Paläontologische Zeitschrift

, Volume 88, Issue 2, pp 211–221 | Cite as

New observations on the skull of Archaeopteryx

Research Paper

Abstract

Although skeletal remains of the iconic oldest known avialian Archaeopteryx have been known for almost 150 years, several aspects of the cranial anatomy of this taxon have remained enigmatic, mainly because of the strongly flattened and often fractured and incomplete nature of available skull materials. New investigation of the skulls of the recently described, excellently preserved tenth (Thermopolis) and the seventh (Munich) specimens revealed several previously unrecognized characters and helps to resolve some problematic issues. Thus, the nasal of Archaeopteryx shows a lateral notch for the lacrimal, as is found in many other saurischian dinosaurs, the maxilla clearly participates in the margin of the external nares, and there seems to be a pneumatic foramen in the lacrimal, comparable to the lacrimal fenestra found in many non-avian theropods. In the braincase, Archaeopteryx shows pneumatic features reminiscent of non-avian theropods, including a ventral basisphenoid recess and an anterior tympanic recess that is laterally incised into the basisphenoid/prootic. Most importantly, however, the postorbital process of the jugal shows a facet for the suture with the postorbital, thus resolving the question of whether Archaeopteryx had a closed postorbital bar. A new reconstruction of the skull of Archaeopteryx is presented, making the skull of this taxon even more theropod-like than previously recognized. Furthermore, the closed postorbital bar and the configuration of the bones of the skull roof cast serious doubt on claims that an avian-style cranial kinesis was present in this taxon.

Keywords

Archaeopteryx Upper Jurassic Avialae Cranial osteology Cranial kinesis 

Kurzfassung

Obwohl Skelettreste des ältesten bekannten Vogels Archaeopteryx seit nun 150 Jahren bekannt sind, sind einige Aspekte der Schädelanatomie dieses Taxon weiter ungewiss, vor allem da die meisten bekannten Schädelreste stark komprimiert und meist zerbrochen und unvollständig sind. Neue Untersuchungen am Schädel des kürzlich beschriebenen und hervorragend erhaltenen 10. (Thermopolis) und des 7. (Münchener) Exemplares zeigen einige bisher unerkannte Merkmale der Schädelanatomie und helfen, andere bisher umstrittene Fragen zu lösen. So zeigt das Nasale von Archaeopteryx einen lateralen Einschnitt für die Sutur mit dem Lacrimale, wie er bei vielen Saurischia vorhanden ist, das Maxillare hat Anteil am Rand der externen Nares und das Lacrimale hat offenbar ein großes, pneumatisches Foramen, das in seiner Position dem Lacrimal-Fenster vieler basalerer Theropoden entspricht. Im Hirnschädel zeigt Archaeopteryx Merkmale die an jene basalerer Theropoden erinnern, so etwa einen Rezessus basisphenoidalis und einen anterioren tympanischen Rezessus, der von lateral in das Basisphenoid und das Prooticum einschneidet. Insbesondere zeigt jedoch der Postorbital-Fortsatz des Jugale eine Facette für die Sutur mit dem Postorbitale, was die Frage klärt, ob Archaeopteryx eine geschlossene Postorbital-Spange besass. Eine neue Rekonstruktion des Schädels von Archaeopteryx macht diesen noch Theropoden-ähnlicher als bisher angenommen. Zudem stellt die geschlossene Postorbital-Spange und die Konfiguration der Knochen des Schädeldaches die angenommene Vogel-ähnliche Schädel-Kinetik bei Archaeopteryx in Frage.

Schlüsselwörter

Archaeotperyx Oberer Jura Avialae Schädel-Osteologie Schädel-Kinetik 

References

  1. Barsbold, R., and H. Osmólska. 1999. The skull of Velociraptor (Theropoda) from the Late Cretaceous of Mongolia. Acta Palaeontologica Polonica 44(2): 189–219.Google Scholar
  2. Bergmann, U., R.W. Morton, P.L. Manning, W.I. Sellers, S. Farrar, K.G. Huntley, R.A. Wogelius, and P. Larson. 2010. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proceedings of the National Academy of Sciences 107(20): 9060–9065.CrossRefGoogle Scholar
  3. Bristowe, A., and M.A. Raath. 2004. A juvenile coelophysoid skull from the Early Jurassic of Zimbabwe, and the synonymy of Coelophysis and Syntarsus. Palaeontologia Africana 40: 31–41.Google Scholar
  4. Brusatte, S.L., T.D. Carr, and M.A. Norell. 2012a. The osteology of Alioramus, a gracile and long-snouted tyrannosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Mongolia. Bulletin of the American Museum of Natural History 366: 1–197.CrossRefGoogle Scholar
  5. Brusatte, S.L., S. Manabu, S. Montanari, and W.E.H. Harcourt Smith. 2012b. The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics. Journal of Evolutionary Biology 25: 365–377.CrossRefGoogle Scholar
  6. Bühler, P. 1985. On the morphology of the skull of Archaeopteryx. In The beginning of birds, ed. M.K. Hecht, J.H. Ostrom, G. Viohl, and P. Wellnhofer, 135–140. Eichstätt: Freunde des Jura Museums.Google Scholar
  7. Burnham, D.A. 2004. New information on Bambiraptor feinbergi (Theropoda: Dromaeosauridae) from the Late Cretaceous of Montana. In Feathered dragons. Studies on the transition from dinosaurs to birds, ed. P.J. Currie, E.B. Koppelhus, M.A. Shugar, and J.L. Wright, 67–111. Bloomington & Indianapolis: Indiana University Press.Google Scholar
  8. Carr, T.D., and T.E. Williamson. 2004. Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America. Zoological Journal of the Linnean Society 142: 479–523.CrossRefGoogle Scholar
  9. Chiappe, L.M. 2007. Glorified dinosaurs: the origin and early evolution of birds. London: Wiley-Liss.Google Scholar
  10. Chiappe, L.M., S.-A. Ji, Q. Ji, and M.A. Norell. 1999. Anatomy and systematics of the Confucuisornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bulletin of the American Museum of Natural History 242: 1–89.Google Scholar
  11. Clark, J.M., M.A. Norell, and T. Rowe. 2002. Cranial anatomy of Citipati osmolskae (Theropoda, Oviraptorosauria), and a reinterpretation of the holotype of Oviraptor philoceratops. American Museum Novitates 3364: 1–24.CrossRefGoogle Scholar
  12. Clark, J.M., A. Perle, and M.A. Norell. 1994. The skull of Erlicosaurus andrewsi, a Late Cretaceous “segnosaur” (Theropoda: Therizinosauridae) from Mongolia. American Museum Novitates 3115: 1–39.Google Scholar
  13. Currie, P.J. 1985. Cranial anatomy of Stenonychosaurus inequalis (Saurischia, Theropoda) and its bearing on the origin of birds. Canadian Journal of Earth Sciences 22: 1643–1658.CrossRefGoogle Scholar
  14. Currie, P.J. 1995. New information on the anatomy and relationships of Dromaeosaurus albertensis (Dinosauria: Theropoda). Journal of Vertebrate Paleontology 15(3): 576–591.CrossRefGoogle Scholar
  15. Currie, P.J. 2003. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta. Canada. Acta Palaeontologica Polonica 48(2): 191–226.Google Scholar
  16. Currie, P.J., and X.-J. Zhao. 1994a. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People’s Republic of China. Canadian Journal of Earth Sciences 30: 2037–2081.CrossRefGoogle Scholar
  17. Currie, P.J., and X.-J. Zhao. 1994b. A new troodontid (Dinosauria, Theropoda) braincase from the Dinosaur Park Formation (Campanian) of Alberta. Canadian Journal of Earth Sciences 30: 2231–2247.CrossRefGoogle Scholar
  18. Dames, W. 1884. Ueber Archaeopteryx. Palaeontologische Abhandlungen 2(3): 119–196.Google Scholar
  19. Darwin, C. 1859. On the origin of species by means of natural selection. London: Murrey.Google Scholar
  20. De Beer, G. 1954. Archaeopteryx lithographica. A study based on the British Museum specimen. London: British Museum (Natural History).Google Scholar
  21. Dominguez Alonso, P., A.C. Milner, R.A. Ketcham, M.J. Cookson, and T.B. Rowe. 2004. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430: 666–669.CrossRefGoogle Scholar
  22. Eddy, D.R., and J.A. Clarke. 2011. New information on the cranial anatomy of Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). PLoS ONE 6(3): e17932.CrossRefGoogle Scholar
  23. Elzanowski, A. 2001. A novel reconstruction of the skull of Archaeopteryx. Netherlands Journal of Zoology 51(2): 207–215.CrossRefGoogle Scholar
  24. Elzanowski, A. 2002. Archaeopterygidae (Upper Jurassic of Germany). In Mesozoic birds. Above the heads of dinosaurs, ed. L.M. Chiappe, and L.M. Witmer, 129. Berkeley: University of California Press.Google Scholar
  25. Elzanowski, A., and P. Wellnhofer. 1996. Cranial morphology of Archaeopteryx: evidence from the seventh skeleton. Journal of Vertebrate Paleontology 16(1): 81–94.CrossRefGoogle Scholar
  26. Erickson, G.M., O.W.M. Rauhut, Z. Zhou, A.H. Turner, B.D. Inouye, D. Hu, and M.A. Norell. 2009. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS ONE 4(10): 1–9.CrossRefGoogle Scholar
  27. Ezcurra, M.D. 2007. The cranial anatomy of the coelophysoid theropod Zupaysaurus rougieri from the Upper Triassic of Argentina. Historical Biology 19(2): 185–202.CrossRefGoogle Scholar
  28. Foth, C., and O.W.M. Rauhut. 2013. Macroevolutionary and morphofunctional patterns in theropod skulls: a morphometric approach. Acta Palaeontologica Polonica 58(1): 1–16.Google Scholar
  29. Heilmann, G. 1926. The origin of birds. London: Witherby.Google Scholar
  30. Holliday, C.M., and L.M. Witmer. 2008. Cranial kinesis in dinosaurs: intracranial joints, protractor muscles, and their significance for cranial evolution and function in diapsids. Journal of Vertebrate Paleontology 28(4): 1073–1088.CrossRefGoogle Scholar
  31. Hou, L., L.D. Martin, Z. Zhou, A. Feduccia, and F. Zhang. 1999. A diapsid skull in a new species of the primitive bird Confuciusornis. Nature 399: 679–682.CrossRefGoogle Scholar
  32. Hu, D., L. Hou, L. Zhang, and X. Xu. 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461: 640–643.CrossRefGoogle Scholar
  33. Huxley, T.H. 1868. On the animals which are most nearly intermediate between birds and reptiles. Annals and Magazin of Natural History 4: 66–75.Google Scholar
  34. Ji, Q., M.A. Norell, P.J. Makovicky, K.-Q. Gao, S. Ji, and C.-X. Yuan. 2003. An early ostrich dinosaur and implications for ornithomimosaur phylogeny. American Museum Novitates 3420: 1–12.CrossRefGoogle Scholar
  35. Longrich, N.R., J. Vinther, Q. Meng, Q. Li, and A.P. Russell. 2012. Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi. Current Biology 22: 2262–2267.CrossRefGoogle Scholar
  36. Madsen, J.H. 1976. Allosaurus fragilis: a revised osteology. Utah Geological and Mineralogical Survey Bulletin 109: 3–163.Google Scholar
  37. Makovicky, P.J., M.A. Norell, J.M. Clark, and T. Rowe. 2003. Osteology and relationships of Byronosaurus jaffei (Theropoda: troodontidae). American Museum Novitates 3402: 1–32.CrossRefGoogle Scholar
  38. Martin, L.D. 1991. Mesozoic birds and the origin of birds. In Origins of higher groups of tetrapods, ed. H.-P. Schultze, and L. Trueb, 485–540. Ithaka and London: Comstock Publishing Associate.Google Scholar
  39. Mayr, G., B. Pohl, S. Hartman, and D.S. Peters. 2007. The tenth skeletal specimen of Archaeopteryx. Zoological Journal of the Linnean Society 149: 97–116.CrossRefGoogle Scholar
  40. Mayr, G., B. Pohl, and D.S. Peters. 2005. A well-preserved Archaeopteryx specimen with theropod features. Science 310: 1483–1486.CrossRefGoogle Scholar
  41. Norell, M.A., J.M. Clark, A.H. Turner, P.J. Makovicky, R. Barsbold, and T. Rowe. 2006. A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). American Museum Novitates 3545: 1–51.CrossRefGoogle Scholar
  42. Norell, M.A., P.J. Makovicky, G.S. Bever, A.M. Balanoff, J.M. Clark, R. Barsbold, and T. Rowe. 2009. A review of the Mongolian Cretaceous dinosaur Saurornithoides (Troodontidae: Theropoda). American Museum Novitates 3654: 1–63.CrossRefGoogle Scholar
  43. Osmólska, H., E. Roniewicz, and R. Barsbold. 1972. A new dinosaur, Gallimimus bullatus n. gen., n. sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia. Palaeontologia Polonica 27: 103–143.Google Scholar
  44. Ostrom, J.H. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bulletin of the Peabody Museum of Natural History 30: 1–165.Google Scholar
  45. Ostrom, J.H. 1973. The ancestry of birds. Nature 242: 136.CrossRefGoogle Scholar
  46. Ostrom, J.H. 1976. Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society 8: 91–182.CrossRefGoogle Scholar
  47. Paulina-Carabajal, A., and P.J. Currie. 2012. New information on the braincase of Sinraptor dongi (Theropoda: allosauroidea): ethmoidal region, endocranial anatomy, and pneumaticity. Vertebrata Palasiatica 50(2): 85–101.Google Scholar
  48. Peters, S., and Q. Ji. 1998. The diapsid temporal construction of the Chinese fossil bird Confuciusornis. Senckenbergiana Lethaea 78: 155–158.Google Scholar
  49. Raath, M.A. 1985. The theropod Syntarsus and its bearing on the origin of birds. In The beginning of birds, ed. M.K. Hecht, J.H. Ostrom, G. Viohl, and P. Wellnhofer, 219–227. Eichstätt: Freunde des Jura Museums.Google Scholar
  50. Rauhut, O.W.M. 2003. The interrelationships and evolution of basal theropod dinosaurs. Special Papers in Palaeontology 69: 1–213.Google Scholar
  51. Rauhut, O.W.M. 2004. Braincase structure of the Middle Jurassic theropod dinosaur Piatnitzkysaurus. Canadian Journal of Earth Sciences 41(9): 1109–1122.CrossRefGoogle Scholar
  52. Rauhut, O.W.M., A.C. Milner, and S.C. Moore-Fay. 2010. Cranial osteology and phylogenetic position of the theropod dinosaur Proceratosaurus bradleyi (Woodward, 1910) from the Middle Jurassic of England. Zoological Journal of the Linnean Society 158: 155–195.CrossRefGoogle Scholar
  53. Rayfield, E.J. 2005. Using Finite-Element Analysis to investigate suture morphology: a case study using large carnivorous dinosaurs. Anatomical Record A 283A: 349–365.CrossRefGoogle Scholar
  54. Sampson, S.D., and L.M. Witmer. 2007. Craniofacial anatomy of Majungsaurus crenatissimus (Theropoda: abelisauridae) from the Late Cretaceous of Madagascar. Society of Vertebrate Paleontology, Memoir 8: 32–102.CrossRefGoogle Scholar
  55. Tischlinger, H. 2005. Neue Informationen zum Berliner Exemplar von Archaeopteryx lithographica H. v. Meyer 1861. Archaeopteryx 23: 33–50.Google Scholar
  56. Tischlinger, H. 2009. Der achte Archaeopteryx–das Daitinger Exemplar. Archaeopteryx 27: 1–20.Google Scholar
  57. Tischlinger, H., and D.M. Unwin. 2004. UV-Untersuchungen des Berliner Exemplars von Archaeopteryx lithographica H. v. Meyer 1861 und der isolierten Archaeopteryx-Feder. Archaeopteryx 22: 17–50.Google Scholar
  58. von Meyer, H. 1861. Archaeopteryx lithographica und Pterodactylus. Neues Jahrbuch fuer Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1861: 678–679.Google Scholar
  59. Walker, A. 1985. The braincase of Archaeopteryx. In The beginning of birds, ed. M.K. Hecht, J.H. Ostrom, G. Viohl, and P. Wellnhofer, 123–134. Eichstätt: Freunde des Jura Museums.Google Scholar
  60. Wang, X., J.K. O’Connor, B. Zhao, L.M. Chiappe, C. Gao, and X. Cheng. 2010. New species of Enantiornithes (Aves: ornithothoraces) from the Qiaotou Formation in northern Hebei, China. Acta Geologica Sinica 84: 247–256.CrossRefGoogle Scholar
  61. Weishampel, D.B. 1984. Evolution of jaw mechanisms in ornithopod dinosaurs. Advancements in Anatomy, Embryology and Cell Biology 87: 1–110.CrossRefGoogle Scholar
  62. Wellnhofer, P. 1974. Das fünfte Skelettexemplar von Archaeopteryx. Palaeontographica A 147(4–6): 169–216.Google Scholar
  63. Wellnhofer, P. 1993. Das siebte Exemplar von Archaeopteryx aus den Solnhofener Schichten. Archaeopteryx 11: 1–47.Google Scholar
  64. Wellnhofer, P. 2008. Archaeopteryx. Der Urvogel von Solnhofen. Munich: Dr. Friedrich Pfeil.Google Scholar
  65. Whetstone, K.N. 1983. Braincase of Mesozoic birds: I. New preparation of the “London” Archaeopteryx. Journal of Vertebrate Paleontology 2(4): 439–452.CrossRefGoogle Scholar
  66. Witmer, L.M. 1997a. The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. Society of Vertebrate Paleontology, Memoir 3: 1–73.CrossRefGoogle Scholar
  67. Witmer, L.M. 1997b. Craniofacial air sinus systems. In Encyclopedia of dinosaurs, ed. P.J. Currie, and K. Padian, 151–159. San Diego: Academic Press.Google Scholar
  68. Xu, X., and M.A. Norell. 2006. Non-avian dinosaur fossils from the Lower Cretaceous Jehol Group of western Liaoning, China. Geological Journal 41: 419–437.CrossRefGoogle Scholar
  69. Xu, X., M.A. Norell, X.-L. Wang, P.J. Makovicky, and X.-C. Wu. 2002. A basal troodontid from the early Cretaceous of China. Nature 415: 780–784.CrossRefGoogle Scholar
  70. Xu, X., and X.-C. Wu. 2001. Cranial morphology of Sinornithosaurus millenii Xue et al. 1999 (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian Formation of Liaoning, China. Canadian Jorunal of Earth Sciences 38: 1739–1752.CrossRefGoogle Scholar
  71. Xu, X., H.-L. You, K. Du, and F. Han. 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475: 465–470.CrossRefGoogle Scholar
  72. Yates, A.M. 2003. The species taxonomy of the sauropodomorph dinosaurs from the Löwenstein Formation (Norian, Late Triassic) of Germany. Palaeontology 46(2): 317–337.CrossRefGoogle Scholar
  73. Zhou, Z., and F. Zhang. 2006. Mesozoic birds of China: A synoptic review. Vertebrata Palasiatica 44(1): 74–98.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental SciencesLMU MunichMunichGermany

Personalised recommendations