Advertisement

Paläontologische Zeitschrift

, Volume 89, Issue 4, pp 983–993 | Cite as

Cranial ontogenetic variation in Mapusaurus roseae (Dinosauria: Theropoda) and the probable role of heterochrony in carcharodontosaurid evolution

  • Juan Ignacio CanaleEmail author
  • Fernando Emilio Novas
  • Leonardo Salgado
  • Rodolfo Aníbal Coria
Research Paper

Abstract

The carcharodontosaurid theropod Mapusaurus roseae (Cenomanian of Neuquén Province, Argentina) is represented by at least seven disarticulated individuals from a monospecific bonebed, all of different sizes and presumably different stages of maturity. We report a series of anatomical differences between repeated skull bones of Mapusaurus, which we interpret as produced by peramorphic heterochronic processes. The materials analyzed include maxillae, lacrimals, dentaries, and isolated teeth. Most of the differences were recorded in the maxilla, the most noticeable change being the reduction of the pneumaticity. We found that some of the synapomorphic characters of derived carcharodontosaurids appear to be the result of peramorphic heterochronies, as in the strongly ornamented facial bones, and the single opening in the anteroventral corner of the antorbital fossa in the maxilla.

Keywords

Heterochrony Peramorphosis Mapusaurus Carcharodontosauridae 

Kurzfassung

Der carcharodontosauride Theropode Mapusaurus rosae (aus dem Cenoman der Provinz Neuquén, Argentinien) ist durch mindestens 7 disartkulierte Individuen verschiedener Größe und vermutlich unterschiedlicher ontogenetischer Stadien aus einem monospezifischen Bonebed repräsentiert. Wir beschreiben eine Reihe anatomischer Unterschiede zwischen mehrfach vorkommenden Schädelknochen von Mapusaurus, die wir als Ergebnis peramorphischer Heterochronie-Prozesse interpretieren. Die untersuchten Elemente umfassen Maxillae, Lacrimale, Dentale und isolierte Zähne. Die größten Änderungen finden sich im Maxillare, wobei besonders die Reduktion der Pneumatisierung auffällt. Wir stellen fest, dass einige der apomorphen Merkmale fortschrittlicher Carcharodontosauriden auf Heterochronie zurückzuführen sind, darunter die stark ornamentierten Schädelknochen und das Vorhandensein nur einer Öffnung im anteroventralen Teil der Fossa antorbitalis im Maxillare.

Schlüsselwörter

Heterochronie Peramorphose Mapusaurus Carcharodontosauridae 

Notes

Acknowledgments

We are grateful to Mike Getty (Utah Museum of Natural History, USA), Paul Sereno (DINOLAB, University of Chicago, USA), Vince Schneider (North Carolina Science Museum, Raleigh, North Carolina, USA) for the access to materials under their care. We thank Nathan Smith (Howard University, Washington, USA) for their comments on the manuscript and English grammar, and Oliver Rauhut for the German translation of abstract and keywords. Finally, we also thank Thomas Carr and an anonymous reviewer who made useful comments that greatly improved the manuscript. Visit to USA collections by JIC was possible thanks to a Jurassic Foundation grant.

Supplementary material

12542_2014_251_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 72 kb)

References

  1. Bhullar, B.-A., J. Marugán-Lobón, F. Racimo, G.S. Bever, T. Rowe, M.A. Norell, and A. Abzhanov. 2012. Birds have paedomorphic dinosaur skulls. Nature 487: 223–226.CrossRefGoogle Scholar
  2. Brinkman, D. 1988. Size-independant criteria for estimating relative age in Ophiacodon and Dimetrodon (Reptilia, Pelycosauria) from the Admiral and Belle Plains formations of west-central Texas. Journal of Vertebrate Paleontology 8: 172–180.CrossRefGoogle Scholar
  3. Brochu, C.A. 1996. Closure of neurocentral sutures during crocodilian ontogeny: implications for maturity assessment in fossil archosaurs. Journal of Vertebrate Paleontology 16: 49–62.CrossRefGoogle Scholar
  4. Brusatte, S.L., and P.C. Sereno. 2007. A new species of Carcharodontosaurus (Dinosauria: Theropoda) from the Cenomanian of Niger and a revision of the genus. Journal of Vertebrate Paleontology 27: 902–916.CrossRefGoogle Scholar
  5. Brusatte, S.L., and P.C. Sereno. 2008. Phylogeny of Allosauroidea (Dinosauria: Theropoda): comparative analysis and resolution. Journal of Systematic Paleontology 6: 155–182.CrossRefGoogle Scholar
  6. Brusatte, S.L., R.B.J. Benson, and S. Hutt. 2008. The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight. Monograph of the Palaeontographical Society 162: 1–75.Google Scholar
  7. Canale, J.I., F.E. Novas and A. Haluza. 2008. Comments about the cervical vertebrae referred to the african theropods Carcharodontosaurus and Sigilmassasaurus. Actas III Congreso Latinoamericano de Paleontología Vertebrados 45.Google Scholar
  8. Carr, T.D. 1999. Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria). Journal of Vertebrate Paleontology 19: 497–520.CrossRefGoogle Scholar
  9. Cau, A., F. Dalla Vecchia, and M. Fabbri. 2012. A thick-skulled theropod (Dinosauria, Saurischia) from the Upper Cretaceous of Morocco with implications for carcharodontosaurid cranial evolution. Cretaceous Research 40: 251–260.CrossRefGoogle Scholar
  10. Chure, D.J., and J.H.J. Madsen. 1996. Variation in aspects of the tympanic pneumatic system in a population of Allosaurus fragilis from the Morrison Formation (Upper Jurassic). Journal of Vertebrate Paleontology 16: 63–66.CrossRefGoogle Scholar
  11. Coria, R.A., and P.J. Currie. 2002. The braincase of Giganotosaurus carolinii, (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina. Journal of Vertebrate Paleontology 4: 802–811.Google Scholar
  12. Coria, R.A., and P.J. Currie. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71–118.Google Scholar
  13. Coria, R.A., and L. Salgado. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377: 224–226.CrossRefGoogle Scholar
  14. Currie, P.J., and K. Carpenter. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22: 207–246.Google Scholar
  15. de Beer, G.R. 1930. Embryology and evolution. Oxford: Clarendon. 116 p.Google Scholar
  16. D´Emic, M.D., K.M. Melstrom and D. Eddy. 2012. Paleobiology and geographic range of the large-bodied Cretaceous theropod dinosaur Acrocanthosaurus atokensis. Palaeogeography Palaeoclimatology Palaeoecology 333–334: 13–23.Google Scholar
  17. Depéret, C., and J. Savornin. 1927. La faune des Reptiles et de Poissons albiens de Timimoun (Sahara algérien). Bulletin de la Societé Géologique de la France 3: 257–265.Google Scholar
  18. Eberth, D.A., P.J. Currie, R.A. Coria, A.C. Garrido, and J.-P. Zonneveld. 2000. Large-theropod bonebed, Neuquén, Argentina: Paleoecological importante. Journal of Vertebrate Paleontology 20: 39A.Google Scholar
  19. Eddy, D., and J. Clarke. 2011. New information on the cranial anatomy of Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). PLoS One 6: e17932.CrossRefGoogle Scholar
  20. Erickson, G.M., P. Makovicky, P. Currie, M. Norell, S.A. Yerby, and C.A. Brochu. 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430: 772–775.CrossRefGoogle Scholar
  21. Gould, S.J. 2002. La estructura de la Teoría de la Evolución. Barcelona: Tusquets, 1426.Google Scholar
  22. Guenther, M.F. 2009. Influence of sequence heterochrony on hadrosaurid dinosaur postcranial development. The Anatomical Record 292: 1427–1441.CrossRefGoogle Scholar
  23. Holtz, T.R., R.E. Molnar, and P.J. Currie. 2004. Basal tetanurae. In The Dinosauria, 2nd ed, ed. D. Weishampel, P. Dodson, and H. Osmólska, 343–362. Berkeley: California University Press.Google Scholar
  24. Irmis, R. 2007. Axial skeleton ontogeny in the Parasuchia (Archosauria: Pseudosuchia) and its implications for ontogenetic determination in archosaurus. Journal of Vertebrate Paleontology 27: 350–361.CrossRefGoogle Scholar
  25. Jianu, C.-M., and D. Weishampel. 1999. The smallest of the largest: a new look at possible dwarfing in sauropod dinosaurs. Geologie en Mijnbouw 78: 335–343.CrossRefGoogle Scholar
  26. Long, J.A., and K.J. McNamara. 1995. Heterochrony in dinosaur evolution. In Evolutionary change and heterochrony, ed. K. McNamara, 151–168. New York: Wiley.Google Scholar
  27. Long, J.A. and K.J. McNamara. 1997a. Heterochrony. En: Enciclopedia of Dinosaurs, eds. Currie, P.J. y Padian, K., 311–317. San Diego: Academic Press.Google Scholar
  28. Long, J.A., and K.J. McNamara. 1997b. Heterochrony: the key to dinosaur evolution, 113–123. Arizona: Dinofest international.Google Scholar
  29. McNamara, K.J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8: 130–142.Google Scholar
  30. McNamara, K.J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology 60: 4–13.Google Scholar
  31. McNamara, K.J. 2012. Heterochrony: the evolution of development. Evolution: Education and Outreach 5: 203–218.Google Scholar
  32. McNamara, K.J., and J.A. Long. 2012. The role of heterochrony in dinosaur evolution. In The complete dinosaur, ed. M. Brett-Surman, T.R. Holtz, and J.O. Farlow, 779–802. Bloomington: Indiana University Press.Google Scholar
  33. Molnar, R. 2005. Sexual selection and sexual dimorphism in theropods. In: The Carnivorous Dinosaurs, ed. Carpenter, K., pp. 284–312. Bloomington: Indiana University Press.Google Scholar
  34. Norell, M.A., J.M. Clark, D. Dashzeveg, R. Barsbold, L.M. Chiappe, A.R. Davidson, M.C. McKenna, A. Perle, and M.J. Novacek. 1994. A theropod dinosaur embryo and the affinities of the Flaming Cliff dinosaur eggs. Science 266: 779–782.CrossRefGoogle Scholar
  35. Novas, F.E., S. de Valais, P. Vickers Rich, and T. Rich. 2005. A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften 92: 226–230.CrossRefGoogle Scholar
  36. Novas, F.E., F.L. Agnolín, M.D. Ezcurra, J. Porfiri and J.I. Canale. 2013. Evolution of the carnivorous dinosaurus during the Cretaceous: the evidence from Patagonia. Cretaceous Research 1–42. http://dx.doi.org/10.1016/j.cretres.2013.04.001.
  37. Ortega, F., F. Escaso, and J.L. Sanz. 2010. A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain. Nature 467: 203–206.CrossRefGoogle Scholar
  38. Rauhut, O.W.M., and R. Fechner. 2005. Early development of the facial region in a non-avian theropod dinosaur. Proceedings B of the Royal Society of London 272: 1179–1183.CrossRefGoogle Scholar
  39. Rauhut, O.W.M., C. Foth, H. Tischlinger, and M.A. Norell. 2012. Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany. Proceedings of the National Academy of Sciences 109: 11746–11751.CrossRefGoogle Scholar
  40. Reilly, S.M., E.O. Wiley, and D.J. Meinhardt. 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60: 119–143.CrossRefGoogle Scholar
  41. Salgado, L. 1999. The macroevolution of the Diplodocimorpha (Dinosauria; Sauropoda): a developmental model. Ameghiniana 36: 203–216.Google Scholar
  42. Sander, M., N. Klein, E. Buffetaut, G. Cuny, V. Suteethorn, and J. Le Loeuff. 2004. Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration. Organisms Diversity & Evolution 4: 165–173.CrossRefGoogle Scholar
  43. Sereno, P. 1997. The origin and evolution of dinosaurs. Annual Review of Earth and Planetary Sciences 25: 435–489.CrossRefGoogle Scholar
  44. Sereno, P.C., D.B. Dutheil, M. Iarochene, H.C. Larsson, G.H. Lyon, P.M. Magwene, C.A. Sidor, D.J. Varrichio, and J.A. Wilson. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272: 986–991.CrossRefGoogle Scholar
  45. Sereno, P.C., and S.L. Brusatte. 2008. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Paleontologica Polonica 53: 15–46.CrossRefGoogle Scholar
  46. Snively, E., and A. Cox. 2008. Structural mechanics of pachycephalosaur crania permitted head-butting behavior. Palaeontologica Electronica 11(3A): 1–17.Google Scholar
  47. Stovall, J.W., and W. Langston. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. American Midland Naturalist 43: 696–728.CrossRefGoogle Scholar
  48. Stromer, E. 1931. Wilbeltierreste der Baharíje-Stufe (unterstes Cenoman). 10. Ein Skelett-Rest von Carcharodontosaurus nov. gen. Abhandlungen der Koniglich Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Abteilung. Neue Folge 9: 1–23.Google Scholar
  49. Thulborn, R.A. 1985. Birds as neotenous dinosaurs. Records of the New Zealand Geological Survey 9: 90–92.Google Scholar
  50. Webster, M., and M.L. Zelditch. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31: 354–372.CrossRefGoogle Scholar
  51. Weishampel, D.B. and J.R. Horner. 1994. Life history syndromes, heterochrony, and the evolution of Dinosauria. In: (Eds.) Dinosaur eggs and babies, eds. Carpenter, K., Hirsch, K.F. y Horner, J.R., 227–243. Cambridge: Cambridge University Press.Google Scholar
  52. Witmer, L.M. 1997. The evolution of the antorbital cavity of archosaurus: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumacity. Society of Vertebrate Paleontology, Memoir 3: 1–73.CrossRefGoogle Scholar
  53. Zelditch, M.L., and W.L. Fink. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22: 241–254.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2014

Authors and Affiliations

  • Juan Ignacio Canale
    • 1
    • 2
    Email author
  • Fernando Emilio Novas
    • 1
    • 3
  • Leonardo Salgado
    • 1
    • 4
  • Rodolfo Aníbal Coria
    • 1
    • 4
    • 5
  1. 1.CONICET: Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Museo Municipal “Ernesto Bachmann”NeuquénArgentina
  3. 3.Laboratorio de Anatomía Comparada y Evolución de los VertebradosMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina
  4. 4.Universidad Nacional DE Río Negro–Sede Alto Valle, UNRNGeneral RocaArgentina
  5. 5.Subsecretaria de Cultura de NeuquénNeuquénArgentina

Personalised recommendations