Paläontologische Zeitschrift

, Volume 89, Issue 2, pp 261–269 | Cite as

Habitat adaptations in the felid forearm

Short Communication

Abstract

Extant cats inhabit different kinds of habitat, for example open landscapes, forests, and rocky mountainous areas. In this study, the radius and ulna of extant felids were investigated to identify ecomorphological adaptations to different habitats. Simple scatter plots and multivariate analyses (factor analysis, discriminant function analysis) revealed two distinct clusters of cats preferring open habitats to cats preferring closed habitats (i.e., forests). We also applied our approach to an existing, large database of extant cats to determine the effect of intraspecific variation on the forearm bones. According to our dataset, cat species adapted to closed habitats have relatively shorter but thicker forearm bones whereas those with longer and slimmer forearms are adapted to open habitats. Cats that inhabit mountainous habitats show no distinct differences in adaptation and plot in one of the other two habitat categories. Overall, the radius measurements are sufficient to distinguish open and forest habitats, but with inclusion of the ulna measurements, the results are more confident. The presented method of using just four measurements of the forearm bones has much potential for application to fossil taxa. We tested the approach for fossil taxa from the Miocene to Pleistocene with the result that most fossil felids were adapted to closed habitats but with some species being adapted to more open intermediate habitats.

Keywords

Felidae Habitat Radius Ulna Biometrics Multivariate analyses 

Kurzfassung

Rezente Katzen kommen in verschiedenen Habitaten wie offenen Landschaften, Wäldern und Gebirgen vor. In der vorliegenden Studie wurden die Unterarmknochen (Radius und Ulna) von rezenten Katzen untersucht, um Anpassungen an die verschiedenen Habitate zu unterscheiden. Streudiagramme mit den Messwerten und den Ergebnissen durchgeführter multivariater Analysen (Faktorenanalyse, Diskriminanzfunktionsanalyse) zeigen eine Trennung zwischen Katzen, die an offene oder geschlossene Habitate angepasst sind. Diese Methoden wurden auf eine publizierte Datenmatrix mit mehreren Arten und Individuen pro Spezies angewandt. An geschlossene Habitate angepasste Katzen haben generell kürzere und dickere Unterarmknochen, im Gegensatz zu schlankeren und längeren bei Katzen offener Habitate. Die begrenzte Anzahl an Katzen gebirgiger Habitate zeigt keine Anpassungen verschieden von den beiden anderen Gruppen. Allgemein reichen die Messwerte des Radius aus, um Katzen offener Habitate von denen geschlossener zu unterscheiden. Mit den Messwerten der Ulna kombiniert sind die Ergebnisse deutlicher. Infolge der Unterscheidung verschiedener Habitate mit insgesamt nur vier Messwerten an den beiden Unterarmknochen, birgt die Methode hohes Potential zur Anwendung auf fossile Taxa. Die Anwendung auf miozäne und pleistozäne Katzen zeigte eine Anpassung an geschlossene Habitate mit einigen Trends hin zu offeneren Habitaten.

Schlüsselwörter

Felidae Habitat Radius Ulna Biometrie Multivariate Analysen 

References

  1. Antón, M., A. Galobart, and A. Turner. 2005. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. Implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Quaternary Science Reviews 24(10–11): 1287–1301. doi:10.1016/j.quascirev.2004.09.008.CrossRefGoogle Scholar
  2. Anyonge, W. 1996. Locomotor behaviour in Plio-Pleistocene sabre-tooth cats: a biomechanical analysis. Journal of Zoology 238(3): 395–413. doi:10.1111/j.1469-7998.1996.tb05402.x.CrossRefGoogle Scholar
  3. Barnett, R., B. Shapiro, I.A.N. Barnes, S.Y.W. Ho, J. Burger, N. Yamaguchi, T.F.G. Higham, H.T. Wheeler, W. Rosendahl, A.V. Sher, M. Sotnikova, T. Kuznetsova, G.F. Baryshnikov, L.D. Martin, C.R. Harington, J.A. Burns, and A. Cooper. 2009. Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Molecular Ecology 18(8): 1668–1677. doi:10.1111/j.1365-294X.2009.04134.x.CrossRefGoogle Scholar
  4. Berta, A. 1985. The status of Smilodon in North and South America. Contributions in Science Natural History Museum of Los Angeles County 370: 1–15.Google Scholar
  5. Bertram, J.E.A., and A.A. Biewener. 1990. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology 204(2): 157–169. doi:10.1002/jmor.1052040205.CrossRefGoogle Scholar
  6. Bocherens, H., D.G. Drucker, D. Bonjean, A. Bridault, N.J. Conard, C. Cupillard, M. Germonpré, M. Höneisen, S.C. Münzel, H. Napierala, M. Patou-Mathis, E. Stephan, H.-P. Uerpmann, and R. Ziegler. 2011. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: prey choice, competition and implications for extinction. Quaternary International 245(2): 249–261. doi:10.1016/j.quaint.2011.02.023.CrossRefGoogle Scholar
  7. Burger, J., W. Rosendahl, O. Loreille, H. Hemmer, T. Eriksson, A. Götherström, J. Hiller, M.J. Collins, T. Wess, and K.W. Alt. 2004. Molecular phylogeny of the extinct cave lion Panthera leo spelaea. Molecular Phylogenetics and Evolution 30(3): 841–849. doi:10.1016/j.ympev.2003.07.020.CrossRefGoogle Scholar
  8. Christiansen, P. 2008. Phylogeny of the great cats (Felidae: Pantherinae), and the influence of fossil taxa and missing characters. Cladistics 24(6): 977–992. doi:10.1111/j.1096-0031.2008.00226.x.CrossRefGoogle Scholar
  9. Christiansen, P., and J.M. Harris. 2009. Craniomandibular morphology and phylogenetic affinities of Panthera atrox: implications for the evolution and paleobiology of the lion lineage. Journal of Vertebrate Paleontology 29(3): 934–945. doi:10.1671/039.029.0314.CrossRefGoogle Scholar
  10. Gippoliti, S., and G. Amori. 2006. Ancient introductions of mammals in the Mediterranean Basin and their implications for conservation. Mammal Review 36(1): 37–48. doi:10.1111/j.1365-2907.2006.00081.x.CrossRefGoogle Scholar
  11. Gonyea, W.J. 1976. Behavioral implications of saber-toothed felid morphology. Paleobiology 2(4): 332–342.Google Scholar
  12. Gonyea, W.J. 1978. Functional implications of felid forelimb anatomy. Acta Anatomica 102(2): 111–121. doi:10.1159/000145627.CrossRefGoogle Scholar
  13. Hartstone-Rose, A., R.C. Long, A.B. Farrell, and C.A. Shaw. 2012. The clavicles of Smilodon fatalis and Panthera atrox (Mammalia: Felidae) from Rancho La Brea, Los Angeles, California. Journal of Morphology 273(9): 981–991. doi:10.1002/jmor.20036.CrossRefGoogle Scholar
  14. Hemmer, H., R.-D. Kahlke, and A.K. Vekua. 2011. The cheetah Acinonyx pardinensis (Croizet et Jobert, 1828) s.l. at the hominin site of Dmanisi (Georgia)—a potential prime meat supplier in early Pleistocene ecosystems. Quaternary Science Reviews 30(19–20): 2703–2714. doi:10.1016/j.quascirev.2011.05.024.CrossRefGoogle Scholar
  15. Hildebrand, M., and G.E. Goslow. 2001. Analysis of vertebrate structure. New York: Wiley.Google Scholar
  16. IUCN. 2013. The IUCN red list of threatened species. Version 2013.1. http://www.iucnredlist.org. Downloaded on 13 Aug 2013.
  17. Johnson, W.E., E. Eizirik, J. Pecon-Slattery, W.J. Murphy, A. Antunes, E. Teeling, and S.J. O’Brian. 2006. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311(5757): 73–77. doi:10.1126/science.1122277.CrossRefGoogle Scholar
  18. Kappelman, J. 1988. Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology 198(1): 119–130. doi:10.1002/jmor.1051980111.CrossRefGoogle Scholar
  19. Kappelman, J. 1991. The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution 20(2): 95–129. doi:10.1016/0047-2484(91)90053-X.CrossRefGoogle Scholar
  20. Köhler, M. 1993. Skeleton and habitat of recent and fossil ruminants. Münchner Geowissenschaftliche Abhandlungen A 25: 1–88.Google Scholar
  21. Kurten, B., and L. Werdelin. 1990. Relationships between North and South American Smilodon. Journal of Vertebrate Paleontology 10(2): 158–169.CrossRefGoogle Scholar
  22. Lewis, M.E. 1997. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. Journal of Human Evolution 32(2–3): 257–288. doi:10.1006/jhev.1996.0103.CrossRefGoogle Scholar
  23. Marean, C.W. 1989. Sabertooth cats and their relevance for early hominid diet and evolution. Journal of Human Evolution 18(6): 559–582. doi:10.1016/0047-2484(89)90018-3.CrossRefGoogle Scholar
  24. Meachen-Samuels, J., and B. Van Valkenburgh. 2009. Forelimb indicators of prey-size preference in the Felidae. Journal of Morphology 270(6): 729–744. doi:10.1002/jmor.10712.CrossRefGoogle Scholar
  25. Meachen-Samuels, J., and B. Van Valkenburgh. 2009b. Data from: forelimb indicators of prey-size preference in the Felidae. Dryad Digital Repository. doi:10.5061/dryad.1fh61.
  26. Meloro, C. 2011. Locomotor adaptations in Plio-Pleistocene large carnivores from the Italian peninsula: palaeoecological implications. Current Zoology 57(3): 269–283.Google Scholar
  27. Meloro, C., S. Elton, J. Louys, L.C. Bishop, and P. Ditchfield. 2013. Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora). Paleobiology 39(3): 323–344. doi:10.1666/12001.CrossRefGoogle Scholar
  28. Merriam, J.C., and C. Stock. 1932. The Felidae of Rancho la Brea. Washington: Carnegie Institution of Washington.Google Scholar
  29. Nagel, D. 1997. Panthera pardus und Panthera spelaea (Felidae) aus der Höhle von Merkenstein/Niederösterreich. Wissenschaftliche Mitteilungen Niederösterreichisches Landesmuseum 10: 215–224.Google Scholar
  30. Nagel, D., S. Hilsberg, A. Benesch, and J. Scholz. 2003. Functional morphology and fur patterns in recent and fossil Panthera species. Scripta Geologica 126: 227–241.Google Scholar
  31. Nowak, R.M. 1991. Walker’s mammals of the world. Baltimore and London: Johns Hopkins University Press.Google Scholar
  32. Salesa, M.J., M. Antón, J. Morales, and S. Peigné. 2011. Functional anatomy of the postcranial skeleton of Styriofelis lorteti (Carnivora, Felidae, Felinae) from the middle Miocene (MN 6) locality of Sansan (Gers, France). Estudios Geológicos 67(2): 223–243. doi:10.3989/egeol.40590.186.CrossRefGoogle Scholar
  33. Samuels, J.X., J.A. Meachen, and S.A. Sakai. 2013. Postcranial morphology and the locomotor habits of living and extinct carnivorans. Journal of Morphology 274(2): 121–146. doi:10.1002/jmor.20077.CrossRefGoogle Scholar
  34. Schellhorn, R. 2009. Eine Methode zur Bestimmung fossiler Habitate mittels Huftierlangknochen. Dissertation-Thesis. Tübingen: Eberhard Karls Universität. http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-39180.
  35. Scott, K.M. 1979. Adaptation and allometry in bovid postcranial proportions. PhD thesis, New Haven: Yale University.Google Scholar
  36. Scott, K.M. 1985. Allometric trends and locomotor adaptations in the Bovidae. Bulletin of the American Museum of Natural History 179: 197–288.Google Scholar
  37. Sotnikova, M., and P. Nikolskiy. 2006. Systematic position of the cave lion Panthera spelaea (Goldfuss) based on cranial and dental characters. Quaternary International 142–143: 218–228. doi:10.1016/j.quaint.2005.03.019.CrossRefGoogle Scholar
  38. Stock, C., and J.M. Harris. 1992. Rancho La Brea: a record of Pleistocene life in California. Los Angeles: Natural History Museum of Los Angeles County.Google Scholar
  39. Stuart, A.J., and A.M. Lister. 2011. Extinction chronology of the cave lion Panthera spelaea. Quaternary Science Reviews 30(17–18): 2329–2340. doi:10.1016/j.quascirev.2010.04.023.CrossRefGoogle Scholar
  40. Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7(2): 162–182. doi:10.1080/02724634.1987.10011651.CrossRefGoogle Scholar
  41. von den Driesch, A. 1976. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bulletin 1: 1–137.Google Scholar
  42. Walmsley, A., S. Elton, J. Louys, L.C. Bishop, and C. Meloro. 2012. Humeral epiphyseal shape in the Felidae: the influence of phylogeny, allometry, and locomotion. Journal of Morphology 273(12): 1424–1438. doi:10.1002/jmor.20084.CrossRefGoogle Scholar
  43. Werdelin, L., and M.E. Lewis. 2001. A revision of the genus Dinofelis (Mammalia, Felidae). Zoological Journal of the Linnean Society 132(2): 147–258. doi:10.1111/j.1096-3642.2001.tb02465.x.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Steinmann-Institut für Geologie, Mineralogie und PaläontologieRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations