizard from the Upper Cretaceous Marshalltown Formation of New Jersey, with a preliminary phylogenetic revision of the Teiidae. Journal of Vertebrate Paleontology 15(2): 235–253.CrossRefGoogle Scholar
  23. Estes, R. 1964. Fossil vertebrates from the Late Cretaceous Lance Formation, eastern Wyoming. University of California Publications in Geological Sciences 49: 1–186.Google Scholar
  24. Estes, R. 1969a. A scincoid lizard from the Cretaceous and Paleocene of Montana. Breviora 331: 1–9.Google Scholar
  25. Estes, R. 1969b. Relationships of two Cretaceous lizards (Sauria, Teiidae). Breviora 317: 1–8.Google Scholar
  26. Estes, R. 1983. Encyclopedia of paleoherpetology series, part 10a: Sauria terrestria, Amphisbaenia. Stuttgart: Gustav Fischer Verlag.Google Scholar
  27. Estes, R., and E.E. Williams. 1984. Ontogenetic variation in the molariform teeth of lizards. Journal of Vertebrate Paleontology 4(1): 96–107.CrossRefGoogle Scholar
  28. Estes, R., K. de Queiroz, and J. Gauthier. 1988. Phylogenetic relationships within Squamata. In Phylogenetic relationships of the lizard familiesessays commemorating Charles L. Camp, eds. Estes, R., and G. Pregill, 119–281. Stanford: Stanford University Press.Google Scholar
  29. Evans, S.E. 1994. A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology 37(1): 33–49.Google Scholar
  30. Evans, S.E. 2003. At the feet of the dinosaurs: the early history and radiation of lizards. Biological Reviews of the Cambridge Philosophical Society 78(4): 513–551.CrossRefGoogle Scholar
  31. Evans, S.E., and L.J. Barbadillo. 1996. The Early Cretaceous lizards of Montsec (Catalonia, Spain). Treballs del Museu de Geologia de Barcelona 5: 5–13.Google Scholar
  32. Evans, S.E., and L.J. Barbadillo. 1997. Early Cretaceous lizards from Las Hoyas, Spain. Zoological Journal of the Linnean Society 119(1): 23–49.CrossRefGoogle Scholar
  33. Evans, S.E., and L.J. Barbadillo. 1998a. An unusual lizard (Reptilia: Squamata) from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society 124(3): 235–265.CrossRefGoogle Scholar
  34. Evans, S.E., and L.J. Barbadillo. 1998b. The lizard Rubiessaurus Gómez Pallerola, 1979 from the Lower Cretaceous of Catalonia (Montsec, Lleida, Spain). Treballs del Museu de Geología de Barcelona 7: 5–10.Google Scholar
  35. Evans, S.E., and D.J. Chure. 1998. Paramacellodid lizard skulls from the Jurassic Morrison Formation at Dinosaur National Monument, Utah. Journal of Vertebrate Paleontology 18(1): 99–114.CrossRefGoogle Scholar
  36. Evans, S.E., and M. Manabe. 2008. An early herbivorous lizard from the Lower Cretaceous of Japan. Palaeontology 51(2): 487–498.CrossRefGoogle Scholar
  37. Evans, S.E., and B. Searle. 2002. Lepidosaurian reptiles from the Purbeck Limestone Group of Dorset, southern England. In Life and environment in Purbeck Times, ed. A.R. Milner, and D.J. Batten, 145–159. London: Palaeontological Association.Google Scholar
  38. Evans, S.E., P. Raia, and C. Barbera. 2004. New lizards and rhynchocephalians from the Lower Cretaceous of southern Italy. Acta Palaeontologica Polonica 49(3): 393–408.Google Scholar
  39. Evans, S.E., P. Raia, and C. Barbera. 2006. The lower Cretaceous lizard genus Chometokadmon from Italy. Cretaceous Research 27(5): 673–683.CrossRefGoogle Scholar
  40. Folie, A., and V. Codrea. 2005. New lissamphibians and squamates from the Maastrichtian of Haţeg Basin, Romania. Acta Palaeontologica Polonica 50(1): 57–71.Google Scholar
  41. Folie, A., B. Sigé, and T. Smith. 2005. A new scincomorph lizard from the Palaeocene of Belgium and the origin of Scincoidea in Europe. Naturwissenschaften 92(11): 542–546.CrossRefGoogle Scholar
  42. Gao, K., and Z. Cheng. 1999. A new lizard from the Lower Cretaceous of Shandong, China. Journal of Vertebrate Paleontology 19(3): 456–465.CrossRefGoogle Scholar
  43. Gao, K., and R.C. Fox. 1996. Taxonomy and evolution of Late Cretaceous lizards (Reptilia: Squamata) from western Canada. Bulletin of the Carnegie Museum of Natural History 33: 1–107.Google Scholar
  44. Gao, K., and M.A. Norell. 2000. Taxonomic composition and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi Desert. Bulletin of the American Museum of Natural History 249: 1–118.CrossRefGoogle Scholar
  45. Gauthier, J.A., M. Kearney, J.A. Maisano, O. Rieppel, and A.D.B. Behlke. 2012. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53(1): 3–308.CrossRefGoogle Scholar
  46. Gheerbrant, E., C. Abrial, and H. Capetta. 1997. Nouveaux sites a microvertébrés continentaux du Crétacé terminal des Petites Pyrénées (Haute-Garonne et Ariège, France). Geobios 20: 257–269.CrossRefGoogle Scholar
  47. Gilmore, C.W. 1928. Fossil lizards of North America. Memoirs of the National Academy of Sciences 22: 1–201.Google Scholar
  48. Gilmore, C.W. 1940. New fossil lizards from the Upper Cretaceous of Utah. Smithsonian Miscellaneous Collections 99(16): 1–3.Google Scholar
  49. Gilmore, C.W. 1942a. Osteology of Polyglyphanodon, an Upper Cretaceous lizard from Utah. Proceedings of the United States National Museum 92: 229–265.CrossRefGoogle Scholar
  50. Gilmore, C.W. 1942b. Paleocene faunas of the Polecat Bench Formation, Park County, Wyoming, part II. Lizards. Proceedings of the American Philosophical Society 85(2): 159–167.Google Scholar
  51. Gilmore, C.W. 1943. Osteology of Upper Cretaceous lizards from Utah, with a description of a new species. Proceedings of the United States National Museum 93: 209–214.CrossRefGoogle Scholar
  52. Gray, J.E. 1845. Catalogue of the specimens of lizards in the collection of the British Museum. 289 pp. London.Google Scholar
  53. Grigorescu, D. 2005. Rediscovery of a ‘forgotten land’: the last three decades of research on the dinosaur-bearing deposits from the Haţeg Basin. Acta Palaeontologica Romaniae 5: 191–204.Google Scholar
  54. Grigorescu, D. 2010. The Latest Cretaceous fauna with dinosaurs and mammals from the Haţeg Basin—a historical overview. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 271–282.CrossRefGoogle Scholar
  55. Grigorescu, D., M. Venczel, Z. Csiki, and R. Limberea. 1999. New latest Cretaceous microvertebrate fossil assemblages from the Haţeg Basin (Romania). Netherlands Journal of Geosciences 78(3–4): 301–314.CrossRefGoogle Scholar
  56. Haas, J., E. Jocha-Edelényi, and G. Császár. 1977. Study of Mesozoic formations of the Transdanubian Central Mountains in Hungary. Annual Report of the Geological Institute of Hungary 1975: 259–272. (in Hungarian).Google Scholar
  57. Hecht, M.K. 1956. A new xantusiid lizard from the Eocene of Wyoming. American Museum Novitates 1774: 1–8.Google Scholar
  58. Houssaye, A., N. Bardet, I. Narváez, and F. Ortega. 2013a. Squamate finding in “Lo Hueco” (Late Campanian–Early Maastrichtian, Cuenca Province, Spain): the second non-marine pythonomorph lizard. Paläontologische Zeitschrift 87(3): 415–422.CrossRefGoogle Scholar
  59. Houssaye, A., J.-C. Rage, F.T. Fernández-Baldor, P.H. Hurtado, N. Bardet, and X.-P. Suberbiola. 2013b. A new varanoid squamate from the Early Cretaceous of Burgos, Spain. Cretaceous Research 41: 127–135.CrossRefGoogle Scholar
  60. Jipa, C.-C. 2012. English abstract. In Upper Cretaceous continental vertebrate assemblages from Metaliferi sedimentary area: systematics, paleoecology and paleobiogeography. PhD thesis, Cluj-Napoca: Babeş-Bolyai University.Google Scholar
  61. Jocha-Edelényi, E. 1996. Csehbánya Formation, Ajka Coal Formation. In Basic lithostratigraphic units of Hungary, ed. G. Császár, 61–66. Budapest: Geological Institute of Hungary. (in Hungarian).Google Scholar
  62. Knauer, J., and Á. Siegl Farkas. 1992. Palynostratigraphic position of the Senonian beds overlying the Upper Cretaceous bauxite formations of the Bakony Mts. Annual Report of the Geological Institute of Hungary. 1990: 463–471. (in Hungarian).Google Scholar
  63. Kosma, R. 2004. The dentitions of recent and fossil scincomorphan lizards (Lacertilia, Squamata)—systematics, functional morphology, paleoecology. PhD thesis, Hannover: Universität Hannover.Google Scholar
  64. Krause, D.W., S.E. Evans, and K. Gao. 2003. First definitive record of Mesozoic lizards from Madagascar. Journal of Vertebrate Paleontology 23(4): 842–856.CrossRefGoogle Scholar
  65. Longrich, N.R., B.-A.S. Bhullar, and J.A. Gauthier. 2012. Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. PNAS 109(52): 21396–21401.CrossRefGoogle Scholar
  66. López-Martínez, N., J.I. Canudo, L. Ardèvol, X.-P. Suberbiola, X. Orue-Etxebarria, G. Cuenca-Bescós, J.I. Ruiz-Omeñaca, X. Murelaga, and M. Feist. 2000. New dinosaur sites correlated with Upper Maastrichtian pelagic deposits in the Spanish Pyrenees: implications for the dinosaur extinction pattern in Europe. Cretaceous Research 22(1): 41–61.CrossRefGoogle Scholar
  67. Makádi, L. 2006. Bicuspidon aff. hatzegiensis (Squamata: Scincomorpha: Teiidae) from the Upper Cretaceous Csehbánya Formation (Hungary, Bakony Mts). Acta Geologica Hungarica 49(4): 373–385.CrossRefGoogle Scholar
  68. Makádi, L. 2013a. A new polyglyphanodontine lizard (Squamata: Borioteiioidea) from the Late Cretaceous Iharkút locality (Santonian, Hungary). Cretaceous Research 46: 166–176.CrossRefGoogle Scholar
  69. Makádi, L. 2013b. The first known chamopsiid lizard (Squamata) from the Upper Cretaceous of Europe (Csehbánya Formation; Hungary, Bakony Mts). Annales de Paléontologie 99(3): 261–274.CrossRefGoogle Scholar
  70. Makádi, L., M.W. Caldwell, and A. Ősi. 2012. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PLoS ONE 7: e51781. doi: 10.1371/journal.pone.0051781.CrossRefGoogle Scholar
  71. Mindszenty, A., J. Knauer, and F. Szantner. 1984. Sedimentological features and the conditions of accumulation of the Iharkút bauxite. Földtani Közlöny 114(1): 19–48. (in Hungarian).Google Scholar
  72. Müller, J. 2002. Eolacerta from the Eocene of Prémontré, France (Reptilia, Squamata). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 2002: 490–500.Google Scholar
  73. Narváez, I., and F. Ortega. 2010. Análisis preliminar de los restos de Iguanidae indet. del Cretácico Superior de Lo Hueco (Fuentes, Cuenca). Cidaris 30: 205–209.Google Scholar
  74. Nydam, R.L. 1999. Polyglyphanodontinae (Squamata: Teiidae) from the medial and Late Cretaceous: new taxa from Utah, U.S.A. and Baja California del Norte, Mexico. In Vertebrate paleontology in Utah, ed. D.D. Gillette, 303–317. Salt Lake City: Utah Geological Survey.Google Scholar
  75. Nydam, R.L. 2002. Lizards of the Mussentuchit Local Fauna (Albian–Cenomanian boundary) and comments on the evolution of the Cretaceous lizard fauna of North America. Journal of Vertebrate Paleontology 22(3): 645–660.CrossRefGoogle Scholar
  76. Nydam, R.L. 2013. Lizards and snakes from the Cenomanian through Campanian of southern Utah: filling the gap in the fossil record of Squamata from the Late Cretaceous of the Western Interior of North America. In At the Top of the Grand Staircase: the Late Cretaceous of southern Utah, ed. A.L. Titus, and M.A. Loewen, 370–423. Bloomington: Indiana University Press.Google Scholar
  77. Nydam, R.L., and R.L. Cifelli. 2002a. A new teiid lizard from the Cedar Mountain Formation (Albian–Cenomanian boundary) of Utah. Journal of Vertebrate Paleontology 22(2): 276–285.CrossRefGoogle Scholar
  78. Nydam, R.L., and R.L. Cifelli. 2002b. Lizards from the Lower Cretaceous (Aptian–Albian) Antlers and Cloverly Formations. Journal of Vertebrate Paleontology 22(2): 286–298.CrossRefGoogle Scholar
  79. Nydam, R.L., and R.L. Cifelli. 2005. New data on the dentition of the scincomorphan lizard Polyglyphanodon sternbergi. Acta Palaeontologica Polonica 50(1): 73–78.Google Scholar
  80. Nydam, R.L., and B.M. Fitzpatrick. 2009. The occurrence of Contogenys-like lizards in the Late Cretaceous and Early Tertiary of the Western Interior of the U.S.A. Journal of Vertebrate Paleontology 29(3): 677–701.CrossRefGoogle Scholar
  81. Nydam, R.L., and G.E. Voci. 2007. Teiid-like scincomorphan lizards from the Late Cretaceous (Campanian) of southern Utah. Journal of Herpetology 41(2): 211–219.CrossRefGoogle Scholar
  82. Nydam, R.L., M.W. Caldwell, and F. Fanti. 2010. Borioteiioidean lizard skulls from Kleskun Hill (Wapiti Formation; Upper Campanian), West-Central Alberta, Canada. Journal of Vertebrate Paleontology 30(4): 1090–1099.CrossRefGoogle Scholar
  83. Nydam, R.L., J.G. Eaton, and J. Sankey. 2007. New taxa of transversely-toothed lizards (Squamata: Scincomorpha) and new information on the evolutionary history of ‘teiids’. Journal of Paleontology 81(3): 538–549.CrossRefGoogle Scholar
  84. Nydam, R.L., J. Gauthier, and J.J. Chiment. 2000. The mammal–like teeth of the Late Cretaceous lizard Peneteius aquilonius Estes, 1969 (Squamata, Teiidae). Journal of Vertebrate Paleontology 20(3): 628–631.CrossRefGoogle Scholar
  85. Nydam, R.L., T.B. Rowe, and R.L. Cifelli. 2013. Lizards and snakes of the Terlingua Local Fauna (late Campanian), Aguja Formation, Texas, with comments on the distribution of paracontemporaneous squamates throughout the Western Interior of North America. Journal of Vertebrate Paleontology 33(5): 1081–1099.CrossRefGoogle Scholar
  86. Oppel, M. 1811. Die Ordnungen, Familien und Gattungen der Reptilien als Prodom einer Naturgeschichte derselben. München: Joseph Lindauer Verlag.CrossRefGoogle Scholar
  87. Ősi, A., and A. Mindszenty. 2009. Iharkút, dinosaur-bearing alluvial complex of the Csehbánya Formation. In Cretaceous sediments of the Transdanubian Range, ed. E. Babinszky, 51–63. Budapest: Hungarian Geological Society.Google Scholar
  88. Ősi, A., M. Rabi, L. Makádi, Z. Szentesi, G. Botfalvai, and P. Gulyás. 2012. The Late Cretaceous continental vertebrate fauna from Iharkút (Western Hungary): a review. In Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems, ed. P. Godefroit, 532–569. Bloomington: Indiana University Press.Google Scholar
  89. Pyron, R.A., F.T. Burbrink, and J.J. Wiens. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13: 1–53.CrossRefGoogle Scholar
  90. Rage, J.-C. 1999. Squamates (Reptilia) from the Upper Cretaceous of Laño (Basque Country, Spain). Estudios del Museo de Ciencias Naturales de Alava 14: 121–133.Google Scholar
  91. Rage, J.-C. 2013. Mesozoic and Cenozoic squamates of Europe. Palaeobiodiversity and Palaeoenvironments 93(4): 517–534.CrossRefGoogle Scholar
  92. Schatzinger, R.A. 1980. New species of Palaeoxantusia (Reptilia: Sauria) from the Uintan (Eocene) of San Diego Co., California. Journal of Paleontology 54(2): 460–471.Google Scholar
  93. Schneider, J.G. 1801. Historiae Amphibiorum naturalis et literariae. Fasciculus Secundus continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues, Amphisbaenas et Caecilias. Jena: F. Frommann.Google Scholar
  94. Smith, J.B., and P. Dodson. 2003. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology 23(1): 1–12.CrossRefGoogle Scholar
  95. Sulimski, A. 1972. Adamisaurus magnidentatus n. gen., n. sp. (Sauria) from the Upper Cretaceous of Mongolia. In Results of the Polish-Mongolian palaeontological expeditions, part IV, ed. Z. Kielan-Jaworowska. Palaeontologia Polonica 27: 33–40.Google Scholar
  96. Sulimski, A. 1975. Macrocephalosauridae and Polyglyphanodontidae (Sauria) from the Late Cretaceous of Mongolia. Palaeontologia Polonica 33: 25–102.Google Scholar
  97. Sulimski, A. 1984. A new Cretaceous scincomorph lizard from Mongolia. Palaeontologia Polonica 46: 143–155.Google Scholar
  98. Sullivan, R.M., and S.G. Lucas. 1996. Palaeoscincosaurus middletoni, new genus and species (Squamata: Scincidae) from the early Paleocene (Puercan) Denver Formation, Colorado. Journal of Vertebrate Paleontology 16(4): 666–672.CrossRefGoogle Scholar
  99. Sullivan, R.M. 1997. Estescincosaurus cooki (Estes, 1964) new genus (Squamata: Scincomorpha): replacement name for Sauriscus Lawrence, 1949 (Arachnida: Trombiculidae). Journal of Vertebrate Paleontology 17(2): 447.Google Scholar
  100. Szalai, E. 2005. Paleomagnetic studies in Iharkút. Manuscript, Budapest: Eötvös University Department of Applied and Environmental Geology (in Hungarian).Google Scholar
  101. Tabuce, R., M. Vianey-Liaud, and G. Garcia. 2004. A eutherian mammal in the latest Cretaceous of Vitrolles, southern France. Acta Palaeontologica Polonica 49(3): 347–356.Google Scholar
  102. Townsend, T.M., A. Larson, E. Louis, and J.R. Macey. 2004. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology 53(5): 735–757.CrossRefGoogle Scholar
  103. Tuba, Gy, P. Kiss, M. Pósfai, and A. Mindszenty. 2006. Preliminary data on the diagenesis of Cretaceous dinosaur bones from the Bakony Mts, Hungary. Földtani Közlöny 136(1): 1–24. (in Hungarian).Google Scholar
  104. Vasile, Ş., and Z. Csiki. 2010. Comparative paleoecological analysis of some microvertebrate fossil assemblages from the Haţeg Basin, Romania. Oltenia, Studii şi Comunicări, Ştiinţele Naturii 26(1): 315–322.Google Scholar
  105. Vasile, Ş., and Z. Csiki. 2011. New Maastrichtian microvertebrates from the Ruscă Montana basin (Romania). Oltenia, Studii şi Comunicări, Ştiinţele Naturii 27(1): 221–230.Google Scholar
  106. Venczel, M., and Z. Csiki. 2003. New frogs from the latest Cretaceous of Haţeg Basin, Romania. Acta Palaeontologica Polonica 48(4): 609–616.Google Scholar
  107. Vidal, N., and S.B. Hedges. 2009. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies 332(2–3): 129–139.CrossRefGoogle Scholar
  108. Vullo, R., and D. Néraudeau. 2008. Cenomanian vertebrate assemblages from southwestern France: a new insight into the European mid-Cretaceous continental fauna. Cretaceous Research 29(5–8): 930–935.CrossRefGoogle Scholar
  109. Vullo, R., J.-C. Rage, and D. Néraudeau. 2011. Anuran and squamate remains from the Cenomanian (Late Cretaceous) of Charentes, western France. Journal of Vertebrate Paleontology 31(2): 279–291.CrossRefGoogle Scholar
  110. Weishampel, D.B., Z. Csiki, M.J. Benton, D. Grigorescu, and V. Codrea. 2010. Palaeobiogeographic relationships of the Haţeg biota—between isolation and innovation. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 419–437.CrossRefGoogle Scholar
  111. White, J.E. 1790. Journal of a Voyage to New South Wales. London: J. Debrett.Google Scholar
  112. Wiens, J.J., C.A. Kuczynski, T. Townsend, T.W. Reeder, D.G. Mulcahy, and J.W. Sites Jr. 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59(6): 675–688.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2014

Authors and Affiliations

  1. 1.Geological and Geophysical CollectionsGeological and Geophysical Institute of HungaryBudapestHungary
  2. 2.Department of Paleontology and GeologyHungarian Natural History MuseumBudapestHungary
  3. 3.Department of PaleontologyEötvös UniversityBudapestHungary
  4. 4.Department of AnatomyMidwestern UniversityGlendaleUSA

Personalised recommendations