Paläontologische Zeitschrift

, Volume 89, Issue 2, pp 147–169 | Cite as

High-latitude Chondrichthyans from the Late Devonian (Famennian) Witpoort formation of South Africa

Original Research

Abstract

New material from the Late Devonian Witpoort Formation (Witteberg Group, Cape Supergroup) of Waterloo Farm (Grahamstown, South Africa) includes teeth, spines, and rare endoskeletal remains of early chondrichthyans. Plesioselachus, formerly described from Waterloo Farm, is redescribed and reinterpreted on the basis of new specimens. A new species of Antarctilamna is reported and described for the first time, adding significantly to the range of skeletal anatomy covered by fossils attributed to this genus. Notably, it reveals new details of the jaws and braincase. Juvenile chondrichthyan material is also reported; although this provides only limited anatomical detail; it might be attributed to Antarctilamna. The record of Devonian chondrichthyans is poor compared with that of early osteichthyans, and these fossils are a significant addition to the data set. Thus far, the Waterloo Farm locality preserves a unique, high latitude, shallow marine (estuarine) biota dated to the latest part of the Devonian. The Waterloo Farm vertebrate assemblage thus provides a biogeographically outstanding comparison with better-known, contemporary vertebrate assemblages from much lower latitudes. Faunal lists from these localities have already been used to estimate the magnitude of an acute turnover of vertebrate diversity across the Devonian-Mississippian boundary. Waterloo Farm chondrichthyan diversity, albeit limited, is, at least, consistent with hypotheses of an End Devonian biotic crisis. Rather than providing an early glimpse of the increasingly well documented post-Devonian evolutionary radiation of modern gnathostome clades, it seems that Waterloo Farm vertebrates are mostly related to groups that flourished earlier within the Devonian record.

Keywords

Agulhas Sea Antarctilamna Plesioselachus Sharks Soft tissue Witteberg 

Kurzfassung

Neue Vertebraten-Funde aus der oberdevonischen Witpoort Formation (Witteberg Group, Cape Supergroup) beinhalten Zähne, Stacheln and einzelne endoskelettale Reste von frühen Knorpelfischen (Chondrichthyes). Von der untersuchten Fossillagerstätte Waterloo Farm (Grahamstown, Südafrika) wurde bereits Plesioselachus beschrieben und basierend auf den nun vorliegenden Neufunden werden diese in der aktuellen Arbeit neu beschrieben und interpretiert. Darüber hinaus wird eine neue Art der Gattung Antarctilamna beschrieben, welche neue Erkenntnisse zur unterschiedlichen Skelett-Anatomie dieser Gruppe liefert. Insbesondere die Details des Kiefers und Neurocraniums sind bemerkenswert. Auch juveniles Material, wenngleich mit begrenztem anatomischen Detail, wird der Gattung Antarctilamna zugeordnet. Im Vergleich zu frühen Knochenfischen (Osteichthyes) sind devonische Knorpelfische nur selten erhalten, bilden aber einen wichtigen Bestandteil des Datensatzes. Die Fossillagerstätte Waterloo Farm hat eine einzigartige, randmarine (lagunär-ästuare) Fauna und Flora hoher Breiten aus dem späten Devon hervorgebracht. Die erhaltene Vertebraten-Fossilgesellschaft liefert eine biogeograpisch bedeutende Datengrundlage für den Vergleich mit bereits gut dokumentierten devonischen Vertebraten-Vergesellschaftungen aus wesentlich niederen Breiten. Faunenlisten dieser Lokalitäten wurden bereits ausgewertet, um das eigentliche Ausmaß des Rückgangs in der Diversität der Vertebraten an der Devon-Karbon-Grenze abzuschätzen. Die Diversität der Knorpelfische der Fossillagerstätte Waterloo Farm, wenngleich beschränkt, scheint die Hypothese der Biodiversitätskrise im späten Devon zu bestätigen. Daher wird angenommen, dass diese Vertebraten nicht die bereits gut dokumentierte post-devonische Radiation moderner Gnathostomata dokumentieren,sondern am ehesten mit Gruppen in Beziehung stehen, die schon im frühen Devon ihren Ursprung haben.

Schlüsselwörter

Agulhas See Antarctilamna Plesioselachus Haifisch Witteberg 

Notes

Acknowledgments

Research by R.W.G. was supported by the Palaeontological Scientific Trust (PAST), National Research Foundation (NRF), and the Department of Science and Technology (DST) of South Africa. Research by M.I.C. was supported by National Science Foundation grant DEB-0917922. The Albany Museum, Grahamstown, South Africa is thanked for providing storage space for material. The staff of the Field Museum, Chicago, Illinois, USA, The Cleveland Museum, Cleveland, Ohio, USA, and the Montagu Museum, Montagu, Western Cape, South Africa, are thanked for facilitating R.W.G.’s visits to view comparative material. The unfailing support of Dr Bruce Rubidge of the Bernard Price Institute has been invaluable. M.I.C. would like to thank J.A. Finarelli for lively discussion and input. Professor Annette Götz, Geology Department, Rhodes University, Grahamstown, South Africa, is thanked for assistance with the translation of the abstract from English into German.

References

  1. Almond, J.E., and F.J. Evans. 1996. Early—Middle Devonian fish faunas from the Bokkeveld Group, South Africa. Abstracts from the 9th Biennial Conference of the Palaeontological Society of South Africa, Stellenbosch.Google Scholar
  2. Anderson, H.M., N. Hiller, and R.W. Gess. 1995. Archaeopteris (Progymnospermopsida) from the Devonian of southern Africa. Botanical Journal of the Linnean Society 117: 305–320.Google Scholar
  3. Anderson, M.E., N. Hiller, and R.W. Gess. 1994. The first Bothriolepis-associated Devonian fish fauna from Africa. South African Journal of Science 90: 397–403.Google Scholar
  4. Anderson, M.E., J.A. Long, R.W. Gess, and N. Hiller. 1999. An unusual new fossil shark (Pisces: Chondrichthyes) from the Late Devonian of South Africa. Records of the Western Australian Museum 57: 151–156.Google Scholar
  5. Anderson, P.S.L., M. Friedman, M.D. Brazeau, and E.J. Rayfield. 2011. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476: 206–209.CrossRefGoogle Scholar
  6. Brazeau, M.D. 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457: 305–308.CrossRefGoogle Scholar
  7. Brazeau, M.D. 2012. A revision of the anatomy of the early Devonian jawed vertebrate Ptomacanthus anglicus Miles. Palaeontology 55: 355–367.CrossRefGoogle Scholar
  8. Carr R.K., and G.L. Jackson. 2008. The vertebrate fauna of the Cleveland Member (Famennian) of the Ohio Shale. Guide to the Geology and Palaeontology of the Cleveland Member of the Ohio Shale. Ohio Geological Survey Guidebook 22.Google Scholar
  9. Coates, M.I., and R.W. Gess. 2007. A new reconstruction of Onychoselache traquairi, comments on early chondrichthyan pectoral girdles, and hybodontiform phylogony. Palaeontology 50: 1421–1446.CrossRefGoogle Scholar
  10. Coates, M.I., and S.E.K. Sequeira. 1998. The braincase of a primitive shark. Transactions of the Royal Society of Edinburgh: Earth Sciences 89: 63–85.CrossRefGoogle Scholar
  11. Coates, M.I., and S.E.K. Sequeira. 2001a. A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. Journal of Vertebrate Paleontology 21: 438–459.CrossRefGoogle Scholar
  12. Coates, M.I., and S.E.K. Sequeira. 2001b. Early sharks and primitive gnathostome interrelationships. In Major events in early vertebrate evolution, ed. P.E. Alberg, 241–262. London: Taylor and Francis.Google Scholar
  13. Davis, S.P., J.A. Finarelli, and M.I. Coates. 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486: 247–250.CrossRefGoogle Scholar
  14. Dick, J.R.F. 1978. On the Carboniferous shark Tristychius arcuatus Agassiz from Scotland. Transactions of the Royal Society of Edinburgh 70: 63–109.CrossRefGoogle Scholar
  15. Dick, J.F. 1981. Diplodoselache woodi gen. et sp. nov., an early Carboniferous shark from the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 72: 99–113.CrossRefGoogle Scholar
  16. Friedman, M., and L.C. Sallan. 2012. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55: 707–742.CrossRefGoogle Scholar
  17. Gagnier, P.Y., F. Paris, P. Racheboeuf, P. Janvier, and M. Suarez-Riglos. 1989. Les vertebras de Bolivie: donnees biostratigraphiques et anatomiques complementaires. Bulletin de l’Institut Francais d’Etudes Andines 18: 75–93.Google Scholar
  18. Gess, R.W. 2001. A new species of Diplacanthus from the Late Devonian (Famennian) of South Africa. Annales de Paléontologie 87: 49–60.CrossRefGoogle Scholar
  19. Gess, R.W., M.I. Coates, and B.S. Rubidge. 2006. A lamprey from the Devonian period of South Africa. Nature 443: 981–984.CrossRefGoogle Scholar
  20. Gess, R.W., and N. Hiller. 1995a. A preliminary catalogue of fossil algal, plant, arthropod, and fish remains from a Late Devonian black shale near Grahamstown, South Africa. Annals of the Cape Provincial Museums (natural History) 19: 225–304.Google Scholar
  21. Gess, R.W., and N. Hiller. 1995b. Late Devonian charophytes from the Witteberg Group, South Africa. Review of Palaeobotany and Palynology 89: 417–428.CrossRefGoogle Scholar
  22. Ginter, M. 2004. Devonian sharks and the origin of Xenacanthiformes. In Recent Advances in the Origin and Early Radiation of Vertebrates eds. Arratia G., Wilson M.V.H., and Cloutier R., 473-486. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  23. Ginter, M., and J. Maisey. 2007. The braincase and Jaws of Cladodus from the lower Carboniferous of Scotland. Palaeontology 50: 305–322.CrossRefGoogle Scholar
  24. Ginter M., Hampe O., and Duffin C. 2010. Chondrichthyes Paleozoic Elasmobranchii: teeth. In Handbook of paleoichthyology, volume 3D. ed. Schultze H.-P. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  25. Gradstein, F.M., J.G. Ogg, M. Schmitz, and G. Ogg. 2012. The geologic time scale. Oxford: Elsevier.Google Scholar
  26. Grogan, E.D., R. Lund, and E. Greenfest-Allen. 2012. The origin and relationships of early chondrichthyans. In Biology of sharks and their relatives, ed. J.C. Carrier, J.A. Musick, and M.R. Heithaus, 3–29. London: CRC Press.CrossRefGoogle Scholar
  27. Gross, W. 1937. Das Kopfskelett von Cladodus wildungensis Jaekel. 1. Teil. Endocranium und Palatoquadratum. Senckenbergiana 19: 80–107.Google Scholar
  28. Gross, W. 1938. Das Kopfskelett von Cladodus wildungensis Jaekel. 2. Der Kieferbogen. Senckenbergiana 20: 123–145.Google Scholar
  29. Hampe, O., S.Z. Aboussalam, and R.T. Becker. 2004. Omalodus teeth (Elasmobranchii: Omalodontida) from the northern Gondwana margin (middle Givetian: ansatus condodont Zone, Morocco). In Recent advances in the origin and early radiation of vertebrates, ed. G. Arratia, M.V.H. Wilson, and R. Cloutier, 487–504. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  30. Harris, J.E. 1938. The neurocranium and jaws of Cladoselache. Scientific Publications of the Cleveland Museum of Natural History 8: 8–12.Google Scholar
  31. Heidtke, U.J.H. 1999. Orthacanthus (Lebachacanthus) senckenbergianus Fritsch 1889 (Xenacanthida: Chondrichthyes): revision, organisation und Phylogenie. Frieberger Forschungsheft C481: 63–106.Google Scholar
  32. Heidtke, U.H.J., and K. Krätschmer. 2001. Glabachus adentatus nov. gen. et sp., ein primitiver Hai aus dem Obern Givetium (Oberes Mitteldevon) der Bergisch Gladbach—Paffrath-Mulde (Rheinisches Schiefergebirge). Mainzer Geowissenschaftliche Mitteilungen 30: 105–1122.Google Scholar
  33. Hiller, N., and R.W. Gess.R.W. 1996. Marine algal remains from the Upper Devonian of South Africa. Review of Palaeobotany and Palynology 91: 143–149.CrossRefGoogle Scholar
  34. Hiller, N., and F.F. Taylor. 1992. Late Devonian shore line changes: an analysis of Witteberg Group stratigraphy in the Grahamstown area. South African Journal of Geology 95: 203–212.Google Scholar
  35. Hotton, N. 1952. Jaws and teeth of American xenacanth sharks. Journal of Palaeontology 26: 489–500.Google Scholar
  36. Janvier, P. 1996. Early vertebrates. Oxford: Clarendon Press.Google Scholar
  37. Janvier, P., and M. Suarez-Riglos. 1986. The Silurian and Devonian vertebrates of Bolivia. Bulletin de l’Institut Francais d’Etudes Andines 15: 73–114.Google Scholar
  38. Lane, J.A., and J.G. Maisey. 2009. Pectoral anatomy of Tribodus limae (Elasmobranchii: Hybodontiformes) from the Lower Cretaceous of Northeastern Brazil. Journal of Vertebrate Paleontology 29: 25–38.CrossRefGoogle Scholar
  39. Long, J.A. 1995. The rise of fishes, 1st ed. Sydney: University of New South Wales Press.Google Scholar
  40. Long, J.A. 2011. The rise of fishes, 2nd ed. Baltimore: John Hopkins Press.Google Scholar
  41. Long, J.A., M.E. Anderson, R.W. Gess, and N. Hiller. 1997. New placoderm fishes from the Late Devonian of South Africa. Journal of Vertebrate Palaeontology 17: 253–268.CrossRefGoogle Scholar
  42. Long, J.A., and G.C. Young. 1995. Sharks from the Middle-Late Devonian Aztec Siltstone, southern Victoria Land, Antarctica. Records of the Western Australian Museum 17: 287–308.Google Scholar
  43. Lund, R. 1990. Chondrichthyan life history styles as revealed by the 320 million years old Mississippian of Montana. Environmental Biology of Fishes 27: 1–9.CrossRefGoogle Scholar
  44. Lund R., and E.D. Grogan. 2004. Two tenaculum-bearing Holocephalimorpha (Chondrichthyes) from the Bear Gulch Limestone (Chesterian, Serpukhovian) of Montana, USA. In Recent Advances in the Origin and Early Radiation of Vertebrates, eds. Arratia G., Wilson M.V.H., and Cloutier R.R., 171–187. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  45. Maisey, J.G. 1981. Studies on the Paleozoic selachian genus Ctenacanthus Agassiz. No. 1. Historical review and revised diagnosis of Ctenacanthus, with a list of refered taxa. American Museum Novitates 2718: 1–22.Google Scholar
  46. Maisey, J.G. 2001. A primitive chondrichthyan braincase from the Middle Devonian of Bolivia. In Major events in early vertebrate evolution, ed. P. Ahlberg, 268–288. London: Taylor and Francis.Google Scholar
  47. Maisey, J.G. 2005. CT-scan investigation of the braincase in the Upper Devonian shark Cladodoides wildungensis. Bulletin of the American Museum of Natural History 288: 1–101.CrossRefGoogle Scholar
  48. Maisey, J.G. 2007. The braincase in Paleozoic Symmoriiform and cladoselachian sharks. Bulletin of the American Museum of Natural History 307: 1–122.CrossRefGoogle Scholar
  49. Maisey, J.G. 2012. What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution. Journal of Fish Biology 80(5): 918–951.CrossRefGoogle Scholar
  50. Maisey, J.G., and M.E. Anderson. 2001. A primitive chondrichthyan braincase from the Early Devonian of South Africa. Journal of Vertebrate Palaeontology 21: 702–713.CrossRefGoogle Scholar
  51. Maisey J., Miller R., and Turner S. 2009. The braincase of the chondrichthyan Doliodus. from the Lower Devonian Campbellton Formation of New Brunswick, Canada. Acta Zoologica (Stockholm), 90(Suppl. 1): 109–122. doi: 10.1111/j.1463-6395.2008.00330.x.
  52. Miller, R.F., R. Cloutier, and S. Turner. 2003. The oldest articulated chondrichthyan from the early Devonian Period. Nature 425: 501–504.CrossRefGoogle Scholar
  53. Mitchell, R.N., T.M. Kilian, and D.A.D. Evans. 2012. Supercontinent cycles and the calculation of palaeolongitude in deep time. Nature 482: 208–211.CrossRefGoogle Scholar
  54. Mutter, R.J., K. De Blanger, and A.G. Neuman. 2007. Elasmobranchs from the Lower Triassic Sulphur Mountain Formation near Wapiti Lake (BC, Canada). Zoological Journal of the Linnean Society 149: 309–337.Google Scholar
  55. Pradel, A., P. Tafforeau, J.G. Maisey, and P. Janvier. 2011. A new Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and Cladistic analysis of early Chondrichthyans. PLoS One 6(9): e24938. doi: 10.1371/journal.pone.0024938.CrossRefGoogle Scholar
  56. Sallan L.C., and M.I. Coates. 2010. End Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. PNAS 107(22): 10131–10135.Google Scholar
  57. Schaeffer, B. 1981. The xenacanth shark neurocranium with comments on Elasmobranch monophyly. Bulletin of the American Museum of Natural History 169(1): 1–169.Google Scholar
  58. Scotese C.R., and S.F. Barrett. 1990. Gondwanas movement over the south Pole during the Palaeozoic: evidence from lithological indicators of climate. In Palaeozoic palaeogeography and biogeography, vol 12, eds. McKerrow W.S., and Scottese C.R., 75–86. Memoirs of the Geological Society of London.Google Scholar
  59. Smithson T.R., S.P. Wood, J.E.A. Marshall, and J.A. Clack. 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. Proceedings of the National Academy of Sciences (PNAS Early Edition).Google Scholar
  60. Soler-Gijon, R. 2004. Development and growth in xenacanth sharks: new data from the Upper Carboniferous of Bohemia. In Recent advances in the origin and early radiation of vertebrates, ed. G. Arratia, M.V.H. Wilson, and R. Cloutier, 533–564. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  61. Stahl B. 1999. Handbook of Palaeoichthyology, Volume 4: Chondrichthyes 3: Holocephali. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  62. Young, G.C. 1982. Devonian sharks from south eastern Australia and Antarctica. Palaeontology 25: 817–843.Google Scholar
  63. Young, G.C. 1987. Devonian palaeontological data and the Armorica problem. Palaeogeography, Palaeoclimatology, Palaeoecology 60: 283–304.CrossRefGoogle Scholar
  64. Williams, M.E. 1985. The “cladodont level” sharks of the Pennsylvanian black shales of central North America. Palaeontologica A 190: 83–158.Google Scholar
  65. Williams, M.E. 1998. A new specimen of Tamiobatis vetustus (Chondrichthyes, Ctenacanthoidea) from the Late Devonian Cleveland Shale of Ohio. Journal of Vertebrate Paleontology 18: 251–260.CrossRefGoogle Scholar
  66. Wilson M.V.H., Hanke G.F., and Märss T. 2007. Paired fins of jawless vertebrates and their homologies across the “agnathan”—gnathostome transition. In Major Transitions in Vertebrate Evolution, eds. Anderson J.S., and Sues H.-D., 122–149. Bloomington: Indiana University Press.Google Scholar
  67. Zangerl, R., and G.R. Case. 1976. Cobelodus aculeatus (Cope), an anacanthoud shark from Pennsylvanian Black Shales of North America. Palaeontographica A 154: 107–157.Google Scholar
  68. Zangerl R. 1981. Chondrichthyes 1: Paleozoic Elasmobranchii. In Handbook of Paleoichthyology, Volume 3A ed. Schultze H.-P. Stuttgart, New York: Gustav Fischer Verlag.Google Scholar
  69. Zangerl R. 1997. Cartilaginous fishes. In Richardson’s guide to the Fossil Fauna of Mazon Creek, eds. Shabica C.W., and Hay A.A., 244–255. Northern Illinois University.Google Scholar
  70. Zhu, M., W. Zhao, J. Jia, T. Qiao, and Q. Qingming. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458: 469–474.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Bernard Price Institute (Palaeontology), School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of Organismal BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations