Advertisement

Paläontologische Zeitschrift

, Volume 89, Issue 3, pp 485–502 | Cite as

Dinosaur teeth from the Jurassic Qigu and Shishugou Formations of the Junggar Basin (Xinjiang/China) and their paleoecologic implications

  • Oliver Wings
  • Thomas Tütken
  • Denver W. Fowler
  • Thomas Martin
  • Hans-Ulrich Pfretzschner
  • Ge Sun
Research Paper
  • 322 Downloads

Abstract

The Middle and early Late Jurassic Qigu and Shishugou Formations of the southern and central Junggar Basin yielded teeth of theropods (Theropoda indet.), sauropods (Eusauropoda indet.), and stegosaurs. The dinosaur assemblage of the southern Junggar Basin is less diverse and is represented by smaller forms than in the central part of the basin. The microwear of the teeth of Eusauropoda indet. resembles that observed in Camarasaurus and may have formed as a result of biting through resistant woody materials. Carbon and oxygen isotope data of the sauropod and theropod teeth indicate feeding within a C3-plant ecosystem in a continental setting. Differences in enamel δ13C and δ18O values between Eusauropoda indet. and the theropod teeth are comparable to those observed in other herbivorous and carnivorous vertebrates, and suggest at least partial preservation of original dietary signals.

Keywords

Dinosauria Microwear Carbon isotopes Oxygen isotopes Diet 

Kurzfassung

Aus den mitteljurassischen und früh-spätjurassischen Qigu- und Shishugou-Formationen des südlichen und zentralen Junggar-Beckens werden Zähne von Theropoden (Theropoda indet.), Sauropoden (Eusauropoda indet.) und Stegosauriern beschrieben. Die Dinosaurier-Vergesellschaftung des südlichen Junggar-Beckens ist weniger mannigfaltig und wird durch kleinere Formen repräsentiert als im zentralen Teil des Beckens. Die Microwear der Zähne von Eusauropoda indet. ähnelt dem bei Camarasaurus beobachteten Muster und könnte durch das Beißen auf hartes verholztes Pflanzenmaterial entstanden sein. Die Kohlenstoff- und Sauerstoffisotopie der Zähne der Sauropoden und Theropoden weist auf die Nahrungsaufnahme in einem kontinentalen Ökosystem mit C3-Pflanzen hin. Die Unterschiede in den δ13C- and δ18O-Werten des Zahnschmelzes der Eusauropoda indet. und den Theropoden-Zähnen sind vergleichbar mit denen anderer herbivorer und karnivorer Wirbeltiere. Die Werte lassen vermuten, dass die originalen ernährungsbedingten Isotopen-Zusammensetzungen zumindest teilweise erhalten geblieben sind.

Schlüsselwörter

Dinosaurier Microwear Kohlenstoffisotope Sauerstoffisotope Ernährung 

Notes

Acknowledgments

For collaboration and field assistance, we are deeply indebted to personnel from the Geological Survey No. 1 of Xinjiang in Urumqi and the Jilin University in Changchun. We would like to thank Li Jie, Gong Fanhao, Wu Wenhao, Nils Knötschke, Ruth Lobbe, and Sebastian Egberts for their help during excavation and preparation. Michael W. Maisch is acknowledged for providing access to two specimens found during earlier field expeditions of the Sino-German Project. For technical support with SEM, we are indebted to Hartmut Schulz. We thank the reviewers Paul Barrett, Henry Fricke, and John Whitlock as well as the editor Oliver Rauhut for their comments and suggestions, which considerably improved the manuscript. The project was funded by technical grants MA 1643/11 and PF 219/21 of the Deutsche Forschungsgemeinschaft (DFG), by the Natural Science Foundation of China—NSFC No. 30111130458 and 30111330457 (2011), and Sino-German Science Center GZ295 (2005–2008). TT acknowledges funding by the DFG grant TU 148/1-1 and the Emmy Noether-Program, grant TU 148/2-1 and the isotope measurements by Bernd Steinhilber, University of Tübingen. Doctoral funding and support for DF was provided by the Sands family, Damaris Waggoner, the Horner Fund, the MSU Department of Cell Biology and Neuroscience, Jack Horner, and the Museum of the Rockies. This is contribution number 159 of the DFG Research Unit 533 “Biology of the Sauropod Dinosaurs”.

References

  1. Amiot, R., C. Lécuyer, E. Buffetaut, G. Escarguel, F. Fluteau, and F. Martineau. 2006. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters 246(1–2): 41–54.CrossRefGoogle Scholar
  2. Amiot, R., C. Lécuyer, E. Buffetaut, F. Fluteau, S. Legendre, and F. Martineau. 2004. Latitudinal temperature gradient during the Cretaceous upper Campanian-Middle Maastrichtian: δ18O record of continental vertebrates. Earth and Planetary Science Letters 226(1–2): 255–272. doi: 10.1016/j.epsl.2004.07.015.CrossRefGoogle Scholar
  3. Amiot, R., C. Lécuyer, G. Escarguel, J.-P. Billon-Bruyat, E. Buffetaut, C. Langlois, S. Martin, F. Martineau, and J.M. Mazin. 2007. Oxygen isotope fractionation between crocodilian phosphate and water. Palaeogeography, Palaeoclimatology, Palaeoecology 243(3–4): 412–420.CrossRefGoogle Scholar
  4. Argast, S., J.O. Farlow, R.M. Gabet, and D.L. Brinkman. 1987. Transport-induced abrasion of fossil reptilian teeth: implications for the existence of tertiary dinosaurs in the Hell Creek Formation, Montana. Geology 15: 927–930.CrossRefGoogle Scholar
  5. Ashraf, A.R., Y.-W. Sun, J. Li, G. Sun, and V. Mosbrugger. 2004. Palynostratigraphic analysis of the Huangshanjie-, Haojiagou-, Badaowan-, Sangonghe- and Xishanyao Formation (upper Triassic –middle Jurassic) in the southern Junggar Basin (NW China). In: Proceedings of Sino-German cooperation symposium on paleontology, geological evolution and environmental changes of Xinjiang, China, eds. G. Sun, V. Mosbrugger, A. R. Ashraf, and Y.-W. Sun, 41–44. Urumqi.Google Scholar
  6. Ashraf, A.R., Y. Sun, G. Sun, D. Uhl, V. Mosbrugger, J. Li, and M. Herrmann. 2010. Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China—a review and additional lithological data. Palaeobiodiversity and Palaeoenvironments 90(3): 187–201. doi: 10.1007/s12549-010-0034-0.CrossRefGoogle Scholar
  7. Averianov, A.O., T. Martin, and A.A. Bakirov. 2005. Pterosaur and dinosaur remains from the Middle Jurassic Balabansai Svita in the Northern Fergana Depression, Kyrgyzstan (Central Asia). Palaeontology 48(1): 135–155.CrossRefGoogle Scholar
  8. Ayliffe, L.K., A.R. Chivas, and M.G. Leakey. 1994. The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochimica et Cosmochimica Acta 58: 5291–5298.CrossRefGoogle Scholar
  9. Barrett, P. 2001. Tooth wear and possible jaw action of Scelidosaurus harrisonii Owen and a review of feeding mechanisms in other thyreophoran dinosaurs. In The Armored Dinosaurs, ed. K. Carpenter, 25–52. Bloomington: Indiana University Press.Google Scholar
  10. Barrick, R.E., and W.J. Showers. 1994. Thermophysiology of Tyrannosaurus rex: evidence from oxygen isotopes. Science 265: 222–224.CrossRefGoogle Scholar
  11. Barrick, R.E., M. Stoskopf, and W.J. Showers. 1997. Oxygen isotopes in dinosaur bones. In The Complete Dinosaur, ed. J.O. Farlow, and M. Brett-Surman, 474–490. Bloomington: Indiana University Press.Google Scholar
  12. Bocherens, H. 2000. Preservation of isotopic signals (13C, 15N) in Pleistocene mammals. In Biogeochemical approaches to paleodietary analysis, eds. S. H. Ambrose, and M. A. Katzenberg, 65–88.Google Scholar
  13. Bocherens, H., M.L. Fogel, N. Tuross, and M. Zeder. 1995. Trophic structure and climatic information from isotopic signatures in Pleistocene cave fauna of southern England. Journal of Archaeological Science 22(2): 327–340.CrossRefGoogle Scholar
  14. Bocherens, H., E.M. Friis, A. Mariotti, and K.R. Pedersen. 1993. Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants: palaeoecological implications. Lethaia 26(4): 347–358.CrossRefGoogle Scholar
  15. Bryant, J.D., and P.N. Froelich. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59(21): 4523–4537.CrossRefGoogle Scholar
  16. Calvo, J.O. 1994a. Feeding mechanisms in some sauropod dinosaurs. Chicago: Univ.lllinois.Google Scholar
  17. Calvo, J.O. 1994b. Jaw mechanics in sauropod dinosaurs. Gaia 10: 183–193.Google Scholar
  18. Cerling, T.E., and J.M. Harris. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120(3): 347–363.CrossRefGoogle Scholar
  19. Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647): 153–158.CrossRefGoogle Scholar
  20. Currie, P.J. 1997. Sino-Canadian dinosaur project. In Encyclopedia of Dinosaurs, eds. P.J. Currie, and K. Padian, 661. San Diego: Academic Press.Google Scholar
  21. Currie, P.J., and X.J. Zhao. 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People’s Republic of China. Canadian Journal of Earth Sciences 30(10–11): 2037–2081.CrossRefGoogle Scholar
  22. D’Emic, M.D., J.A. Whitlock, K.M. Smith, D.C. Fisher, and J.A. Wilson. 2013. Evolution of high tooth replacement rates in Sauropod dinosaurs. PLoS ONE 8(7): e69235. doi: 10.1371/journal.pone.0069235.CrossRefGoogle Scholar
  23. Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16: 436–468.CrossRefGoogle Scholar
  24. Díez Díaz, V., X. Pereda Suberbiola, and J.L. Sanz. 2012. Juvenile and adult teeth of the titanosaurian dinosaur Lirainosaurus (Sauropoda) from the Late Cretaceous of Iberia. Geobios 45(3): 265–274. doi: 10.1016/j.geobios.2011.10.002.CrossRefGoogle Scholar
  25. Dong, Z.-M. 1989. On a small ornithopod (Gongbusaurus wucaiwanensis sp. nov.) from Kelamaili Junggar Basin, Xinjiang, China. Vertebrata PalAsiatica 27: 140–146.Google Scholar
  26. Dong, Z.-M. 1992. Dinosaurian faunas of China. Beijing: China Ocean Press.Google Scholar
  27. Dong, Z.-M. 1993. An ankylosaur (ornithischian dinosaur) from the Middle Jurassic of the Junggar Basin, China. Vertebrata PalAsiatica 31(4): 258–265.Google Scholar
  28. Eagle, R.A., T. Tütken, T.S. Martin, A.K. Tripati, H.C. Fricke, M. Connely, R.L. Cifelli, and J.M. Eiler. 2011. Dinosaur body temperatures determined from isotopic (13C-18O) bond ordering in fossil biominerals. Science 333(6041): 443–445. doi: 10.1126/science.1206196.CrossRefGoogle Scholar
  29. Eberth, D.A., D.B. Brinkman, P. Chen, F. Yuan, S. Wu, G. Li, and X. Cheng. 2001. Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil preservations in Jurassic-Cretaceous strata of the Junggar Basin, Xinjiang autonomous region, People’s Republic of China. Canadian Journal of Earth Sciences 38(12): 1627–1644.Google Scholar
  30. Erickson, G.M., and K.H. Olson. 1996. Bite marks attributable to Tyrannosaurus rex: preliminary description and implications. Journal of Vertebrate Paleontology 16(1): 175–178.CrossRefGoogle Scholar
  31. Farquhar, G.D., J.R. Ehleringer, and K.T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annual Reviews in Plant Physiology and Plant Molecular Biology 40(1): 503–537.CrossRefGoogle Scholar
  32. Fiorillo, A.R. 1991. Prey bone utilization by predatory dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 88(3): 157–166.CrossRefGoogle Scholar
  33. Fiorillo, A.R. 1998. Dental microwear patterns of the sauropod dinosaurs Camarasaurus and Diplodocus: evidence for resource partitioning in the Late Jurassic of North America. Historical Biology 13: 1–16.CrossRefGoogle Scholar
  34. Fiorillo, A.R. 2006. Microwear patterns of the teeth of Cretaceous theropod dinosaurs from Montana and Alaska with inferences about diet and ecology. In Ninth International Symposium on Mesozoic Terrestrial Ecosystems and Biota, eds. Paul M. Barrett, and S.E. Evans. Manchester: Natural History Museum.Google Scholar
  35. Fiorillo, A.R. 2008. In Vertebrate Microfossil Assemblages: Their Role in Paleoecology and Paleobiogeography, eds. Julia T. Sankey, and Sven Baszio. Bloomington: Indiana University Press.Google Scholar
  36. Fiorillo, A.R. 2011. Microwear patterns on the teeth of northern high latitude hadrosaurs with comments on microwear patterns in hadrosaurs as a function of latitude and seasonal ecological constraints. Palaeontologia Electronica 14(3; 20A): 7. palaeo-electronica.org/2011_3/7_fiorillo/index.html.Google Scholar
  37. Fowler, D.W., E.A. Freedman, J.B. Scannella, and R.E. Kambic. 2011. The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS ONE 6(12): e28964. doi: 10.1371/journal.pone.0028964.CrossRefGoogle Scholar
  38. Fowler, D.W., J.B. Scannella, M.G. Goodwin, and J.R. Horner. 2012. How to eat a Triceratops: large sample of toothmarks provides new insight into the feeding behavior of Tyrannosaurus. Journal of Vertebrate Paleontology 32(5, abstract vol): 96.Google Scholar
  39. Fowler, D.W., and R.M. Sullivan. 2006. A ceratopsid pelvis with tooth marks from the Upper Cretaceous Kirtland Formation, New Mexico: evidence of Late Campanian tyrannosaurid feeding behavior. New Mexico Museum of Natural History and Science Bulletin 35: 127–130.Google Scholar
  40. Fox-Dobbs, K., P.V. Wheatley, and P.L. Koch. 2006. Carnivore specific bone apatite and collagen carbon isotope fractionations, case studies of modern and fossil grey wolf populations. Eos Transactions, AGU 87, Fall Meeting Suppl.:B53C–B0366C.Google Scholar
  41. Fricke, H.C., J. Hencecroth, and M.E. Hoerner. 2011. Lowland-upland migration of sauropod dinosaurs during the Late Jurassic epoch. Nature 480(7378): 513–515. doi: 10.1038/nature10570.Google Scholar
  42. Fricke, H.C., and J.R. O’Neil. 1996. Inter-and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 91–99.CrossRefGoogle Scholar
  43. Fricke, H.C., and D.A. Pearson. 2008. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota. Paleobiology 34(4): 534–552. doi: 10.1666/08020.1.CrossRefGoogle Scholar
  44. Fricke, H.C., and R.R. Rogers. 2000. Multiple taxon-multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs. Geology 28(9): 799–802.CrossRefGoogle Scholar
  45. Fricke, H.C., R.R. Rogers, R. Backlund, C.N. Dwyer, and S. Echt. 2008. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Palaeogeography, Palaeoclimatology, Palaeoecology 266(1–2): 13–27.CrossRefGoogle Scholar
  46. Fricke, H.C., R.R. Rogers, and T.A. Gates. 2009. Hadrosaurid migration: inferences based on stable isotope comparisons among Late Cretaceous dinosaur localities. Paleobiology 35(2): 270–288. doi: 10.1666/08025.1.CrossRefGoogle Scholar
  47. Galton, P.M. 1980. Armored dinosaurs (Ornithischia: Ankylosauria) from the Middle and Upper Jurassic of England. Geobios 13(6): 825–837.CrossRefGoogle Scholar
  48. Galton, P.M., and P. Upchurch. 2004. Stegosauria. In The Dinosauria, eds. D.B. Weishampel, Peter Dodson, and H. Osmolska, 343–362. Berkeley: University of California Press.Google Scholar
  49. Goillot, C., C. Blondel, and S. Peigné. 2009. Relationships between dental microwear and diet in carnivora (mammalia)—implications for the reconstruction of the diet of extinct taxa. Palaeogeography, Palaeoclimatology, Palaeoecology 271(1–2): 13–23. doi: 10.1016/j.palaeo.2008.09.004.CrossRefGoogle Scholar
  50. Gröcke, D.R. 2002. The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 360(1793): 633–658.CrossRefGoogle Scholar
  51. Heaton, T.H.E. 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. Joumal of Archaeological Science 26: 637–649.CrossRefGoogle Scholar
  52. Herwartz, D., T. Tütken, K.P. Jochum, and P.M. Sander. 2013. Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis. Geochimica et Cosmochimica Acta 103: 161–183. doi: 10.1016/j.gca.2012.10.038.CrossRefGoogle Scholar
  53. Herwartz, D., T. Tütken, C. Münker, K.P. Jochum, B. Stoll, and P.M. Sander. 2011. Timescales and mechanisms of REE and Hf uptake in fossil bones. Geochimica et Cosmochimica Acta 75(1): 82–105. doi: 10.1016/j.gca.2010.09.036.CrossRefGoogle Scholar
  54. Heuser, A., T. Tütken, N. Gussone, and S.J.G. Galer. 2011. Calcium isotopes in fossil bones and teeth—diagenetic versus biogenic origin. Geochimica et Cosmochimica Acta 75(12): 3419–3433. doi: 10.1016/j.gca.2011.03.032.CrossRefGoogle Scholar
  55. Hinz, J., I. Smith, H.-U. Pfretzschner, O. Wings, and G. Sun. 2010. A high-resolution three-dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou Formation, Junggar Basin, Northwest China). Palaeobiodiversity and Palaeoenvironments 90(3): 215–240. doi: 10.1007/s12549-010-0036-y.CrossRefGoogle Scholar
  56. Hone, D.W.E., and O.W.M. Rauhut. 2010. Feeding behaviour and bone utilization by theropod dinosaurs. Lethaia 43(2): 232–244. doi: 10.1111/j.1502-3931.2009.00187.x.CrossRefGoogle Scholar
  57. Hummel, J., C.T. Gee, K.-H. Südekum, P.M. Sander, G. Nogge, and M. Clauss. 2008. In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B: Biological Sciences 275(1638): 1015–1021.CrossRefGoogle Scholar
  58. Jia, C., C.A. Foster, X. Xu, and J.M. Clark. 2007. The first stegosaur (Dinosauria, Ornithischia) from the Upper Jurassic Shishugou Formation of Xinjiang, China. Acta Geologica Sinica (English Edition) 81(3): 351–356.CrossRefGoogle Scholar
  59. Kilbourne, B., and K. Carpenter. 2005. Redescription of Gargoyleosaurus parkpinorum, a polacanthid ankylosaur from the Upper Jurassic of Albany County, Wyoming. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 237(1): 111–160.Google Scholar
  60. Klug, S., T. Tütken, O. Wings, H.-U. Pfretzschner, and T. Martin. 2010. A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China. Palaeobiodiversity and Palaeoenvironments 90(3): 241–257. doi: 10.1007/s12549-010-0032-2.CrossRefGoogle Scholar
  61. Koch, P.L. 1998. Isotopic reconstruction of past continental environments. Annual Reviews in Earth and Planetary Sciences 26(1): 573–613.CrossRefGoogle Scholar
  62. Koch, P.L. 2007. Isotopic study of the biology of modern and fossil vertebrates. In Stable isotopes in ecology and environmental science, ed. R. Michener, and K. Lajtha, 99–154. Oxford: Blackwell.CrossRefGoogle Scholar
  63. Kohn, M.J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60(23): 4811–4829.CrossRefGoogle Scholar
  64. Kohn, M.J., and T.E. Cerling. 2002. Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry 48: 455–488.CrossRefGoogle Scholar
  65. Kohn, M.J., M.P. McKay, and J.L. Knight. 2005. Dining in the Pleistocene—who’s on the menu? Geology 33(8): 649–652.CrossRefGoogle Scholar
  66. Kohn, M.J., M.J. Schoeninger, and J.W. Valley. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60(20): 3889–3896.CrossRefGoogle Scholar
  67. Kolodny, Y., B. Luz, M. Sander, and W.A. Clemens. 1996. Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 126(1–2): 161–171.CrossRefGoogle Scholar
  68. Krueger, H.W., and C.H. Sullivan. 1984. Models for carbon isotope fractionation between diet and bone. American Chemical Society Symposium Series 285: 205–220.CrossRefGoogle Scholar
  69. Lécuyer, C., C. Bogey, J.P. Garcia, P. Grandjean, J.A. Barrat, M. Floquet, N. Bardet, and X. Pereda-Superbiola. 2003. Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive? Palaeogeography, Palaeoclimatology, Palaeoecology 193(3–4): 457–471. doi: 10.1016/S0031-0182(03)00261-X.CrossRefGoogle Scholar
  70. Lee-Thorp, J.A., J.C. Sealy, and N.J. van der Merwe. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16(6): 585–599.CrossRefGoogle Scholar
  71. Lee-Thorp, J.A., and M. Sponheimer. 2005. Opportunities and constraints for reconstructing palaeoenvironments from stable light isotope ratios in fossils. Geological Quarterly 49(2): 195–204.Google Scholar
  72. Lee-Thorp, J.A., and N.J. van der Merwe. 1991. Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science 18(3): 343–354.CrossRefGoogle Scholar
  73. Levin, N.E., T.E. Cerling, B.H. Passey, J.M. Harris, and J.R. Ehleringer. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103(30): 11201–11205.CrossRefGoogle Scholar
  74. Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research. Geochimica et Cosmochimica Acta 48(2): 385–390.CrossRefGoogle Scholar
  75. Lucas, P.W., R. Omar, K. Al-Fadhalah, A.S. Almusallam, A.G. Henry, S. Michael, L.A. Thai, J. Watzke, D.S. Strait, and A.G. Atkins. 2013. Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface 10(80). doi: 10.1098/rsif.2012.0923.
  76. Luz, B., Y. Kolodny, and M. Horowitz. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48: 1689–1693.CrossRefGoogle Scholar
  77. Maisch, M.W., and A.T. Matzke. 2003. Theropods (Dinosauria, Saurischia) from the Middle Jurassic Toutunhe Formation of the southern Junggar Basin, NW China. Paläontologische Zeitschrift 77(2): 281–292.CrossRefGoogle Scholar
  78. Maisch, M.W., A.T. Matzke, F. Grossmann, H. Stöhr, H.-U. Pfretzschner, and G. Sun. 2005. The first haramiyoid mammal from Asia. Naturwissenschaften 92(1): 40–44.CrossRefGoogle Scholar
  79. Maisch, M.W., A.T. Matzke, H.-U. Pfretzschner, G. Sun, H. Stöhr, and F. Grossmann. 2003. Fossil vertebrates from the Middle and Upper Jurassic of the southern Junggar Basin (NW China)—results of the Sino-German expeditions 1999–2000. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 2003(5): 297–313.Google Scholar
  80. Maisch, M.W., A.T. Matzke, H.-U. Pfretzschner, J. Ye, and G. Sun. 2001. The fossil vertebrate faunas of the Toutunhe and Qigu Formations of the southern Junggar Basin and their biostratigraphical and palecological implications. In Proceedings of the Sino-German cooperation symposium on the prehistory life and geology of Junggar Basin, Xinjiang, China, eds. G. Sun, V. Mosbrugger, A.R. Ashraf, and Y.D.. Wang, 83–94. Urumqi.Google Scholar
  81. Marsh, O.C. 1877. New order of extinct Reptilia (Stegosauria) from the Jurassic of the Rockey Mountains. The American Journal of Science and Arts, series 3(14): 513–514.Google Scholar
  82. Marsh, O.C. 1878. Principal characters of American Jurassic dinosaurs. Part I. The American Journal of Science and Arts, series 3 16: 411–416.Google Scholar
  83. Marsh, O.C. 1881. Principal characters of American Jurassic dinosaurs. Part V. The American Journal of Science and Arts, series 3 21: 417–423.Google Scholar
  84. Martin, T., A. Averianov, and H.-U. Pfretzschner. 2010. Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, Northwest China. Palaeobiodiversity and Palaeoenvironments 90(3): 295–319. doi: 10.1007/s12549-010-0030-4.CrossRefGoogle Scholar
  85. Martin, T., A.O. Averianov, H.-U. Pfretzschner, O. Wings, and G. Sun. 2008. A Late Jurassic (Oxfordian) vertebrate assemblage from the southwestern Junggar Basin (Xinjiang Autonomous Region, NW China). Documents des Laboratoires de Géologie Lyon 164: 62–64.Google Scholar
  86. Martin, T., H.-U. Pfretzschner, O. Wings, and G. Sun. 2007. Palaeobiogeographical implications of Late Jurassic mammals from the southwestern Junggar Basin (Xinjiang, NW China). In Proceedings of the International Symposium for Sino-German Cooperation on Geology and Environmental Changes in Northern China; Urumqi/China, September 1-7, 2007, eds. G. Sun, V. Mosbrugger, Y.W. Sun, and A. Bruch, 1–4. Urumqi.Google Scholar
  87. McKnight, C.L., S.A. Graham, A.R. Carroll, Q. Gan, D.L. Dilcher, M. Zhao, and Y. Liang. 1990. Fluvial sedimentology of an Upper Jurassic petrified forest assemblage, Shishu Formation, Junggar Basin, Xinjiang, China. Palaeogeography, Palaeoclimatology, Palaeoecology 79(1–2): 1–9.CrossRefGoogle Scholar
  88. Nopcsa, F. 1915. Die Dinosaurier der siebenburgischen Landesteile Ungarns. Mittheilungen aus dem Jahrbuch der Königlich Ungarischen Geologischen Anstalt 23: 1–26.Google Scholar
  89. Norman, D.B. 1984. A systematic reappraisal of the reptile order Ornithischia. In Third symposium on Mesozoic terrestrial ecosystems, short papers, eds. W.-E. Reif, and Frank Westphal, 157–162. Tübingen: Attempo Verlag.Google Scholar
  90. Norman, D.B., H.-D. Sues, L.M. Witmer, and R.A. Coria. 2004. Basal Ornithopoda. In The Dinosauria, eds. D.B. Weishampel, Peter Dodson, and H. Osmolska, 393–412. Berkeley: University of California Press.Google Scholar
  91. Ostrom, P.H., S.A. Macko, M.H. Engel, and D.A. Russell. 1993. Assessment of trophic structure of Cretaceous communities based on stable nitrogen isotope analyses. Geology 21(6): 491–494.CrossRefGoogle Scholar
  92. Ouyang, H., and Y. Ye. 2002. The first mamenchisaurian skeleton with complete skull: Mamenchisaurus youngi [in Chinese with English summary]. Chengdu: Sichuan Science and Technology Press.Google Scholar
  93. Passey, B.H., T.F. Robinson, L.K. Ayliffe, T.E. Cerling, M. Sponheimer, M.D. Dearing, B.L. Roeder, and J.R. Ehleringer. 2005. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32(10): 1459–1470.CrossRefGoogle Scholar
  94. Pfretzschner, H.-U., A.R. Ashraf, M.W. Maisch, G. Sun, Y.-D. Wang, and V. Mosbrugger. 2001. Cyclic growth in dinosaur bones from the Upper Jurassic of NW China and its paleoclimatic implications. In Sino-German cooperation symposium on the prehistory life and geology of Junggar Basin, Xinjiang, China, eds. G. Sun, V. Mosbrugger, A.R. Ashraf, and Y.-D. Wang, 21–39. Urumqi.Google Scholar
  95. Pfretzschner, H.-U., T. Martin, M.W. Maisch, A.T. Matzke, and G. Sun. 2005. A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China. Acta Palaeontologica Polonica 50(4): 799–808.Google Scholar
  96. Rayfield, E.J. 2005. Aspects of comparative cranial mechanics in the theropod dinosaurs Coelophysis, Allosaurus and Tyrannosaurus. Zoological Journal of the Linnean Society 144: 309–316.CrossRefGoogle Scholar
  97. Rayfield, E.J., D.B. Norman, C.C. Horner, J.R. Horner, P.M. Smith, J.J. Thomason, and P. Upchurch. 2001. Cranial design and function in a large theropod dinosaur. Nature 409: 1033–1037.CrossRefGoogle Scholar
  98. Richter, A., O. Wings, H.-U. Pfretzschner, and T. Martin. 2010. Late Jurassic Squamata and possible Choristodera from the Junggar Basin, Xinjiang, Northwest China. Palaeobiodiversity and Palaeoenvironments 90(3): 275–282. doi: 10.1007/s12549-010-0037-x.CrossRefGoogle Scholar
  99. Rozanski, K., L. Araguás-Araguás, and R. Gonfiantini. 1993. Isotopic patterns in modern global precipitation. In Climate change in continental isotopic records, eds. P. K. Swart, K. C Lohmann, J.A. McKenzie, and S. Savin, 1–36. Geophysical Monograph Series, vol. 78: American Geophysical Union.Google Scholar
  100. Russell, D.A., and Z. Zheng. 1993. A large mamenchisaurid from the Junggar Basin, Xinjiang, People’s Republic of China. Canadian Journal of Earth Sciences 30(10–11): 2082–2095.CrossRefGoogle Scholar
  101. Sakamoto, M. 2010. Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proceedings of the Royal Society B: Biological Sciences 277(1698): 3327–3333. doi: 10.1098/rspb.2010.0794.CrossRefGoogle Scholar
  102. Sanson, G.D., S.A. Kerr, and K.A. Gross. 2007. Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science 34(4): 526–531.CrossRefGoogle Scholar
  103. Schubert, B.W., P.S. Ungar, and L.R.G. DeSantis. 2010. Carnassial microwear and dietary behaviour in large carnivorans. Journal of Zoology 280(3): 257–263. doi: 10.1111/j.1469-7998.2009.00656.x.CrossRefGoogle Scholar
  104. Sereno, P.C., J.A. Wilson, L.M. Witmer, J.A. Whitlock, A. Maga, O. Ide, and T. Rowe. 2007. Structural extremes in a Cretaceous dinosaur. PLoS ONE 11: 1–9.Google Scholar
  105. Sharp, Z.D., V. Atudorei, and H. Furrer. 2000. The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. American Journal of Science 300(3): 222–237.CrossRefGoogle Scholar
  106. Showers, W.J., B. Reese, and B. Genna. 2002. Isotopic analysis of dinosaur bones—a new pyrolysis technique provides direct evidence that some dinosaurs were warm-blooded. Analytical Chemistry 74(5): 143A–150A.CrossRefGoogle Scholar
  107. Snively, E., and A.P. Russell. 2007a. Functional morphology of neck musculature in the Tyrannosauridae (Dinosauria, Theropoda) as determined via a hierarchical inferential approach. Zoological Journal of the Linnean Society 151: 759–808.CrossRefGoogle Scholar
  108. Snively, E., and A.P. Russell. 2007b. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290(8): 934–957. doi: 10.1002/ar.20563.CrossRefGoogle Scholar
  109. Sponheimer, M., and J.A. Lee-Thorp. 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26(6): 723–728.CrossRefGoogle Scholar
  110. Sponheimer, M., and J.A. Lee-Thorp. 2001. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126(2): 153–157.CrossRefGoogle Scholar
  111. Sponheimer, M., and J.A. Lee-Thorp. 2006. Enamel diagenesis at South African Australopith sites: implications for paleoecological reconstruction with trace elements. Geochimica et Cosmochimica Acta 70(7): 1644–1654.CrossRefGoogle Scholar
  112. Stanton-Thomas, K.J., and S.J. Carlson. 2004. Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeography, Palaeoclimatology, Palaeoecology 206(3–4): 257–287.CrossRefGoogle Scholar
  113. Straight, W.H., R.E. Barrick, and D.A. Eberth. 2004. Reflections of surface water, seasonality and climate in stable oxygen isotopes from tyrannosaurid tooth enamel. Palaeogeography, Palaeoclimatology, Palaeoecology 206(3–4): 239–256.CrossRefGoogle Scholar
  114. Stynder, D.D., P.S. Ungar, J.R. Scott, and B.W. Schubert. 2012. A dental microwear texture analysis of the Mio—Pliocene hyaenids from Langebaanweg, South Africa. Acta Palaeontologica Polonica 57(3): 485–496.CrossRefGoogle Scholar
  115. Trueman, C., C. Chenery, D.A. Eberth, and B. Spiro. 2003. Diagenetic effects on the oxygen isotope composition of bones of dinosaurs and other vertebrates recovered from terrestrial and marine sediments. Journal of the Geological Society 160(6): 895–901. doi: 10.1144/0016-764903-019.CrossRefGoogle Scholar
  116. Tütken, T. 2011. The diet of sauropod dinosaurs—implications from carbon isotope analysis of teeth, bones, and plants. In Biology of the Sauropod Dinosaurs: Understanding the Life of Giants, eds. Nicole Klein, Kristian Remes, Carole T. Gee, and P. Martin Sander, 57–79. Life of the Past. Bloomington: Indiana University Press.Google Scholar
  117. Tütken, T., H.-U. Pfretzschner, T.W. Vennemann, G. Sun, and Y.D. Wang. 2004. Paleobiology and skeletochronology of Jurassic dinosaurs: implications from the histology and oxygen isotope compositions of bones. Palaeogeography, Palaeoclimatology, Palaeoecology 206(3): 217–238.CrossRefGoogle Scholar
  118. Ungar, P.S., J.R. Scott, B.W. Schubert, and D.D. Stynder. 2010. Carnivoran dental microwear textures: comparability of carnassial facets and functional differentiation of postcanine teeth. Mammalia 74(2): 219–224. doi: 10.1515/mamm.2010.015.CrossRefGoogle Scholar
  119. Upchurch, P. 1995. The evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London, B 349: 365–390.CrossRefGoogle Scholar
  120. Upchurch, P., and P.M. Barrett. 2000. The evolution of sauropod feeding mechanisms. In Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record, ed. Hans-Dieter Sues, 79–122. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  121. Van Valkenburgh, B., M.F. Teaford, and A. Walker. 1990. Molar microwear and diet in large carnivores: inferences concerning diet in the sabretooth cat, Smilodon fatalis. Journal of Zoology 222(2): 319–340. doi: 10.1111/j.1469-7998.1990.tb05680.x.CrossRefGoogle Scholar
  122. Vickaryous, M.K., T. Maryańska, and D.B. Weishampel. 2004. Ankylosauria. In The Dinosauria, eds. D.B. Weishampel, Peter Dodson, and H. Osmolska, 263–392. Berkeley: University of California Press.Google Scholar
  123. Wang, S.E., and L.Z. Gao. 2012. SHRIMP U-Pb dating of zircons from tuff of Jurassic Qigu Formation in Junggar Basin, Xinjiang. Geological Bulletin of China 31(4): 503–509.Google Scholar
  124. Wang, Y.-D., W. Zhang, and K. Saiki. 2000. Fossil woods from the Upper Jurassic of Qitai, Junggar Basin, Xinjiang, China. Acta Palaeontologica Sinica 39: 176–185.Google Scholar
  125. Whitlock, J.A. 2011. Inferences of diplodocoid (Sauropoda: Dinosauria) feeding behavior from snout shape and microwear analyses. PLoS ONE 6(4): e18304. doi: 10.1371/journal.pone.0018304.CrossRefGoogle Scholar
  126. Wilson, J.A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal [London] 136(2): 215–275.Google Scholar
  127. Wings, O., H.-U. Pfretzschner, and M.W. Maisch. 2007a. The first evidence of a stegosaur (Dinosauria, Ornithischia) from the Jurassic of Xinjiang/China. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 243: 113–118.CrossRefGoogle Scholar
  128. Wings, O., M. Rabi, J. Schneider, L. Schwermann, G. Sun, C.-F. Zhou, and W. Joyce. 2012. An enormous Jurassic turtle bone bed from the Turpan Basin of Xinjiang, China. Naturwissenschaften 99(11): 925–935. doi: 10.1007/s00114-012-0974-5.CrossRefGoogle Scholar
  129. Wings, O., P.M. Sander, T. Tütken, D.W. Fowler, and G. Sun. 2007b. Growth and life history of Asia’s largest dinosaur. Journal of Vertebrate Paleontology 27(3, suppl.): 167A.Google Scholar
  130. Wings, O., D. Schwarz-Wings, and D.W. Fowler. 2011. New sauropod material from the Late Jurassic part of the Shishugou Formation (Junggar Basin, Xinjiang, NW China). Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 262(2): 129–150. doi: 10.1127/0077-7749/2011/0183.CrossRefGoogle Scholar
  131. Wings, O., D. Schwarz-Wings, H.-U. Pfretzschner, and T. Martin. 2010. Overview of Mesozoic crocodylomorphs from the Junggar Basin, Xinjiang, Northwest China, and description of isolated crocodyliform teeth from the Late Jurassic Liuhuanggou locality. Palaeobiodiversity and Palaeoenvironments 90(3): 283–294. doi: 10.1007/s12549-010-0033-1.CrossRefGoogle Scholar
  132. Xu, X., J. Clark, C. Forster, M. Norell, G. Erickson, D. Eberth, C. Jia, and Q. Zhao. 2006a. A basal tyrannosauroid dinosaur from the Late Jurassic of China. Nature 439(7077): 715–718.CrossRefGoogle Scholar
  133. Xu, X., C.A. Forster, J.M. Clark, and J. Mo. 2006b. A basal ceratopsian with transitional features from the Late Jurassic of northwestern China. Proceedings of the Royal Society B: Biological Sciences 273(1598): 2135–2140.CrossRefGoogle Scholar
  134. Yakir, D. 1997. Oxygen-18 of leaf water: a crossroad for plant associated isotopic signals. In Stable isotopes: integration of biological, ecological, and geochemical processes, ed. H. Griffiths, 147–168. Oxford: Oxford BIOS.Google Scholar
  135. Zhao, X.J., and P.J. Currie. 1993. A large crested theropod from the Jurassic of Xinjiang, People’s Republic of China. Canadian Journal of Earth Sciences 30(10–11): 2027–2036.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oliver Wings
    • 1
    • 2
  • Thomas Tütken
    • 3
  • Denver W. Fowler
    • 5
  • Thomas Martin
    • 4
  • Hans-Ulrich Pfretzschner
    • 6
  • Ge Sun
    • 7
    • 8
  1. 1.Niedersächsisches Landesmuseum HannoverHannoverGermany
  2. 2.Museum für Naturkunde BerlinBerlinGermany
  3. 3.Institut für GeowissenschaftenUniversität MainzMainzGermany
  4. 4.Steinmann Institut für Geologie, Mineralogie und PaläontologieUniversität BonnBonnGermany
  5. 5.Museum of the RockiesBozemanUSA
  6. 6.Institut für GeowissenschaftenUniversität TübingenTübingenGermany
  7. 7.Jilin UniversityChangchunChina
  8. 8.Shenyang Normal UniversityShenyangChina

Personalised recommendations