Paläontologische Zeitschrift

, Volume 89, Issue 3, pp 503–514 | Cite as

The middle Eocene European “ratite” Palaeotis (Aves, Palaeognathae) restudied once more

  • Gerald MayrEmail author
Research Paper


Palaeotis weigelti is a flightless, “ratite”-like palaeognathous bird, which occurs in the Middle Eocene of the German fossil sites Messel and the Geisel Valley. The species is known from several specimens, most of which are, however, very fragmentary or poorly preserved. Its phylogenetic affinities are controversial, with earlier authors especially considering close affinities to Struthionidae and Rheidae, and some skeletal features were only briefly described. Moreover, recent molecular analyses congruently indicate that a “ratite” morphology evolved multiple times within palaeognathous birds. The skeletal morphology and phylogenetic affinities of Palaeotis are therefore reanalyzed, and the taxon is subjected to a phylogenetic analysis based on one of the most comprehensive published data sets for palaeognathous birds. In addition to the primary analysis, further analyses were run that were constrained to a backbone topology reflecting the results of sequence-based studies. In none of these analyses was a well-supported placement of Palaeotis obtained, and it is concluded that current data do not convincingly resolve the affinities of this taxon. Palatal morphology of Palaeotis most closely resembles that of lithornithids, another group of palaeognathous birds from the Eocene of the Northern Hemisphere, and there remains a possibility that the “ratite” features of Palaeotis evolved independently from those of the extant taxa.


Fossil birds Palaeotis Lithornis Phylogeny Evolution 


Palaeotis weigelti ist ein flugunfähiger “Ratiten”-artiger palaeognather Vogel, der im Mittleren Eozän der Fossilfundstellen Messel und Geiseltal vorkommt. Die Art ist von mehreren Exemplaren bekannt, von denen die meisten jedoch fragmentarisch oder schlecht erhalten sind. Ihre verwandtschaftlichen Beziehungen sind umstritten (frühere Autoren zogen insbesondere Struthionidae und Rheidae als nächste Verwandte in Betracht), und einige wichtige Skelettmerkmale wurden nur sehr kurz beschrieben. Darüber hinaus zeigen neue molekulare Analysen übereinstimmend, dass eine “Ratiten”-artige Morphologie mehrfach unabhängig innerhalb palaeognather Vögel entstand. Die Skelettmorphologie sowie die phylogenetischen Beziehungen von Palaeotis werden daher erneut analysiert und die Verwandtschaftsbeziehungen des Taxons anhand eines der umfassendsten veröffentlichten Datensätze für palaeognathe Vögel analysiert. Neben der primären Analyse wurden weitere Analysen durchgeführt, deren Topologie in Hinblick auf die Ergebnisse der sequenzbasierten Studien eingeschränkt wurde. In keiner dieser Analysen wurde eine gut gestützte Platzierung von Palaeotis erhalten, und es wird festgestellt, dass die aktuellen Daten die Beziehungen dieses Taxons nicht überzeugend lösen. Der Bau des knöchernen Gaumens von Palaeotis ähnelt am meisten demjenigen der Lithornithidae, einer anderen Gruppe palaeognather Vögel aus dem Eozän der Nordhalbkugel, und es besteht die Möglichkeit, dass sich die “Ratiten”-Merkmale von Palaeotis unabhängig von denen der heutigen Taxa entwickelt haben.


Fossile Vögel Palaeotis Lithornis Phylogenie Evolution 



I thank Norbert Micklich (HLMD) and Gilles Cuny (MGUH) for access to the fossil specimens, and Sven Tränkner for taking the photographs. I am further indebted to Trevor Worthy for providing the nexus file of Mitchell et al. (2014), to Peter Houde for helpful discussions on the palate of Palaeotis, as well as to Jorge Noriega and Claudia Tambussi for reviewing the manuscript.

Supplementary material

12542_2014_248_MOESM1_ESM.nex (10 kb)
Supplementary material 1 (NEX 10 kb)


  1. Baker, A.J., O. Haddrath, J.D. McPherson, and A. Cloutier. in press. Genomic support for a moa-tinamou clade and adaptive morphological convergence in flightless ratites. Molecular Biology and Evolution.Google Scholar
  2. Baumel, J.J., and L.M. Witmer. 1993. Osteologia. In Handbook of Avian Anatomy: Nomina Anatomica Avium, vol. 23, ed. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge, 45–132. Cambridge, Mass.: Publications of the Nuttall Ornithological Club.Google Scholar
  3. Bock, W.J., and P. Bühler. 1990. The evolution and biogeographical history of the palaeognathous birds. In Proceedings of the International Centennial Meeting of the Deutsche Ornithologen-Gesellschaft, ed. R. van den Elzen, K.-L. Schuchmann, and K. Schmidt-Koenig, 31–36. Bonn: Verlag der Deutschen Ornithologen-Gesellschaft.Google Scholar
  4. Bourdon, E., A. De Ricqles, and J. Cubo. 2009. A new transantarctic relationship: morphological evidence for a Rheidae-Dromaiidae-Casuariidae clade (Aves, Palaeognathae, Ratitae). Zoological Journal of the Linnean Society 156: 641–663.CrossRefGoogle Scholar
  5. Bourdon, E., C. Mourer-Chauviré, and Y. Laurent. in press. The birds (Aves) from the Early Eocene of La Borie, southern France. Acta Palaeontologica Polonica.Google Scholar
  6. Cracraft, J. 1974. Phylogeny and evolution of the ratite birds. Ibis 116: 494–521.CrossRefGoogle Scholar
  7. Dyke, G.J. 2003. The fossil record and molecular clocks: basal radiations within Neornithes. In Telling the evolutionary time—molecular clocks and the fossil record, ed. P. Smith, and P. Donoghue, 263–278. London: Taylor and Francis.Google Scholar
  8. Elzanowski, A. 1995. Cretaceous birds and avian phylogeny. Courier Forschungsinstitut Senckenberg 181: 37–53.Google Scholar
  9. Goloboff, P.A. 1993. NONA version 2.0 [Computer software]. Argentina: S. M. de Tucumán.Google Scholar
  10. Haddrath, O., and A.J. Baker. 2012. Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proceedings of the Royal Society of London, Series B 279: 4617–4625.CrossRefGoogle Scholar
  11. Harshman, J., E.L. Braun, M.J. Braun, C.J. Huddleston, R.C.K. Bowie, J.L. Chojnowski, S.J. Hackett, K.-L. Han, R.T. Kimball, B.D. Marks, K.J. Miglia, W.S. Moore, S. Reddy, F.H. Sheldon, D.W. Steadman, S.J. Steppan, C.C. Witt, and T. Yuri. 2008. Phylogenomic evidence for multiple losses of flight in ratite birds. Proceedings of the National Academy of Sciences USA 36: 13462–13467.CrossRefGoogle Scholar
  12. Houde, P. 1986. Ostrich ancestors found in the Northern Hemisphere suggest new hypothesis of ratite origin. Nature 324: 563–565.CrossRefGoogle Scholar
  13. Houde, P. 1988. Paleognathous birds from the early Tertiary of the Northern Hemisphere. Publications of the Nuttall Ornithological Club 22: 1–148.Google Scholar
  14. Houde, P., and H. Haubold. 1987. Palaeotis weigelti restudied: a small Middle Eocene ostrich (Aves: Struthioniformes). Palaeovertebrata 17: 27–42.Google Scholar
  15. Johnston, P. 2011. New morphological evidence supports congruent phylogenies and Gondwana vicariance for palaeognathous birds. Zoological Journal of the Linnean Society 163: 959–982.CrossRefGoogle Scholar
  16. Lee, K., J. Feinstein, and J. Cracraft. 1997. The phylogeny of ratite birds: resolving conflicts between molecular and morphological data sets. In Avian Molecular Evolution and Systematics, ed. D. Mindell, 173–211. San Diego: Academic Press.CrossRefGoogle Scholar
  17. Leonard, L., G.J. Dyke, and M. van Tuinen. 2005. A new specimen of the fossil palaeognath Lithornis from the Lower Eocene of Denmark. American Museum Novitates 3491: 1–11.CrossRefGoogle Scholar
  18. Livezey, B.C., and R.L. Zusi. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy: II. Analysis and discussion. Zoological Journal of the Linnean Society 149: 1–94.CrossRefGoogle Scholar
  19. Mayr, G. 2002. Avian Remains from the Middle Eocene of the Geiseltal (Sachsen-Anhalt, Germany). In Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing, 1–4 June 2000, ed. Z. Zhou, and Z. Zhang, 77–96. Beijing: Science Press.Google Scholar
  20. Mayr, G. 2009. Paleogene fossil birds. Heidelberg: Springer.CrossRefGoogle Scholar
  21. Mitchell, K.J., B. Llamas, J. Soubrier, N.J. Rawlence, T.H. Worthy, J. Wood, M.S.Y. Lee, and A. Cooper. 2014. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344(6186): 898–900.CrossRefGoogle Scholar
  22. Nixon, K.C. 2002. WinClada, version 1.00.08 [Computer software]. Ithaca, NY: published by the author.Google Scholar
  23. Peters, D.S. 1988. Ein vollständiges Exemplar von Palaeotis weigelti (Aves, Palaeognathae). Courier Forschungsinstitut Senckenberg 107: 223–233.Google Scholar
  24. Phillips, M.J., G.C. Gibb, E.A. Crimp, and D. Penny. 2010. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Systematic Biology 59: 90–107.CrossRefGoogle Scholar
  25. Smith, J.V., E.L. Braun, and R.T. Kimball. 2013. Ratite nonmonophyly: independent evidence from 40 novel loci. Systematic Biology 62: 35–49.CrossRefGoogle Scholar
  26. Worthy, T.H., S.J. Hand, and M. Archer. 2013. Phylogenetic relationships of the Australian Oligo-Miocene ratite Emuarius gidju Casuariidae. Integrative Zoology 9: 148–166.CrossRefGoogle Scholar
  27. Worthy, T.H., and R.P. Scofield. 2012. Twenty-first century advances in knowledge of the biology of moa (Aves: Dinornithiformes): a new morphological analysis and moa diagnoses revised. New Zealand Journal of Zoology 39: 87–153.CrossRefGoogle Scholar
  28. Yuri, T., R.T. Kimball, J. Harshman, R.C.K. Bowie, M.J. Braun, J.L. Chojnowski, K.-L. Han, S.J. Hackett, C.-J. Huddleston, W.-S. Moore, S. Reddy, F.H. Sheldon, D.W. Steadman, C.C. Witt, and E.L. Braun. 2013. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology 2: 419–444.CrossRefGoogle Scholar
  29. Zusi, R.L., and B.C. Livezey. 2006. Variation in the os palatinum and its structural relation to the palatum osseum of birds (Aves). Annals of Carnegie Museum 75: 137–180.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2014

Authors and Affiliations

  1. 1.Ornithological SectionSenckenberg Research Institute and Natural History Museum FrankfurtFrankfurt am MainGermany

Personalised recommendations