Paläontologische Zeitschrift

, Volume 89, Issue 1, pp 95–124

Small-mammal postcrania from the middle Paleocene of Walbeck, Germany

  • Kenneth D. Rose
  • Gerhard Storch
  • Katrin Krohmann
Research Paper


The fissure fills of Walbeck, northwest of Halle, have produced one of the largest known assemblages of Paleocene vertebrates and the only one of this age from Germany. Nearly 6,000 mammalian specimens have been identified, almost half of which represent small mammals of less than 500 g, the majority probably weighing <100 g. We describe here for the first time >350 postcranial elements collected more than 70 years ago. Multiple morphs of most of the major limb bones are represented, the most numerous elements being humeri, femora, tibiae, calcanei, and astragali. A small number of bones are attributable to plesiadapiform primates and to the probably euarchontan Adapisoriculidae, both likely to have been arboreal. The vast majority of elements, however, represent terrestrial micro-mammals, some showing semifossorial adaptations but most indicating cursorial or saltatorial locomotion. Most of these bones probably belong to the most common small mammals from Walbeck (based on teeth): Adapisorex, Walbeckodon, and Prolouisina, which have recently been interpreted as stem macroscelideans. The morphology of these bones supports that interpretation. The predominance of terrestrial mammals and the low species diversity of the Walbeck local fauna suggest that it sampled a relatively open and unstable environment.


Primates Macroscelidea Fossorial Saltatorial 


Die Spaltenfüllungen von Walbeck, nordwestlich von Halle, stellen eine der größten bekannten Fossilablagerungen paläozäner Vertebraten dar und sind die einzigen aus dieser Epoche in Deutschland. Annähernd 6,000 Säugetierfunde wurden bisher identifiziert und beinahe die Hälfte dieser Funde repräsentiert Kleinsäuger mit einem Körpergewicht von unter 500 g, die Mehrheit vermutlich sogar leichter als 100 g. Erstmalig beschreiben wir hier über 350 postcraniale Elemente, die vor mehr als 70 Jahren gesammelt wurden. Darunter befinden sich verschiedene Morphen der Haupt- Extremitätenknochen, am häufigsten Humeri, Femora, Tibiae, Calcanei and Astragali. Eine kleine Anzahl der Skelettelementen können plesiadapiformen Primaten und den wahrscheinlich euarchonten Adapisoriculidae zugeordnet werden, welche vermutlich beide eine baumbewohnende Lebensweise bevorzugten. Die große Mehrheit der bearbeiteten Funde repräsentiert jedoch terrestrische Kleinsäuger, von denen einige eine grabende Anpassungen aufweisen, die meisten jedoch laufende oder hüpfende Fortbewegungsweisen zeigen. Die meisten dieser Knochen gehören vermutlich zu den, basierend auf Zahnfunden, häufigsten Kleinsäugern der Walbeck-Fauna: Adapisorex, Walbeckodon und Prolouisina, welche unlängst als Stamm-Macrosceliden interpretiert wurden. Die Morphologie der Knochenfunde stützt diese Interpretation. Die überwiegend terrestrischen Säugetiere und die geringe Arten-Diversität der Walbeck-Fauna legt nahe, dass es sich um eine lokale Fossilgesellschaft aus einer relativ offenen und unbeständigen Umwelt handelt.


Primaten Macroscelidea Grabend Hüpfend 


  1. Aiello, L., and C. Dean. 1990. An introduction to human evolutionary anatomy. London: Academic Press.Google Scholar
  2. Argot, C. 2002. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology 253: 76–108.CrossRefGoogle Scholar
  3. Beard, K.C. 1989. Postcranial anatomy, locomotor adaptations, and paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph.D. dissertation, Johns Hopkins University.Google Scholar
  4. Bloch, J.I., K.D. Rose, and P.D. Gingerich. 1998. New species of Batodonoides (Lipotyphla, Geolabididae) from the early Eocene of Wyoming: smallest known mammal? Journal of Mammalogy 79: 804–827.CrossRefGoogle Scholar
  5. Bown, T.M., and M.J. Kraus. 1981. Vertebrate fossil-bearing paleosol units (Willwood Formation, lower Eocene, northwest Wyoming, U.S.A.): implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34: 31–56.CrossRefGoogle Scholar
  6. Boyer, D.M. 2009. New cranial and postcranial remains of late Paleocene Plesiadapidae (“Plesiadapiformes”, Mammalia) from North America and Europe: Description and evolutionary implications. Ph.D. Dissertation, Stony Brook University.Google Scholar
  7. Boyer, D.M., and J.I. Bloch. 2008. Evaluating the mitten-gliding hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons. In Mammalian evolutionary morphology: a tribute to Frederick S. Szalay, ed. E.J. Sargis and M. Dagosto, 233–284. Dordrecht: Springer.Google Scholar
  8. Boyer, D.M., G.V.R. Prasad, D.W. Krause, M. Godinot, A. Goswami, O. Verma, and J.J. Flynn. 2010. New postcrania of Deccanolestes from the Late Cretaceous of India and their bearing on the evolutionary and biogeographic history of euarchontan mammals. Naturwissenschaften 97: 365–377.CrossRefGoogle Scholar
  9. Butler, P.M. 1988. Phylogeny of the insectivores. In The phylogeny and classification of the tetrapods, vol 2: mammals, ed. M.J. Benton, 117–141. Oxford: Clarendon Press.Google Scholar
  10. Candela, A.M., and M.B.J. Picasso. 2008. Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. Journal of Morphology 269: 552–593.CrossRefGoogle Scholar
  11. Conroy, G.C. 1987. Problems of body-weight estimation in fossil primates. International Journal of Primatology 8: 115–137.CrossRefGoogle Scholar
  12. Covert, H.H., and M.W. Hamrick. 1993. Description of new skeletal remains of the early Eocene anaptomorphine primate Absarokius (Omomyidae) and a discussion about its adaptive profile. Journal of Human Evolution 25: 351–362.Google Scholar
  13. Dagosto, M., D.L. Gebo, and K.C. Beard. 1999. Revision of the Wind River faunas, early Eocene of central Wyoming. Part 14. Postcranium of Shoshonius cooperi (Mammalia: Primates). Annals of Carnegie Museum 68: 175–211.Google Scholar
  14. De Bast, E., B. Sigé, and T. Smith. 2012. Diversity of the adapisoriculid mammals from the early Paleocene of Hainin, Belgium. Acta Palaeontologica Polonica 57: 35–52.CrossRefGoogle Scholar
  15. Gambaryan, P.P., and Z. Kielan-Jaworowska. 1997. Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontologica Polonica 42: 13–44.Google Scholar
  16. Gebo, D.L., and K.D. Rose. 1993. Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology 13: 125–144.CrossRefGoogle Scholar
  17. Gebo, D.L., and E.J. Sargis. 1994. Terrestrial adaptations in the postcranial skeletons of guenons. American Journal of Physical Anthropology 93: 341–371.CrossRefGoogle Scholar
  18. Gheerbrant, E., and D.E. Russell. 1989. Presence of the genus Afrodon [Mammalia, Lipotyphla (?), Adapisoriculidae] in Europe; new data for the problem of trans-Tethyan relations between Africa and Europe around the K/T boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 76: 1–15.CrossRefGoogle Scholar
  19. Gheerbrant, E., and D.E. Russell. 1991. Bustylus cernaysi nov. gen., nov. sp., nouvel adapisoriculide (Mammalia, Eutheria) Paléocène d’Europe. Geobios 24: 467–481.CrossRefGoogle Scholar
  20. Gheerbrant, E., K.D. Rose, and M. Godinot. 2005. First palaeanodont (Mammalia, ?Pholidota) from the Eocene of Europe. Acta Palaeontologica Polonica 50: 185–194.Google Scholar
  21. Gingerich, P.D., B.H. Smith, and K. Rosenberg. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58: 81–100.CrossRefGoogle Scholar
  22. Godinot, M., and M. Dagosto. 1983. The astragalus of Necrolemur (Primates, Microchoerinae). Journal of Paleontology 57: 1321–1324.Google Scholar
  23. Godinot, M., T. Smith, and R. Smith. 1996. Mode de vie et affinities de Paschatherium (Condylarthra, Hyopsodontidae) d’après ses os du tarse. In Palaeovertebrata, volume jubilaire en hommage à D.E. Russell, vol. 25, ed. M. Godinot and P.D. Gingerich, 225–242.Google Scholar
  24. Goswami, A., G.V.R. Prasad, P. Upchurch, D.M. Boyer, E.R. Seiffert, O. Verma, E. Gheerbrant, and J.J. Flynn. 2011. A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. Proceedings of the National Academy of Sciences (USA) 108: 16333–16338.CrossRefGoogle Scholar
  25. Hildebrand, M. 1985. Digging of quadrupeds. In Functional vertebrate morphology, ed. M. Hildebrand, D.M. Bramble, K.F. Liem, and D.B. Wake, 89–109. Cambridge: Belknap Press.CrossRefGoogle Scholar
  26. Hooker, J.J. 1996. A primitive emballonurid bat (Chiroptera, Mammalia) from the earliest Eocene of England. In Palaeovertebrata, volume jubilaire en hommage à D.E. Russell, vol. 25, ed. M. Godinot and P.D. Gingerich, 287–300.Google Scholar
  27. Hooker, J.J., and D.E. Russell. 2012. Early Palaeogene Louisinidae (Macroscelidea, Mammalia), their relationships and north European diversity. Zoological Journal of the Linnean Society 164: 856–936.CrossRefGoogle Scholar
  28. Hopkins, S.S.B., and E.B. Davis. 2009. Quantitative morphological proxies for fossoriality in small mammals. Journal of Mammalogy 90: 1449–1460.CrossRefGoogle Scholar
  29. Jenkins Jr, F.A., and S.M. Camazine. 1977. Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology, London 181: 351–370.CrossRefGoogle Scholar
  30. Kalthoff, D.C., K.D. Rose, and W.v. Koenigswald. 2011. Dental microstructure in Palaeanodon and Tubulodon (Palaeanodonta) and bioerosional tunneling as a widespread phenomenon in fossil mammal teeth. Journal of Vertebrate Paleontology 31: 1303–1313.CrossRefGoogle Scholar
  31. Lagaria, A., and D. Youlatos. 2006. Anatomical correlates to scratch digging in the forelimb of European ground squirrels (Spermophilus citellus). Journal of Mammalogy 87: 563–570.CrossRefGoogle Scholar
  32. Landry Jr, S.O. 1958. The function of the entepicondylar foramen in mammals. American Midland Naturalist 60: 100–112.CrossRefGoogle Scholar
  33. Maier, W. 1979. Macrocranion tupaiodon, an adapisoricid (?) insectivore from the Eocene of “Grube Messel” (western Germany). Paläontologische Zeitschrift 53: 38–62.CrossRefGoogle Scholar
  34. Manz, C., and J. Bloch. 2011. Evidence for scansoriality in the forelimb of North American Paleocene insectivores (Mammalia, Eulipotyphla). Society of Vertebrate Paleontology Program and Abstracts: 151.Google Scholar
  35. Mayr, G. 2007. The birds from the Paleocene fissure filling of Walbeck (Germany). Journal of Vertebrate Paleontology 27: 394–408.Google Scholar
  36. McKenna, M.C., and S.K. Bell. 1997. Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
  37. Novacek, M.J., T.M. Bown, and D.M. Schankler. 1985. On the classification of the early Tertiary Erinaceomorpha (Insectivora, Mammalia). American Museum Novitates 2813: 1–22.Google Scholar
  38. Penkrot, T.A., S.P. Zack, K.D. Rose, and J.I. Bloch. 2008. Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): Evidence for a Paleocene Holarctic origin of Macroscelidea. In Mammalian evolutionary morphology: a tribute to Frederick S. Szalay, ed. E. Sargis and M. Dagosto, 73–106. Dordrecht: Springer.Google Scholar
  39. Prasad, G.V.R., and M. Godinot. 1994. Eutherian tarsal bones from the Late Cretaceous of India. Journal of Paleontology 68: 892–902.Google Scholar
  40. Rose, K.D. 1979. A new Paleocene palaeanodont and the origin of the Metacheiromyidae. Breviora 455: 1–14.Google Scholar
  41. Rose, K.D. 1981. The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. University of Michigan Papers in Paleontology 26: 1–197.Google Scholar
  42. Rose, K.D. 1999. Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. Journal of Vertebrate Paleontology 19: 355–372.CrossRefGoogle Scholar
  43. Rose, K.D. 2008. Palaeanodonta and Pholidota. In Evolution of tertiary mammals of North America, vol. 2: small mammals, Xenarthrans, and marine mammals, ed. C.M. Janis, G.F. Gunnell, and M. Uhen, 135–146. Cambridge: Cambridge University Press.Google Scholar
  44. Rose, K.D., and B.J. Chinnery. 2004. The postcranial skeleton of early Eocene rodents. Bulletin of the Carnegie Museum of Natural History 36: 211–244.CrossRefGoogle Scholar
  45. Rose, K.D., and Wv Koenigswald. 2005. An exceptionally complete skeleton of Palaeosinopa (Mammalia, Cimolesta, Pantolestidae) from the Green River Formation, and other postcranial elements of the Pantolestidae from the Eocene of Wyoming. Palaeontographica Abteilung A 273: 55–96.Google Scholar
  46. Rose, K.D., and S.G. Lucas. 2000. An early Paleocene palaeanodont (Mammalia, ?Pholidota) from New Mexico, and the origin of Palaeanodonta. Journal of Vertebrate Paleontology 20: 139–156.CrossRefGoogle Scholar
  47. Rose, K.D., J.J. Eberle, and M.C. McKenna. 2004. Arcticanodon dawsonae, a primitive new palaeanodont from the lower Eocene of Ellesmere Island, Canadian High Arctic. Canadian Journal of Earth Sciences 41: 757–763.CrossRefGoogle Scholar
  48. Rose, K.D., L. Krishtalka, and R.K. Stucky. 1992. Revision of the Wind River faunas, early Eocene of central Wyoming. Part 11. Palaeanodonta (Mammalia). Annals of Carnegie Museum 60: 63–82.Google Scholar
  49. Russell, D.E. 1964. Les mammifères Paléocènes d’Europe. Mémoires du Muséum National d’Histoire Naturelle Série C, Sciences de la Terre, tome XIII: 1–324.Google Scholar
  50. Salton, J.A., and E.J. Sargis. 2008. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. Journal of Morphology 270: 367–387.CrossRefGoogle Scholar
  51. Sargis, E.J. 2002. Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 254: 149–185.CrossRefGoogle Scholar
  52. Silva, M., and J.A. Downing. 1995. CRC handbook of mammalian body masses. Boca Raton: CRC Press.Google Scholar
  53. Simpson, G.G. 1931. Metacheiromys and the Edentata. Bulletin of the American Museum of Natural History 59: 295–381.Google Scholar
  54. Smith, T., and R. Smith. 2003. Terrestrial mammals as biostratigraphic indicators in upper Paleocene-lower Eocene marine deposits of the southern North Sea Basin. In Causes and consequences of globally warm climates in the early Paleogene, ed. S.L. Wing, P.D. Gingerich, B. Schmitz, and E. Thomas, 513–520. Geological Society of America Special Paper 369, Boulder, Colorado.Google Scholar
  55. Smith, T., E. De Bast, and B. Sigé. 2010. Euarchontan affinity of Paleocene Afro-European adapisoriculid mammals and their origin in the late Cretaceous Deccan Traps of India. Naturwissenschaften 97: 417–422.CrossRefGoogle Scholar
  56. Storch, G. 1996. Paleobiology of Messel erinaceomorphs. Palaeovertebrata, volume jubilaire en hommage à D.E. Russell, vol. 25, ed. M. Godinot and P.D. Gingerich, 215–224.Google Scholar
  57. Storch, G. 2008. Skeletal remains of a diminutive primate from the Paleocene of Germany. Naturwissenschaften 95: 927–930.CrossRefGoogle Scholar
  58. Szalay, F.S., and M. Dagosto. 1980. Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatologica 34: 1–45.CrossRefGoogle Scholar
  59. Szalay, F.S., and G. Drawhorn. 1980. Evolution and diversification of the Archonta in an arboreal milieu. In Comparative biology and evolutionary relationships of tree shrews, ed. W.P. Luckett, 133–169. New York: Plenum Press.CrossRefGoogle Scholar
  60. Szalay, F.S., and E.J. Sargis. 2001. Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23: 139–302.Google Scholar
  61. Szalay, F.S., I. Tattersall, and R.L. Decker. 1975. Phylogenetic relationships of Plesiadapis—postcranial evidence. In Approaches to primate paleobiology. Contributions to primatology, vol. 5, ed. F.S. Szalay, 136–166. Basel: S. Karger.Google Scholar
  62. Tabuce, R., M.T. Antunes, R. Smith, and T. Smith. 2006. Dental and tarsal morphology of the European Paleocene/Eocene “condylarth” mammal Microhyus. Acta Palaeontologica Polonica 51: 37–52.Google Scholar
  63. Taylor, M.E. 1976. The functional anatomy of the hindlimb of some African Viverridae (Carnivora). Journal of Morphology 148: 227–253.CrossRefGoogle Scholar
  64. Weigelt, J. 1939. Die Aufdeckung der bisher ältesten tertiären Säugetierfauna Deutschlands. Nova Acta Leopoldina n.s. 7, no. 50: 515–528.Google Scholar
  65. Weigelt, J. 1942. Die alttertiären Säugetiere Mitteldeutschlands nach den Hallenser Grabungen im Geiseltal und bei Walbeck. Preussische Akademie der Wissenschaften 12: 1–48.Google Scholar
  66. Weigelt, J. 1960. Die Arctocyoniden von Walbeck. Freiberger Forschungshefte C77: 1–241.Google Scholar
  67. Winkler, D.A. 1983. Paleoecology of an early Eocene mammalian fauna from paleosols in the Clarks Fork Basin, northwestern Wyoming (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology 43: 261–298.CrossRefGoogle Scholar
  68. Zack, S.P., T.A. Penkrot, J.I. Bloch, and K.D. Rose. 2005. Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434: 497–501.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kenneth D. Rose
    • 1
  • Gerhard Storch
    • 2
  • Katrin Krohmann
    • 2
  1. 1.Center for Functional Anatomy and EvolutionThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Forschungsinstitut SenckenbergFrankfurt am MainGermany

Personalised recommendations