Paläontologische Zeitschrift

, Volume 89, Issue 3, pp 399–433 | Cite as

The Carnian/Norian boundary succession at Berlin-Ichthyosaur State Park (Upper Triassic, central Nevada, USA)

  • Marco Balini
  • James F. Jenks
  • Riccardo Martin
  • Christopher A. McRoberts
  • Michael J. Orchard
  • Norman J. Silberling
Research Paper


The Upper Carnian-Lower Norian (Upper Triassic) Luning Formation at Berlin-Ichthyosaur State Park (BISP) in central NV (USA) has been sampled using for the first time the bed-by-bed approach for ammonoids, pelagic bivalves, and conodonts, more than 60 years after its first description by Silberling (U.S. Geological Survey Professional Paper 322: 1–63, 1959). BISP is historically important for the definition of the uppermost Carnian of the North American Triassic chronostratigraphic scale and is known worldwide as one of the most important ichthyosaur Fossil-Lagerstätte because of its extraordinary record of 37 articulated, large-sized specimens of Shonisaurus popularis. Nearly 190 ammonoids were collected from two stratigraphic sections, documenting all the latest Carnian to Early Norian ammonoid faunas previously described by Silberling. Halobiids were collected from five levels, and the first report of conodonts from BISP includes faunas from 13 levels. The ~340-m thick Brick Pile section, the most complete in the study area, includes the uppermost Carnian Macrolobatus Zone, which provides conodont faunas of the lower primitia zone and Halobia septentrionalis. The 200-m thick lowermost Norian Kerri Zone, which begins 52 m above the Macrolobatus Zone, yields conodonts of the upper primitia zone in its lower part, together with H. cf. beyrichi and H. cf. selwyni. The ichthyosaur-bearing interval, whose stratigraphic position has been interpreted quite differently by previous authors, is documented in the uppermost Carnian Macrolobatus Zone and is characterized by rich Tropites-dominated ammonoid faunas and by the onset of Halobia. All models proposed by various workers to explain the unusual ichthyosaur record are discussed and an additional explanation for the main ichthyosaur-bearing bed is proposed. The new hypothesis is that a harmful algal bloom (HAB) may have been the trigger for the mass mortality recorded in this level. Although the C/N boundary in the Brick Pile section lies within a 52 m interval that presently lacks paleontologic data, this succession is included in a small group of sections that are expected to contribute to the definition of the GSSP of the Norian stage. Correlation of the Brick Pile section with the best Carnian/Norian sections in northeastern British Columbia is discussed. Compared to the British Columbia Juvavites Cove and the GSSP candidate Black Bear Ridge sections, the Brick Pile section exhibits an ammonoid and Halobia record that is slightly more similar to that of the Tethyan sections. Correlation of the Brick Pile section with the second GSSP candidate Pizzo Mondello (Sicily, Italy) well demonstrates the significant problems encountered in calibration of the Tethyan and North American scales.


Upper Triassic Fossil-Lagerstätte Nevada Ammonoids Halobia Conodonts Ichthyosaurs Mass mortality Chronostratigraphy 


Die oberkarnische bis unternorische (Späte Trias) Luning Formation im Berlin-Ichthyosaur State Park (BISP) in Zentral-Nevada (USA) wurde mehr als 60 Jahre nach der ersten Beschreibung durch Silberling (U. S. Geological Survey Professional Paper 322: 1–63, 1959) erstmals bankweise auf Ammoniten, pelagische Bivalven und Conodonten untersucht. Der BISP ist von historischer Bedeutung für die Definition des obersten Karn in der chronostratigraphischen Tabelle der nordamerikanischen Trias und ist eine der weltweit bekanntesten Ichthyosaurier Fossillagerstätten, ausgezeichnet durch den außergewöhnlichen Fund von 37 artikulierten, großen Exemplaren von Shonisaurus popularis. Nahezu 190 Ammoniten aus zwei stratigraphischen Abschnitten belegen oberstes Karn bis Unternor, wie schon früher durch Silberling beschrieben. Halobiiden liegen aus fünf Niveaus vor, und der Erstnachweis von Conodonten im BISP beinhaltet Faunen aus 13 Niveaus. Der ca. 340 m mächtige Brick Pile Aufschluss ist der kompletteste im untersuchten Gebiet. Er schließt die rund 20 m mächtige Macrolobatus Zone des obersten Karn mit Conodonten-Faunen aus der unteren primitia zone und Halobia septentrionalis ein. Nach einer Lücke im Fossilbefund von 52 m folgt die 200 m mächtige Kerri Zone des untersten Nor, welche im unteren Teil Conodonten der oberen primitia zone gemeinsam mit H. cf. beyrichi und H. cf. selwyni erbrachte. Das Ichthyosaurier führende Intervall, von bisherigen Autoren teils ins Karn und/oder ins Nor eingestuft, ist durch eine ergiebige Tropites-Fauna und das Einsetzen von Halobia charakterisiert und kann damit in das obere Karn eingestuft werden. Alle Modelle, die von verschiedenen Autoren für die Erklärung des außergewöhnlichen Ichthyosaurier-Vorkommens vorgeschlagen wurden, werden diskutiert und um ein zusätzliches Genesemodell für die Haupt-Ichthyosaurier-Bank erweitert. Nach der neuen Hypothese führte wohl eine schädliche Algenblüte zu einem Massensterben in diesem Horizont. Obwohl die Karn/Nor Grenze des Brick Pile Aufschlusses im Bereich des fossilleeren 52-m-Intervalls liegt, wird er zu der kleinen Gruppe von Profilen gezählt, welche wesentlich zur Definition des GSSP der Norischen Stufe beitragen können. Die Korrelation von Brick Pile mit den wichtigsten Karn/Nor-Grenzprofilen von British Columbia und Sizilien wird diskutiert. Verglichen mit Juvavites Cove und dem GSSP-Kanditaten Black Bear Ridge in B.C., weist Brick Pile bei den Ammonoideen und Halobien einen etwas stärkeren Tethys-Bezug auf. Ein Vergleich von Brick Pile mit dem zweiten GSSP-Kandidaten Pizzo Mondello (Sizilien, Italien) zeigt die signifikanten Probleme, welche bei der Korrelation tethyaler und nordamerikanischer Biochronologien auftreten.


Späte Trias Fossillagerstätte Nevada Ammonoideen Halobia Conodonten Ichthyosaurier Massensterben Chronostratigraphie 



We kindly thank the Nevada Division of State Parks and Nevada State Museum personnel who were responsible for expediting approval of our special permit application for paleontologic work within BISP. Their efforts are greatly appreciated. Likewise, we are appreciative of the US Forest Service for allowing us to conduct reconnaissance work on Toyable National Forest land. The on-site assistance of BISP supervisor Jeff Morris and his staff during our very rainy October 2010 field trip was also greatly appreciated.

Ammonoid taxonomic problems were discussed with Leo Krystyn (University of Vienna, Austria), who is the acknowledged leading authority on Carnian-Norian ammonoid systematics and biostratigraphy. Many thanks to Hans Hagdorn (Ingelfingen) for the stimulating discussions on concept and definition of mass mortality and Fossil-Lagestatten. Spencer G. Lucas and Justin A. Spielmann (New Mexico Museum of Natural History and Science, Albuquerque, NM) kindly helped with registration of the published specimens in the catalogue of the NMMNHS. Warm thanks also to Alexander Lukeneder (Naturhistorisches Museum, Wien), Hans Hagdorn and Leo Krystyn who kindly translated the Abstract into German.

The manuscript has been notably improved by valuable and stimulating suggestions by Leo Krystyn and Spencer G. Lucas.

Technical support for the ammonoid part was provided by G. Chiodi (University of Milano). This work is a contribution to PRIN 2008 project “Stratigrafia integrata del Triassico Superiore: GSSP e sezioni ausiliarie in Italia” (P.I. M. Balini). Financial support for field works has been provided by PRIN 2008 grants to M. Balini (Milano Research Unit). The conodont analyses were undertaken in Vancouver as a contribution to the Geological Survey of Canada’s “Geoscience for Energy and Minerals” (GEM) program, with support from the Yukon Basins Project (M.J. Orchard).


  1. Balini, M., and C. Renesto. 2012. Cymbospondylus vertebrae (Ichthyosauria, Shastasauridae) from the Late Anisian Prezzo Limestone (Middle Triassic, Southern Alps) with an overview of the chronostratigraphic distribution of the group. Rivista Italiana di Paleontologia e Stratigrafia 118: 155–172.Google Scholar
  2. Balini, M., S.G. Lucas, J.F. Jenks, and J.A. Spielmann. 2010a. Triassic ammonoid biostratigraphy: an overview. In The Triassic Timescale, ed. S.G. Lucas, 221–262. Geological Society, Special Publications 334.Google Scholar
  3. Balini, M., A. Bertinelli, P. Di Stefano, C. Guaiumi, M. Levera, M. Mazza, G. Muttoni, A. Nicora, N. Preto, and M. Rigo. 2010b. The Late Carnian-Rhaetian succession at Pizzo Mondello (Sicani Mountains). Albertiana 39: 36–57.Google Scholar
  4. Balini, M., L. Krystyn, M. Levera, and A. Tripodo. 2012. Late Carnian-Early Norian ammonoids from the GSSP candidate section Pizzo Mondello (Sicani Moutains, Sicily). Rivista Italiana di Paleontologia e Stratigrafia 118: 47–84.Google Scholar
  5. Bargu, S., C.L. Powell, Z. Wang, G.J. Doucette, and M.W. Silver. 2008. Note on the occurrence of Pseudo-nitzschia australis and domoic acid in squid from Monterey Bay, CA (USA). Harmful algae 7: 45–51.CrossRefGoogle Scholar
  6. Bottjer, D.J. 2002. Berlin-Ichthyosaur: preserving some of the Earth’s largest marine vertebrates. In Exceptional fossil preservation: a unique view on the evolution of marine life, ed. D.J. Bottjer, W. Etter, J.W. Hagadorn, and C.M. Tang, 243–250. New York: Columbia University Press.Google Scholar
  7. Bottjer, D.J., W. Etter, J.W. Hagadorn, and C.M. Tang. 2002. Fossil-Lagerstätten: Jewels of the Fossil Record. In Exceptional fossil preservation: a unique view on the evolution of marine life, ed. D.J. Bottjer, W. Etter, J.W. Hagadorn, and C.M. Tang, 1–10. New York: Columbia University Press.Google Scholar
  8. Bychkov, Y.M. 1995. Late Triassic trachiceratids and sirenitids from the upper stream of the Yana Okhotskaya River basin, 1–67. Magadan: Severo-Vostocnyj Nauchnyj Center Dalnevostochnogo Otdeleniya RAN. (in Russian).Google Scholar
  9. Callaway, J.M., and J.A. Massare. 1989. Geographic and Stratigraphic Distribution of the Triassic Ichthyosauria (Reptilia; Diapsida). Neues Jahrbuch für Geologie und Paläontologie 178: 37–58.Google Scholar
  10. Camp, C.L. 1976. Vorläufige Mitteilungen über große Ichthyosaurier aus der oberen Trias von Nevada. Österreichischen Akademie der Wissenschaften, Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse Abt. I 185: 125–134.Google Scholar
  11. Camp, C.L. 1980. Large Ichthyosaurs from the Upper Triassic of Nevada. Palaeontograhica Abt. A 170: 139–200.Google Scholar
  12. Campbell, H.J. 1994. The Triassic bivalves Halobia and Daonella in New Zealand, New Caledonia, and Svalbard. Institute of Geological & Nuclear Sciences Monograph 4: 1–166.Google Scholar
  13. Carter, E.S., and M.J. Orchard. 2013. Intercalibration of conodont and radiolarian faunas from the Carnian-Norian Boundary Interval in Haida Gwaii, British Columbia, Canada. In The Triassic system, ed. L.H. Tanner, J.A. Spielman, and S.G. Lucas, 67–92. New Mexico Museum of Natural History and Science, Bulletin 61.Google Scholar
  14. Costa, P.R., R. Rosa, J. Pereira, and M.A.M. Sampayo. 2005. Detection of domoic acid, the amnesic shellfish toxin, in the digestive gland of Eledone cirrhosa and E. moschata (Cephalopoda, Octopoda) from the Portuguese coast. Aquatic Living Resources 18: 395–400.CrossRefGoogle Scholar
  15. Dagys, A.S. 1988. Major features of the geographic differentiation of Triassic ammonoids. In Cephalopods present and past, ed. J. Wiedmann, and J. Kullmann, 341–349. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  16. De Capoa Bonardi, P. 1984. Halobia zones in the pelagic Late Triassic sequences of the central Mediterranean area. Bollettino della Società Paleontologica Italiana 23: 91–102.Google Scholar
  17. Ferguson, H.G. and S.H. Cathcart. 1954. Geology of the Round Mountain quadrangle, Nevada. In U. S. Geological Survey Geological Quadrangle Map 40.Google Scholar
  18. Gruber, B. 1976. Neue ergebnisse auf dem gebiete der Ökologie, Stratigraphie und Phylogenie der Halobien (Bivalvia). Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich 23: 181–198.Google Scholar
  19. Hogler, J.A. 1992. Taphonomy and paleoecology of Shonisaurus popularis (Reptilia: Ichthyosauria). Palaios 7: 108–117.CrossRefGoogle Scholar
  20. Hogler, J.A., and R.A. Hanger. 1989. A new Chondrophorine (Hydrozoa, Velellidae) from the Upper Triassic of Nevada. Journal of Paleontology 63: 249–251.Google Scholar
  21. Kosch, B.F. 1990. A revision of the skeletal reconstruction of Shonisaurus popularis (Reptilia: Ichthyosauria). Journal of Vertebrate Paleontology 10: 512–514.CrossRefGoogle Scholar
  22. Kristan-Tollmann, E., and A. Tollmann. 1983. Tethys-Faunelemente in der Trias der USA. Mitteilungen der Osterreichischen Geologischen Gesellschaft 76: 213–272.Google Scholar
  23. Krystyn, L. 1973. Zur Ammoniten- und Conodonten-Stratigraphie der Hallstätter Obertrias (Salzkammergut, Österreich). Verhandlungen der Geologischen Bundesanstalt, 1973/1:113–153.Google Scholar
  24. Krystyn, L. 1974. Zur Grenzziehung Karn-Nor mit Ammoniten und Conodonten. Österreichischen Akademie der Wissenschaften, Anzeiger der mathematisch-naturwissenschaftlichen Klasse 4: 47–53.Google Scholar
  25. Krystyn, L. 1980. Stratigraphy of the Hallstatt region. In Second European Conodont Symposium (ECOS II), Guidebook, Abstracts, ed. H.P. Schönlaub, 69–98. Abhandlungen der Geologischen Bundesanstalt 35.Google Scholar
  26. Krystyn, L. 1982. Obertriassische Ammonoideen aus dem zentralnepalesischen Himalaya (Gebiet vom Jomsom). Abhandlungen der Geologischen Bundesanstalt 36: 1–63.Google Scholar
  27. Krystyn, L., and Y. Gallet. 2002. Towards a Tethyan Carnian-Norian boundary GSSP. Albertiana 27: 12–19.Google Scholar
  28. Krystyn, L., Y. Gallet, J. Besse, and J. Marcoux. 2002. Integrated Upper Carnian to Lower Norian biochronology and implications for the Upper Triassic magnetic polarity time scale. Earth and Planetary Science Letters 203: 343–351.CrossRefGoogle Scholar
  29. Levera, M. 2012. The halobiids from the Norian GSSP candidate section of Pizzo Mondello (Western Sicily, Italy): Systematics and correlations. Rivista Italiana di Paleontologia e Stratigrafia 18: 3–45.Google Scholar
  30. Lopes, V.M., A.R. Lopes, P. Costa, and R. Rosa. 2013. Cephalopods as vectors of harmful algal bloom toxins in marine food webs. Marine Drugs 11: 3381–3409.CrossRefGoogle Scholar
  31. Lucas, S.G., N.J. Silberling, J.F. Jenks, J.A. Spielmann, and L.F. Rinehart. 2007. Third day: Upper Triassic and Lower Jurassic stratigraphy and biostratigraphy in western Nevada. In The Triassic of the American West, ed. S.G. Lucas and J.A. Spielmann, 23–30. New Mexico Museum of Natural History and Science Bulletin 40.Google Scholar
  32. Lucas, S.G., L.H. Tanner, H.W. Kozur, R.E. Weems, and A.B. Heckert. 2012. The Late Triassic timescale: age and correlation of the Carnian-Norian boundary. Earth-Science Reviews 114: 1–18.CrossRefGoogle Scholar
  33. Martindale, R.C., D.J. Bottjer, and F.A. Corsetti. 2012. Platy coral patch reefs from eastern Panthalassa (Nevada, USA): Unique reef construction in the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 313–314: 41–58.CrossRefGoogle Scholar
  34. Massare, J.A., and J.M. Callaway. 1988. Live birth in ichthyosaurs: Evidence and implications. Journal of Vertebrate Paleontology 8: 21A.Google Scholar
  35. Mazza, M., S. Furin, C. Spötl, and M. Rigo. 2010. Generic turnovers of Carnian/Norian conodonts: climatic control of competition?: Palaeogeography. Palaeoclimatology, Palaeoecology 290: 120–137.CrossRefGoogle Scholar
  36. Mazza, M., M. Rigo, and A. Nicora. 2011. A new Metapolygnathus platform conodont species and its implications for Upper Carnian global correlations. Acta Palaeontologica Polonica 56: 121–131.CrossRefGoogle Scholar
  37. Mazza, M., M. Rigo, and M. Gullo. 2012. Taxonomy and biostratigraphic record of the Upper Triassic conodonts of the Pizzo Mondello section (western Sicily, Italy), GSSP candidate for the base of the Norian. Rivista Italiana di Paleontologia e Stratigrafia 118: 85–130.Google Scholar
  38. McGowan, C., and R. Motani. 1999. A reinterpretation of the Upper Triassic ichthyosaur Shonisaurus. Journal of Vertebrate Paleontology 19: 42–49.CrossRefGoogle Scholar
  39. McLearn, F.H. 1960. Amonoid Faunas of the Upper Triassic Pardonet Formation, Peace River Foothills, British Columbia. Geological Survey of Canada Memoirs 311: 1–118.Google Scholar
  40. McMenamin, M.A.S., and D.L. Schulte McMenamin. 2011. Triassic Kraken: the Berlin Ichthyosaur Death Assemblage Interpreted as a Giant Cephalopod Midden. Geological Society of America Abstracts with Programs 43(5): 310.Google Scholar
  41. McMenamin, M.A.S., and D.L. Schulte McMenamin. 2013. The kraken’s back: new evidence regarding possible cephalopod arrangement of ichthyosaur skeletons. Geological Society of America Abstracts with Programs 45(7): 900.Google Scholar
  42. McMenamin, M.A.S., L.P. Zapata, and M.C. Hussey. 2013. A Triassic giant amphipod from Nevada, USA. Journal of Crustacean Biology 33: 751–759.CrossRefGoogle Scholar
  43. McRoberts, C.A. 2007. The halobiid bivalve succession across a potential Carnian/Norian GSSP at Black Bear Ridge, Williston Lake, northeast British Columbia, Canada. Albertiana 36: 142–145.Google Scholar
  44. McRoberts, C.A. 2010. Biochronology of Triassic Bivalves. In The Triassic Timescale, ed. S. Lucas, 201–219. London: Geological Society of London, Special Publication 334.Google Scholar
  45. McRoberts, C.A. 2011. Late Triassic Bivalvia (chiefly Halobidae and Monotidae) from the Pardonet Formation, Williston Lake area, northeastern British Columbia, Canada. Journal of Paleontology 85: 613–664.CrossRefGoogle Scholar
  46. McRoberts, C.A. and L. Krystyn. 2011. The FOD of Halobia austriaca at Black Bear Ridge (northeastern British Columbia) as the potential base-Norian GSSP. In Canadian Paleontology Conference, Proceedings n. 9, ed. J.W. Haggart and P.L. Smith, 38–39. Vancouver: University of British Columbia.Google Scholar
  47. Merriam, J.C. 1908. Triassic Ichthyosauria, with special reference to the American forms. Memoirs of the University of California 1: 1–196.Google Scholar
  48. Mojsisovics, E.v. 1874. Über Die Triadischen Pelecypoden-Gattungen Daonella und Halobia. Abhandlungen der kaiserlich königlichen Geologischen Reichsanstalt 7: 1–35.Google Scholar
  49. Monteiro, A., and P.R. Costa. 2011. Distribution and selective elimination of paralytic shellfish toxins in different tissues of Octopus vulgaris. Harmful Algae 10: 732–737.CrossRefGoogle Scholar
  50. Muller, S.W., and H.G. Ferguson. 1936. Triassic and Lower Jurassic formations of west central Nevada. Geological Society of America Bulletin 47: 241–252.CrossRefGoogle Scholar
  51. Muller, S.W., and H.G. Ferguson. 1939. Mesozoic stratigraphy of the Hawthorne and Tonopah quadrangles, Nevada. Geological Society of America Bulletin 50: 1573–1624.CrossRefGoogle Scholar
  52. Muttoni, G., D.V. Kent, P. Di Stefano, M. Gullo, A. Nicora, J. Tait, and W. Lowrie. 2001. Magnetostratigraphy and biostratigraphy of the Carnian/Norian boundary interval from the Pizzo Mondello section (Sicani Mountains, Sicily). Palaeogeography, Palaeoclimatology, Palaeoecology 166: 383–399.CrossRefGoogle Scholar
  53. Muttoni, G., D.V. Kent, P.E. Olsen, P. Di Stefano, W. Lowrie, S.M. Bernasconi, and F.M. Hernandez. 2004. Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale. Geological Society of America Bulletin 116: 1043–1058.CrossRefGoogle Scholar
  54. Muttoni, G., M. Mazza, D. Mosher, M.E. Katz, D.V. Kent, and M. Balini. 2014. A Middle-Late Triassic (Ladinian–Rhaetian) carbon and oxygen isotope record from the Tethyan Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 246–259.CrossRefGoogle Scholar
  55. Nicora, A., M. Balini, A. Bellanca, A. Bertinelli, S.A. Bowring, P. Di Stefano, P. Dumitrica, C. Guaiumi, M. Gullo, A. Hungerbuehler, M. Levera, M. Mazza, C.A. McRoberts, G. Muttoni, N. Preto, and M. Rigo. 2007. The Carnian/Norian boundary interval at Pizzo Mondello (Sicani Mountains, Sicily) and its bearing for the definition of the GSSP of the Norian Stage. Albertiana 36: 102–115.Google Scholar
  56. Orchard, M.J. 1991. Late Triassic conodont biochronology and biostratigraphy of the Kunga Group, Queen Charlotte Islands, British Columbia. In Evolution and Hydrocarbon Potential of the Queen Charlotte Basin, British Columbia, ed. G.W. Woodsworth, 173–193. Geological Survey of Canada Paper 1990–10.Google Scholar
  57. Orchard, M.J. 2007. A proposed Carnian-Norian boundary GSSP at Black Bear Ridge, northeast British Columbia, and a new conodont framework for the boundary interval. Albertiana 36: 130–141.Google Scholar
  58. Orchard, M.J. 2013. Five new genera of conodonts from the Carnian-Norian Boundary beds, northeast British Columbia, Canada. In The Triassic system, ed. L.H. Tanner, J.A., Spielman, and S.G. Lucas, 445–457. New Mexico Museum of Natural History and Science, Bulletin 61.Google Scholar
  59. Orchard, M.J. and E.T. Tozer. 1997. Triassic conodont biochronology, its calibration with the ammonoid standard, and a biostratigraphic summary for the Western Canada Sedimentary Basin. In Triassic of Western Canada Basin, ed. T. Moslow, and J. Wittenberg, 675–692. Canadian Society of Petroleum Geologists Bulletin 45.Google Scholar
  60. Orchard, M.J., J.P. Zonneveld, M.J. Johns, C.A. McRoberts, M.R. Sandy, E.T. Tozer, and G.G. Carrelli. 2001. Fossil succession and sequence stratigraphy of the Upper Triassic of the Black Bear Ridge, northeast British Columbia, a GSSP prospect for the Carnian-Norian boundary. Albertiana 25: 10–22.Google Scholar
  61. Pyenson, N.D., C.S. Gutstein, J.F. Parham, J.P. Le Roux, C.C. Chavarría, H. Little, A. Metallo, V. Rossi, A.M. Valenzuela-Toro, J. Velez-Juarbe, C.M. Santelli, D. Rubilar Rogers, M.A. Cozzuol, and M.E. Suárez. 2014. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. Proceedings of the Royal Society B: Biological Sciences 281(1781): 20133316.CrossRefGoogle Scholar
  62. Robertson, A., D. Stirling, C. Robillot, L. Llewellyn, and A. Negri. 2004. First report of saxitoxin in octopi. Toxicon 44: 765–771.CrossRefGoogle Scholar
  63. Roniewicz, E., and G.D. Stanley. 2013. Upper Triassic corals from Nevada, western North America, and the implications for paleoecology and paleogeography. Journal of Paleontology 87: 934–964.CrossRefGoogle Scholar
  64. Sander, P.M. 2000. Ichthyosauria: their diversity, distribution, and phylogeny. Paläontologische Zeitschrift 74: 1–35.CrossRefGoogle Scholar
  65. Sandy, M.R., and G.D. Stanley Jr. 1993. Late Triassic brachiopods from the Luning Formation, Nevada, and their palaeobiogeographic significance. Palaeontology 36: 439–480.Google Scholar
  66. Seilacher, A. 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1970: 34–39.Google Scholar
  67. Seilacher, A. and F. Westphal. 1971. Fossil-Lagerstätten. In Sedimentology of parts of Central Europe, Guidebook 8. Int. Sediment. Congr. 327–335, Heidelberg.Google Scholar
  68. Seilacher, A., W.E. Reif, and F. Westphal, 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. In Extraordinary fossil biotas: their ecological and evolutionary significance, ed. H.B. Whittington and S. Conway Morris, 311, 5–23 Philosophical Transactions of the Royal Society of London B.Google Scholar
  69. Silberling, N.J. 1959. Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mounatins, Nevada. U. S. Geological Survey Professional Paper 322: 1–67.  Google Scholar
  70. Silberling, N.J. 1991. Allochthonous terranes of western Nevada, current status. In Geology and ore deposits of the Great Basin, ed. G.L. Raines, 101–102. Reno: Geological Society of Nevada.Google Scholar
  71. Silberling, N.J., and E.T. Tozer. 1968. Biostratigraphic Classification of the Marine Triassic in North America. Geological Society of America, Special Papers 110: 1–63.CrossRefGoogle Scholar
  72. Silberling, N.J., D.L. Jones, Jr. M.C. Blake, and D.G Howell. 1987. Lithotectonic terrane map of the western coterminous United States. U.S. Geological Survey Miscellaneous Field Studies Map MF-1874-C, scale 1:2,500,000.Google Scholar
  73. Smith, J.P. 1927. Upper Triassic marine invertebrate faunas of North America.U.S. Geological Survey Professional Paper 141: 1–262.Google Scholar
  74. Speed, R.C., N.J. Silberling, M.W. Elison, K.M. Nichols, and W.S. Snyder. 1989. Early Mesozoic tectonics of the western Great Basin, Nevada. In 28th International Geological Congress, Field Trip Guidebook T122: 1–54. Washington D.C.: American Geophysical Union.Google Scholar
  75. Stanley Jr, G.D. 1977. Triassic Coral Buildups of Western North America. Lawrence: University of Kansas.Google Scholar
  76. Stanley Jr, G.D. 1979. Paleoecology, Structure, and Distribution of Triassic Coral Buildups in Western North America. Lawrence: University of Kansas Paleontological Institute.Google Scholar
  77. Tozer, E.T. 1965. Upper Triassic ammonoid zones of the Peace River foothills, British Columbia, and their bearing on the classification of the Norian stage. Canadian Journal of Earth Sciences 2: 216–226.CrossRefGoogle Scholar
  78. Tozer, E.T. 1967. A standard for Triassic time. Geological Survey of Canada Bulletin 156: 1–103.Google Scholar
  79. Tozer, E.T. 1971. Triassic time and ammonoids: Problems and proposals. Canadian Journal of Earth Sciences 8: 989–1031.CrossRefGoogle Scholar
  80. Tozer, E.T. 1981a. Triassic Ammonoidea: Classification, Evolution and Relationship, with Permian and Jurassic Forms. In The Ammonoidea, ed. M.R. House and J.R. Senior, The Systematic Association special volume 18: 65–100. London: Acadamic Press.Google Scholar
  81. Tozer, E.T. 1981b. Triassic Ammonoidea: Geographic and Stratigraphic Distribution. In The Ammonoidea, ed. M.R. House and J.R. Senior, The Systematic Association special volume 18: 397–432. London, New York: Acadamic Press.Google Scholar
  82. Tozer, E.T. 1984. The Trias and its ammonoids: the evolution of a time scale. Geological Survey of Canada, Miscellaneous Report 35: 1–171.Google Scholar
  83. Tozer, E.T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin 467: 1–663.Google Scholar
  84. Wilby, P.R., J.D. Hudson, R.G. Clements, and N.T.J.J. Hollingworth. 2004. Taphonomy and origin of an accumulate of soft-bodied cephalopods in the Oxford Clay Formation (Jurassic, England). Palaeontology 47: 1159–1180.CrossRefGoogle Scholar
  85. Williford, K.H., M.J. Orchard, J.P. Zonneveld, C.R. McRoberts, and T.W. Beatty. 2007. A record of stable organic carbon isotopes from the Carnian-Norian boundary section at Black Bear Ridge, Williston Lake, British Columbia, Canada. Albertiana 36: 146–148.Google Scholar
  86. Zakharov, Yu.D. 1997. Carnian and Norian Sirenitid ammonoids of the north-western circum-pacific and their role in the Late Triassic faunal succession. In Late Paleozoic and Early Mesozoic Circum-Pacific Events: Biostratigraphy, Tectonic and Ore Deposits of Primoryie, (Far East Russia), ed. A. Baud, I. Popova, J.M. Dickins, S. Lucas and Yu.D. Zakharov, 137–144. Mémoires de Géologie 30.Google Scholar
  87. Zonneveld, J.P., and M.J. Orchard. 2002. Stratal relationships of the Upper Triassic Baldonnel Formation, Williston Lake, northeastern British Columbia. Geological Survey of Canada Current Research 2002-A8: 1–13.Google Scholar
  88. Zonneveld, J.P., T.W. Beatty, K.H. Williford, M.J. Orchard, and C.R. McRoberts. 2010. Stratigraphy and Sedimentology of the lower Black Bear Ridge section, British Columbia: candidate for the base-Norian GSSP. Stratigraphy 7: 61–82.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2014

Authors and Affiliations

  • Marco Balini
    • 1
  • James F. Jenks
    • 2
  • Riccardo Martin
    • 1
  • Christopher A. McRoberts
    • 3
  • Michael J. Orchard
    • 4
  • Norman J. Silberling
    • 5
  1. 1.Dipartimento di Scienze della Terra “Ardito Desio”University of MilanoMilanoItaly
  2. 2.West JordanUSA
  3. 3.Geology DepartmentState University of New York at CortlandCortlandUSA
  4. 4.Natural Resources Canada-Geological Survey of CanadaVancouverCanada
  5. 5.US Geological SurveyMenlo ParkUSA

Personalised recommendations