Paläontologische Zeitschrift

, Volume 88, Issue 4, pp 481–494 | Cite as

First evidence of the tooth eruption sequence of the upper jaw in Hyaenodon (Hyaenodontidae, Mammalia) and new information on the ontogenetic development of its dentition

  • Katharina BastlEmail author
  • Doris Nagel
Research Paper


Juvenile material with the main focus on the upper jaw of the fossil predator Hyaenodon was evaluated to study the tooth eruption sequence and to examine the ontogeny of its dentition in detail. The comparison in size of milk to permanent teeth indicates a growth rate of 12–16 % in Hyaenodon. The thin section of a deciduous canine of a North American taxon shows four dental rings. Based on the knowledge of recent carnivores, this implies an age of 3–4 years in the last stage of tooth eruption and thus a long juvenile phase. The mandibles ascertained the most recent established tooth eruption sequence for North American and European species. For the first time ever, juvenile material from Asia is documented and interpreted. This study likewise shows a difference in the sequence of the upper jaw: the first upper premolar erupts before the first upper molar in North American species, whereas the European taxa show an earlier eruption of the first upper molar. This fact further confirms the divergence between the Hyaenodon lineages from North America and Europe.


Hyaenodon Tooth eruption sequence Growth rates Dental rings Oligocene Mammalia 



American Museum of Natural History (New York, USA)


British Museum of Natural History (London, UK)


Bayerische Staatssammlung für Geologie und Paläontologie (München, Germany)


Frick Collection at the American Museum of Natural History (New York, USA)


Geomuseum, Westfälische Wilhelms-Universität (Münster, Germany)


Paläontologisches Institut, Universität Wien (Wien, Austria)


Muséum National d′Histoire Naturelle (Paris, France)


Aubrelong collection at the MNHN


Pech Desse collection at the MNHN


Quercy collection at the MNHN


Fossil Vertebrate Collection, Naturhistorisches Museum Wien (Vienna, Austria)


Princeton Collection moved to Yale Peabody Museum (New Haven, USA)


Upper canine


Lower canine


Upper deciduous/milk tooth


Lower deciduous/milk tooth


Upper incisive


Lower incisive


Upper molar


Lower molar


Upper premolar


Lower premolar


Juveniles Material des fossilen Räubers Hyaenodon wurde hinsichtlich des Zahnwechsels im Oberkiefer im Speziellen, der Sequenz des Zahnwechsels im Allgemeinen und der Ontogenie der Bezahnung untersucht. Der Vergleich von Milch- zu Dauerzähnen deutet auf eine Wachstumsrate von 12–16 % bei Hyaenodon hin. Der Dünnschliff eines Milcheckzahnes einer nordamerikanischen Art zeigt 4 Dentinringe. Basierend auf der Kenntnis bei rezenten Raubtieren, ist das Alter des Individuums auf drei bis vier Jahre zu interpretieren. Da es sich im letzten Stadium des Zahnwechsels noch befunden hat, wird eine lange juvenile Phase impliziert. Die Unterkiefer bestätigen die vor kurzem aufgestellte Zahnwechselfolge bei nordamerikanischen und europäischen Arten. Zum ersten Mal kann auch juveniles Material aus Asien vorgestellt und gedeutet werden. Diese Studie dokumentiert auch einen Unterschied im Verlauf des Zahnwechsels im Oberkiefer: der erste, obere Prämolar bricht vor dem ersten Molar in nordamerikanischen Arten durch, im Gegensatz dazu zeigen europäische Formen einen früheren Durchbruch des ersten, oberen Molaren. Diese Beobachtung bestätigt die Divergenz zwischen den Hyaenodon-Linien von Nordamerika und Europa.


Hyaenodon Zahnwechsel Wachstumsraten Dentinringe Oligozän Mammalia 



Kind thanks to the Institut für Paläontologie (Universität Wien) for providing facilities, tools and material. The University of Vienna supported K.B. with travel grants (awards of advancement scholarships from the University of Vienna used for travel costs) for London, Paris and New York. Ursula Göhlich (NHMW), Christine Argot (MNHN), Pip Brewer (NHMUK), Andy Currant (NHMUK) and Judith Galkin (AMNH) gave access to the respective collections and granted loans. We are indebted to Andrea Tietze and the team at the DZU (Donauzentrum Urania, Vienna) for the possibility to produce the x-rays. We wish to thank Floréal Solé and one anonymous reviewer for valuable comments that led to improvement of this manuscript.


  1. Aarde, Rudi. 1985. Age determination of Cape porcupines, Hystrix africaeaustralis. South African Journal of Zoology 20(4): 232–236.Google Scholar
  2. Asher, Robert, and Thomas Lehmann. 2008. Dental eruption in afrotherian mammals. BioMed Central (BMC) Biology 6: 1–11.Google Scholar
  3. Bastl, Katharina, and Doris, Nagel. 2013. Milk tooth morphology of small-sized Hyaenodon (Hyaenodontidae, Mammalia) from the European Oligocene: evidence of a Hyaenodon lineage in Europe. Palaeontographica A (accepted).Google Scholar
  4. Bastl, Katharina, Semprebon Gina, and Doris Nagel. 2012. Low magnification microwear in Carnivora and dietary diversity in Hyaenodon (Mammalia: Hyaenodontidae) with additional information on its enamel ultrastructure. Palaeogeography, Palaeoclimatology, Palaeoecology 348–349: 13–20.CrossRefGoogle Scholar
  5. Bastl, Katharina. 2012. The ecomorphology of the European Hyaenodon. Ph.D. thesis at the University Vienna: 300 pp.Google Scholar
  6. Bastl, Katharina, Morlo Michael, Doris Nagel, and Heizmann Elmar. 2011. Differences in the tooth eruption sequence in Hyaenodon (“Creodonta”, Mammalia) and implications for the systematics of the genus. Journal of Vertebrate Paleontology 31(1): 181–192.CrossRefGoogle Scholar
  7. Bryant, Harold N. 2009. Implications of the dental eruption sequence in Barbourofelis (Carnivora, Nimravidae) for the function of upper canines and the duration of parental care in sabertoothed carnivores. Journal of Zoology 222(4): 585–590.CrossRefGoogle Scholar
  8. Bryant, Harold. 1988. Delayed eruption of the deciduous upper canine in the sabertoothed carnivore Barbourofelis lovei (Carnivora, Nimravidae). Journal of Vertebrate Paleontology 8(3): 295–306.CrossRefGoogle Scholar
  9. Fancy, S.G. 1980. Preparation of mammalian teeth for age determination by cementum layers: a review. Wildlife Society Bulletin 8(3): 242–248.Google Scholar
  10. Filhol, Henri. 1876. Recherches sur les phosphorites du Quercy. Étude des fossiles qu′on y rencontre et specialement des Mammifères. Annales sciences géologiques, Paris, G. Masson, 7(7): 1–561.Google Scholar
  11. Geraads, Denis, Nikolai Spassov, and Kovachev Dimitar. 2001. New Chalicotheriidae (Perissodactyla, Mammalia) from the late Miocene of Bulgaria. Journal of Vertebrate Paleontology 21(3): 596–606.CrossRefGoogle Scholar
  12. Guanfang, Chen, and Norbert Schmidt-Kittler. 1983. The deciduous dentition of Percrocuta Kretzoi and the diphyletic origin of the hyaenas (Carnivora, Mammalia). Paläontologische Zeitschrift 57: 159–169.CrossRefGoogle Scholar
  13. Jankausas, Rimantas, S. Barakauskas, and Robert Bojarun. 2001. Incremental lines of dental cementum in biological age estimation. Homo-Journal of Comparative Human Biology 52(1): 59–71.CrossRefGoogle Scholar
  14. Koufos, George D., and Louis De Bonis. 2004. The deciduous lower dentition of Ouranopithecus macedoniensis (Primates, Hominoidea) from the late Miocene deposits of Macedonia, Greece. Journal of Human Evolution 46(6): 699–718.CrossRefGoogle Scholar
  15. Lacombat, Frederic. 2006. Morphological and biometrical differentiation of the teeth from Pleistocene species of Stephanorhinus (Mammalia, Perissodactyla, Rhinoceratidae) in Mediterranean Europe and the Massif Central, France. Palaeontographica A 274: 71–111.Google Scholar
  16. Lange-Badré, Brigitte. 1979. Les Créodontes (Mammalia) d′Europe occidentale de l′Éocéne supérieur à l′Oligocéne supérieur. Mémoires du Muséum National d′Histoire Naturelle Série C Sciences de la Terre Tome XLII: 1–249.Google Scholar
  17. Lieberman, Daniel. 1994. The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaelogical Science 21: 525–539.CrossRefGoogle Scholar
  18. Mellett, James S. 1977. Paleobiology of North American Hyaenodon (Mammalia, Creodonta). Contributions to Vertebrate Evolution 1: 1–133.Google Scholar
  19. Miles A.E.W., and Caroline, Grigson. 1990. Colyer’s Variations and diseases of the teeth of animals. Cambridge University Press: 672 pp.Google Scholar
  20. Morlo, Michael, and Jörg Habersetzer. 1999. The Hyaenodontidae (Creodonta, Mammalia) from the lower Middle Eocene (MP 11) of Messel (Germany) with special remarks on new x-ray methods. Courier Forschungsinstitut Senckenberg 216: 31–73.Google Scholar
  21. Morlo, Michael, Miller Ellen, and Ahmed El-Barkooky. 2007. Creodonta and Carnivora from Wadi Moghra, Egypt. Journal of Vertebrate Paleontology 27: 145–159.CrossRefGoogle Scholar
  22. Morlo, M., Gunnell G., and P.D. Polly. 2009. What, if not nothing, is a creodont? Phylogeny and classification of Hyaenodontida and other former creodonts. Journal of Vertebrate Paleontology 29(Supplement 3): 152A.Google Scholar
  23. Owen, Richard. 1866–1868. On the anatomy of vertebrates. London: Longmans, Green and Co: 343 pp.Google Scholar
  24. Polly, P.D. 1994. What, if anything, is a creodont? Journal of Vertebrate Paleontology 14(Supplement 3): 42A.Google Scholar
  25. Polly, P.D. 1996. The skeleton of Gazinocyon vulpeculus gen. et comb. nov. and the cladisitic relationships of Hyaenodontidae (Eutheria, Mammalia). Journal of Vertebrate Paleontology 16: 303–319.Google Scholar
  26. Roksandic, Mirjana, Dejana Vlak, Michael Schillaci, and Voicu Diana. 2009. Technical note: applicability of tooth cementum annulation to an archaeological population. American Journal of Physical Anthropology 140: 583–588.CrossRefGoogle Scholar
  27. Schlosser, Max. 1887. Die Affen, Lemuren, Chiropteren, Insektivoren, Marsupialier, Creodonten und Carnivoren des europäischen Tertiärs und deren Beziehungen zu ihren lebenden und fossilen aussereuropäischen Verwandten, 1. Teil. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, eds. Mojisisovics E.V. and M. Neumayr, Band 6: 1–224.Google Scholar
  28. Slaughter Bob, H., H. Pine Ronald, and Nobuko Etoh Pine. 1974. Eruption of cheek teeth in Insectivora and Carnivora. Journal of Mammalogy 55: 115–125.CrossRefGoogle Scholar
  29. Smith, Tanya, and Paul Tafforeau. 2008. New vision of dental vision research: tooth development, chemistry and microstructure. Evolutionary Anthropology 17: 213–226.CrossRefGoogle Scholar
  30. Smith Holly, B. 2000. Development, function and evolution of teeth. In Schultz’s rule and the evolution of tooth emergence and replacement patterns in primates and ungulates, ed. M.F. Teaford, M.M. Smith, and M.W.J. Ferguson, 212–217. Cambridge, UK: Cambridge University Press.Google Scholar
  31. Solé, F. 2012. New proviverrine genus from the Early Eocene of Europe and the first phylogeny of Late Palaeocene-Middle Eocene hyaenodontidans (Mammalia). Journal of Systematic Palaeontology 11(4): 375–398.Google Scholar
  32. Solé, Floréal, Emmanuel Gheerbrant, and Godinot Marc. 2011. New data on the Oxyaenidae from the Early Eocene of Europe; biostratigraphic, paleobiogeographic and paleoecologic implications. Palaeontologica Electronica 14(2:13A): 1–41Google Scholar
  33. Spinage, C.A. 1976. Incremental cementum lines in the teeth of tropical African mammals. Journal of Zoology, London 178: 117–131.CrossRefGoogle Scholar
  34. Thome´ Harald, and Gerhard Geiger. 1997. Comparison of two methods of age determination in teeth of known age from wild carnivores. Anatomia, Histologia, Embryologia 26(2): 81–84.CrossRefGoogle Scholar
  35. Theodor Jessica, M., and Scott E. Foss. 2005. Deciduous dentitions of Eocene cebochoerid artiodactyls and cetartiodactyl relationships. Journal of Mammalian Evolution 12: 161–181.CrossRefGoogle Scholar
  36. Tsubamoto, Takehisa, Watabe Mahito, and Tsogtbaatar Khishigjav. 2008. Hyaenodon chunkhtensis and the hyaenodontid fauna from the upper Eocene Ergilin Dzo Formation of Mongolia. Journal of Vertebrate Paleontology 28: 559–564.CrossRefGoogle Scholar
  37. Xiaoming, Wang, Qiu Zhanxiang, and Banyue Wang. 2005. Hyaenodonts and carnivorans from the early Oligocene to early Miocene of Xianshuihe Formation, Lanzhou Basin, Gansu Province, China. Paleontologica Electronica 8(1:6A): 1–14.Google Scholar
  38. Wittwer-Backofen, Ursula. 2012. Age estimation using tooth cementum annulation. Methods Molecular Biology 915: 129–143.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für PaläontologieUniversität WienWienAustria
  2. 2.HNO-Klinik der Medizinischen Universität Wien, Forschungsgruppe Aerobiologie und PolleninformationWienAustria

Personalised recommendations